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Abstract

How do people come to assign symbolic labels to continuous
dimensions? Previous work has shown that prediction-error-
driven models are sensitive to the order of labels and exem-
plars during training; similar patterns of learning are found
found in adult learners trained to associate labels with dis-
crete visual stimuli. Here we provide further evidence in sup-
port of the hypothesis that an error-driven mechanism under-
lies word learning, using continuous stimuli to explore the in-
teractions of temporal structure, stimulus frequency, and dis-
tinctiveness in shaping associative learning. We conclude that
learning to use features of exemplars to predict labels results
in over-representation of diagnostic information, as shown by
improved associative performance on stimuli near category
boundaries. This is consistent with an error-driven model of
label acquisition, and highlights the importance of the asso-
ciative and prediction-based (rather than exclusively syntactic)
aspects of symbolic cognition.
Keywords: Symbolic Cognition; Categorization; Language;
Learning; Representation; Concepts; Computational model-
ing; Prediction

Introduction
The world is full of perceptually similar stimuli that prompt
behaviorally diverse responses. Picking ripe fruit, avoiding
poisonous creatures, and even interpreting subtle facial ex-
pressions all rely upon careful discriminations of subtle cues.
What role does language play in learning such discrimina-
tions? How can the process of learning a symbol change what
is seen?

Classic referential theories of language have little to say
on the content of individual words, instead focusing on the
syntactical rules for combining abstract symbols. Such theo-
ries largely ignore the process of learning words; for exam-
ple, Fodor (1981) has argued that the concept of carburetor
must be innate, restricting the problem of word learning to the
problem of finding the proper mapping between new words
and the appropriate innately elaborated concepts. Many have
discussed this and other limitations of such referential theo-
ries of language (Tomasello, 2003; Wittgenstein, 1953). Re-
cent work has rejected the referential view of language, and
has instead argued the importance of prediction for develop-
ing symbolic representations (Ramscar, Yarlett, Dye, Denny,
& Thorpe, 2010). Specifically, this analysis applies error-
driven learning to the problem of determining which cues in
the world to associate with a word, and shows how varying
the structure of information in time elicits different patterns
of association.

Within a predictive framework, words can either be used
as predictors or as predictions. Used as predictors, the words
‘dog’ or ‘wolf’ often predict very similar outcomes: canine
creatures which share many features, and thus error driven-
systems will learn quite similar representations for each over
time. In contrast, systems using the appearance of a dog or
a wolf to predict the relevant label will have highly distinct
outcomes (either the label ‘dog’ or the label ‘wolf’). Over
time, these highly distinct outcomes can serve as a useful pre-
diction targets, allowing an error-driven learner to isolate the
diagnostic features (e.g. ‘ear floppiness’) that lead to correct
prediction.

Recently, Ramscar et al. (2010) demonstrated effects of in-
formation structure on symbolic learning by training subjects
to learn to name novel stimuli while manipulating temporal
order. We argue that this sensitivity to information structure
is the result of a fundamental aspect of symbols: informa-
tionally impoverished, symbols must serve as abstractions
of the things they represent. When learning the symbol’s
many associations with the world, it can be advantageous to
learn these symbols as consequents predicted from cues in the
world, rather than as cues used to predict the world. Such an
effect was found for for participants learning to label various
fribble categories (Tarr, 2000). In the case of fribbles, the
relevant cues consist of a number of discrete features. When
trained to predict from Features to Labels (FL), subjects were
better able to learn the relevant categories, than when trained
from Labels to Features (LF). Modeling suggested that FL-
trained subjects improved by learning to use the diagnostic
features to inhibit potentially conflicting labels. In contrast,
LF learning developed a more ‘veridical’ but less discrimina-
tive model that represents the relative feature frequencies for
each label. This Feature-Label-Order (FLO) effect suggested
that learning natural symbols is sensitive to information struc-
ture. Here, we attempt to explore if such FLO effects can be
found while learning to discriminate the boundaries of con-
tinuous dimensions.

Is learning a mapping between continuous exemplars and
discrete labels also affected by the information structure
available at learning? Demonstrating a FLO effect in the
realm of continuous stimuli would reinforce the idea that
prediction is fundamental to symbolic learning and category
learning. However, it is possible that a continuous dimension
would not provide the consistent ‘hooks’ for discriminative
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learning that are present when learning binary features (such
as fribble appendages); without discrete features from which
to generate predictions, the FL advantage could be nullified.
However, based upon cue-competition, we predict that even
noisy continuous features can serve as useful cues, as incre-
mental learning can distill the consistent cues across trials. In
addition, using continuous cues may allow us to learn more
about the FL advantage in category learning: is the advantage
a broad advantage, improving performance across the board,
or will it only boost performance near the category boundary?
By looking at how information structure in the world interacts
with distinctiveness and frequency, we can learn more about
the role of prediction in the learning of natural symbols.

Materials: Novel Shapes
Generation We created several families of novel objects to
be used in novel mappings. Our novel objects were gener-
ated from a continuous parameter space by drawing smooth
splines between points on the 2D plane. This technique, pre-
viously used by Davidenko (2007) to probe the mechanisms
of face representation, allows one to parameterize a physical
space, interpolating continuously between points. Figure 1
demonstrates the process used to generate the novel shapes.
First, 16 key-points were randomly selected (A), similarly to
the previous face silhouette methodology. The points were
then connected to form a closed shape (B) and beta-splines
smoothed the edges (C). Shapes were then filled to create a
two-tone image (D). Shape ‘families’ were created by ‘mor-
phing’ pairs of shapes together via linear combinations of the
key-point positions. Families were selected by visual inspec-
tion, eliminating any unusually distinctive features such as
loops. Pilot studies confirmed that within-family pairs were
more similar than between-family pairs.

Figure 1: Individual stimulus generation.

Calibration In order to ensure that subsequent tests were
equally difficult, we attempted to standardize discriminabil-
ity of each of the families. We tested 20 participants (mean
age of 19.8 years), showing them a series of shapes at 6 levels
of difference from 6 families. Each trial consisted of a pair
of temporally separated and masked objects; subjects had to
respond “identical” or “different”. One-third of trials were
‘same’ trials, where the identical shape was shown twice. The
remainder were ‘different’ trials, adding up to a total of 360
trials per subject. Based upon these data, we constructed es-
timates of d-prime as a function of parameter distance, and
estimated the level of distance at which discrimination per-
formance (d-prime) would be approximately 1.5 via the fitted

regression parameters.
Finally, based upon that calibration, we created a new set

of stimuli whose half-max distance was estimated to have a
same-different discriminability of about 1.5 d-prime, as laid
out at the bottom of Figure 3. This procedure provided us
with a reasonable assurance that discriminability was compa-
rable across families, and that any remaining uneven discrim-
inability could be controlled via counter-balancing.

Experiment 1: FLO Effects with Continuous
Stimuli

Will the temporal order of features and labels influence learn-
ing of a continuous dimension as predicted by our error-
driven account of learning? Adapting the design from
Ramscar et al. (2010), we undertook an experiment to demon-
strate the influence of information structure on symbolic
learning of a continuous dimension.

Subjects were situated in a quiet room in front of a key-
board and monitor, and were instructed to pay attention to the
series of events which occurred on the screen, and that they
would be tested on what they had learned. During the training
section, temporally staggered pairs of items were presented,
with longer blanks between pairs. The primary manipulation
was the order of items during study, either the Features (ob-
jects) preceding Labels (FL), or vice-versa (LF). After train-
ing, subjects were tested by presenting one shape at a time,
and asking subjects to choose the associated label. (We did
not test the converse (selecting a shape when prompted with
a label) because previous experiments (Ramscar et al., 2010)
did not find effects of congruency between training and test-
ing direction.) In Experiment 1, study order was manipulated
across subjects, such that an individual subject was trained
either entirely in FL or LF order.

wug

Training (FL) Testing

wug

or
wug

dax

Training (LF)

dax
dax ?

Figure 2: General experimental structure. During training,
continuous-featured objects either preceded labels (FL), or
were subsequent to labels (LF). At test, subjects made a
multiple-alternative forced choice.

Methods
Two morph families were selected for this experiment, with
10 exemplars generated at regular intervals from each respec-
tive parameter space. The two families were then split into
two categories by first splitting each family at the midpoint,
with one half being assigned to the ‘rare’ frequency con-
dition and the other to the ‘common’ frequency condition.
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Then, the ‘common’ and ‘rare’ exemplars of the two different
families were crossed, resulting in two categories compris-
ing half the exemplars of each family (see Figure 3). Across
subjects, we randomized the assignment of frequency condi-
tions to stimuli, thus randomizing pairings of individual stim-
uli within categories. Category labels were also randomized.
The disjunctive category structure was used to pit cue fre-
quency against cue diagnosticity, while equating overall label
frequency (as in Exp. 1 of Ramscar et al., 2010).

Sixty-eight undergraduates (mean age of 19.9 years) at
Stanford University participated for course credit or payment.
We instructed subjects to attend to a serial stream of tem-
porally staggered items. During training, subjects were ran-
domly assigned to one of two training conditions: either fea-
tures were followed by labels (FL) or labels were followed by
features (LF). Each study trial progressed as follows: blank
for 800 ms; fixation for 200 ms; first stimulus for 300 ms (fea-
tures or labels depending on condition); fixation for 300 ms;
the appropriate paired stimulus (label or features) for 300 ms;
and a final fixation for another 200 ms (Figure 2). Subjects
were exposed to rare exemplars 4 times each (25% of trials),
and common exemplars 12 times each (75%), for a total of
160 trials. Subjects had no other task than to attend to the
serial stream of items. There was one break halfway through
training.

Subjects were then tested on their learning of the pairings
of exemplars and labels. Subjects were presented with a sin-
gle exemplar, and the two category names, corresponding to
the left and right arrow keys on a keyboard. Subjects were
told to respond as accurately as possible, under no time pres-
sure. Each exemplar was tested 5 times, for a total of 100
trials.

Results
Subjects learned the categories relatively well, achieving
76.1% accuracy overall. In Figure 4 we see accuracy of ac-
tivation plotted against morph index, grouped by study or-
der and frequency (collapsing the data across item identity,
which is counterbalanced). The curves suggest that subjects
are better at classifying the most distinctive stimuli and that
FL training results in better overall performance. In addition,
it appears that there may be interactions between study order,
discriminability, and frequency. In order to test the signifi-
cance of these effects, we have binned the data by distinctive-
ness: the stimuli 3 or more units from the category boundary
are now ‘distinctive’, while those 2 or less are ‘confusable’.
This simplification still captures the general patterns of the
data, but recodes it as a binary factorial design: training or-
der (LF or FL), distinctiveness (confusable or distinct), and
frequency (rare or common). We then analyzed this binned
data using multilevel logistic regression using the lme4 pack-
age (Bates & Maechler, 2009), in R (www.r-project.org), with
distinctiveness, study order, and frequency as fixed effects,
and subjects as random effects. Fixed effects are reported in
terms of Log-Odds Ratio (LOR), i.e. a LOR of 1.0 means that
trials in the given treatment condition were e1.0 = 2.7 times

more likely to be correct, and subsequently tested for signifi-
cance via the Wald z statistic, the ratio of the effect size to its
standard error (Jaeger, 2008).
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Exp. 1: Continuous Training Schematic
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Figure 3: Two stimulus dimensions of 10 exemplars each are
split into two disjunctive categories, “wug” and “dax”. In this
example, the left half of each dimension is rare, and the other
half is common, with exemplars occurring 3 times as often as
rare exemplars. Label frequency is equalized, preventing any
overall label bias. Alignment of categories and frequencies
were counterbalanced across subjects.
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Figure 4: Exp. 1, Demonstration of FLO effects over contin-
uous stimuli. Data has been collapsed across items, leaving
accuracy as a function of the stimulus dimension, study order,
and frequency. Notice the overall advantage for the FL sub-
jects, and the substantial dip in performance on the rare side
of the category boundary.

As suggested in the un-binned plot (Figure 4), a signifi-
cant interaction between study order and distinctiveness in-
dicates that FL-trained subjects were much better away from
the category boundary (LOR= 1.01, Wald z= 4.4, p< 10−6).
In addition, a significant interaction between training order
and frequency suggests that LF-trained subjects were espe-
cially impaired on rare items (LOR =−0.43, Wald z =−2.5,
p < .02), across distinctiveness levels. This finding closely
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matches the original FLO effect experiment (Ramscar et
al., 2010), echoing the difficulty of learning rare LF-trained
items. In addition, there are highly significant main effects of
frequency (a high-frequency performance bias) and distinc-
tiveness (better performance for distinctive items). The main
effect of training order is masked by the various interaction
effects.

These results are generally consistent with prediction-
based constraints on symbolic learning. FL trained subjects
seem to be learning the associations better in general, but
may be slightly overweighing diagnostic information near the
category boundary. So far, this data has provided evidence
that learning to map continuous stimuli to discrete labels is
subject to the same informational constraints that are present
when learning more discrete stimuli, and a replication of the
original FLO effect with novel, continuous stimuli. Subjects
trained FL had a general advantage, learning the classifica-
tion more effectively, along with what appears to be a slight
diagnosticity bias. It also corroborates our understanding of
the mechanism, suggesting that cue-competition from error-
based learning can influence the acquisition of associations
between labels and exemplars.

However, the between-subjects design of this experiment
is open to criticism; it may be that the LF subjects quickly
become less motivated due to the relative difficulty of their
task. When predicting a diverse set of items from a discrete
labels, it is impossible to perfectly predict the exact item that
arrives on any trial. This may be frustrating, and cause sub-
jects to pay less attention. Indeed, the training-order effect is
largest at the most discriminable stimuli, suggesting the worst
subjects may simply not be paying sufficient attention. In ad-
dition, the presence of only two labels makes interpreting er-
rors difficult; we can not check our assumption that the two
stimulus dimensions have been learned independently. Errors
could be due to confusion either with items from the same di-
mension but with the opposite label, or from confusion with
elements from the other dimension. To avoid these and sim-
ilar shortcomings and criticisms, Experiments 2 and 3 will
replicate the continuous FLO effects in a within-subjects de-
sign, mitigating the influence of global attentional effects and
increasing the interpretability of our results.

Experiment 2: Within-subjects training
With the between-subjects design of Experiment 1, we saw
that training condition showed an overall effect on perfor-
mance. Although this effect is consistent with our error-
driven model, it is possible that the difference could be driven
by a global attentional effect, rather than the specific learning
mechanism used. Our experiments so far have used disjunc-
tive categories to explore the differences in learning, pitting
salient and frequent but non-diagnostic information against
less-salient but diagnostic information. The disjunctive cate-
gories may help explain the confusion even on relatively dis-
tinctive exemplars. In addition, we hope to equalize perfor-
mance on the most distinctive exemplars across subjects, be-

cause any performance difference at the endpoints makes it
much more difficult to interpret any changes in bias or sensi-
tivity at the category boundary.

In order to improve both the power of the analysis and the
strength of our argument, we moved to a within-subjects de-
sign (Figure 5). Subjects were trained to categorize two con-
tinuous families: one trained FL, one trained LF. Each family
was split down the middle, and each half was associated with
a novel label, yielding a total of four labels. To ensure we
detect any differences near the category boundary between
training types, we increased training to ensure all subjects
learned the most distinctive items well. To reach this goal,
we gave each subject three training and testing sessions, with
the same items repeated (in a random order) during each of
these three blocks. We did not analyze the progression of
learning across blocks, instead analyzing them as one large
block; the patterns of effects looked consistent across blocks.

In this experiment, we temporarily removed the frequency
manipulation to obtain a minimalist, within-subjects test of
FLO effects. With these changes, the critical questions be-
came: will the FL advantage in learning replicate in a within-
subjects design? After eliminating disjunctive categories?
While training subjects across multiple blocks? The cue-
competition account predicts that the FLO effect should be
independent of these factors; by controlling their influence
we further constrain the space of possible alternative expla-
nations.

Methods
Eight undergraduates (mean age of 18.9 years) at Stanford
University participated for course credit or payment. The
within-subjects manipulation of training-type, fewer counter-
balancing conditions, and extended training greatly increased
our power, substantially reducing the number of subjects
needed to demonstrate an effect of training.

The general structure of training was similar to Experi-
ment 1, with the following differences: Each of three train-
ing blocks presented both distributions 9 full times each, for
a total of 180 trials total (5 exemplars/label * 4 labels * 9
repetitions). For each subject, one family was learned in FL
order, while the other was learned LF, counterbalanced across
subjects. Individual trials proceeded as in Experiment 1.

At test, subjects were tested on each exemplar 3 times, for
a total of 60 trials per testing block. Testing took the form of
an unspeeded 4-AFC, with one exemplar presented as a cue,
and the four labels presented as alternatives on the screen.
Location of the labels on the screen was randomized for each
subject, but consistent throughout the experiment.

Results
Experiment 2, with the increased power of a within subjects
design, yielded a similar pattern of data (Figure 6), where
FL training once again had a positive effect on performance.
Beyond the strong effect of distinctiveness, a mixed-effect lo-
gistic regression of the data (binned as in Experiment 1) re-
veals a main effect of study order: FL training results in better
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associative learning (LOR = 0.37, Wald z = 2.07, p < .05).
This minimal manipulation supports the idea that learning to
categorize continuous stimuli is constrained by FLO effects.
However, the lack of an interaction between distinctiveness
and training order is problematic for our preferred interpre-
tation: general attentional suppression of the FL condition
could generate this pattern of results. In the final experiment,
we attempt to address this possibility.
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Figure 5: Two stimulus dimensions are split among four la-
bels, with no frequency bias. Training order (FL vs LF) is
manipulated within subjects, between dimensions.
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Figure 6: Exp. 2, A within-subjects manipulation reveals bet-
ter performance on items trained FL rather than LF.

Experiment 3: Frequency Distributions
Having successfully demonstrated a within-subject continu-
ous subject FLO effect, we hope to gain insight into the rep-
resentations that are created by FL vs LF learning by adding a
frequency manipulation (see Figure 5). Experiment 2 demon-
strated a within-subjects continuous FLO effect. However,
this main effect of training order is consistent with a couple
of possible hypotheses. While the FLO analysis explains this
effect as a result of cue competition stemming from predic-
tion error in the FL condition, another hypothesis is that LF

training generally reduced performance for some unrelated
reason; perhaps words appearing first are less salient than
shapes. Performance could still be reasonably high in both
conditions; trials at the highest discriminability could reach
ceiling, but the difference across conditions could be simply
due to differences in attention. In order to rule this confound-
ing hypothesis out, we need to demonstrate that the represen-
tations of the associations have been shaped by the process of
learning. As in the original fribble experiment, differences in
the pattern of bias due to frequency differences can shed light
on the representations being used.

Methods
Unlike Experiment 1, the frequency manipulation in this ex-
periment did not bias entire halves of each family. Instead,
a sawtooth-shaped frequency distribution was adopted (as
shown in Figure 7). Thus each stimulus family was split
into two halves; on the ‘near’ side, the most frequent exem-
plar is the one against the border, while on the ‘far’ side, the
most common exemplar is the most distinctive, farthest from
the category boundary. Like in Experiment 1, the overall
frequency of each label was thereby equalized, but in addi-
tion, the use of overly confusing disjunctive categories was
avoided.

Eighteen undergraduates (mean age of 19.4 years) at Stan-
ford University participated for course credit or payment.
Training proceeded as in Experiment 2, but with altered fre-
quency profiles. Each training block trained each distribution
6 full times each, for a total of 180 trials total (15 presen-
tations/label * 4 labels * 6 repetitions). The ‘near’ side for
each stimulus dimension was counter-balanced across sub-
jects. For each subject, one family was learned in FL order,
while the other was learned LF, counterbalanced across sub-
jects. Testing proceeded identically to Experiment 2.

Results
To analyze the data, we collapsed the data across stimuli
within conditions. In Figure 8, we see a similar overall pat-
tern of results as Experiment 1. Once again, general learning
performance is high; at the ends, performance is much closer
to perfect; LF may even be overtaking FL at the most ex-
treme morph values. Elements near the category boundary
are disproportionately affected by training order. To quantify
these effects, we again ran a mixed effects logistic regression
on the data (again binned by distinctiveness); this revealed
a three-way interaction between training order, distinctive-
ness, and frequency conditions (LOR = 1.05, Wald z = 2.08,
p < 0.05). This effect is driven by the disproportionate accu-
racy of subjects on the high-frequency FL trained stimuli near
the category boundary, suggesting that FL trained items ex-
ploit diagnostic features near the category boundary, but that
these critical features are less informative for the most dis-
criminable exemplars. The presence of this interaction pro-
vides the strongest evidence yet that the temporal informa-
tion structure influences the development of representations,
as predicted by our error-driven model of learning.
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Figure 7: Two stimulus dimensions are split across four la-
bels. In this case, the elements labeled “dax” and “nez” are
in the ‘near’ frequency condition, while the elements labels
“wug” and “kif” are in the ‘far’ frequency condition. This
design will help demonstrate the interaction of training with
frequency information across the distinctiveness dimension.

Discussion
Error-driven learning has been extensively studied across a
variety of disciplines such as classical-conditioning (Pavlov
& Anrep, 1927) and decision making (Gluck & Bower,
1988); successful computational models have been developed
which accurately predict a wide range of experimental find-
ings (Barlow, 2001; Rescorla, 1988). Here, we have ex-
tended this powerful model to help understand how symbols
are learned.
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Figure 8: Exp. 3, Accuracy by training order and frequency.
A significant three-way interaction on the mixed logistic re-
gression suggests a robust FLO effect. Error bars are simple
between-subjects SEM. Analysis of deviance of binned data
results in a significant three-way interaction, driven by the
improved performance near the boundary of the FL trained
items in the ‘near’ frequency condition.

We found significant advantages for training subjects to
use exemplars to predict words, even when performance on

the most distinctive examples was equalized in within-subject
designs. Furthermore, the interaction of training-order, dis-
tinctiveness, and frequency in Experiment 3 provides direct
support for our cue-competition account, confirming the in-
triguing prediction that FL learning tends to distort represen-
tations, making them less ‘veridical’, but more useful com-
pared to the ‘naive’ models developed by LF learning. More
generally, these experiments demonstrate that the temporal
structure of information present during learning can shape
representation, suggesting that linguistic representations must
be learned. This work also has more general implications for
categorical learning, suggesting that the simple association
is not sufficient for explaining patterns of learning; compe-
tition amongst predictive elements will shape the pattern of
association, a conclusion compatible with previous work on
classification (Sakamoto & Love, 2010).
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