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Abstract 
Category learning often involves selective attention to 
category relevant information, which may result in learned 
inattention to category irrelevant information.  This learned 
inattention is a cost of selective attention. In the current 
research, the cost of attention was used as an indicator of 
category learning. Participants were given a category learning 
task, and the amount of supervision given to them was 
manipulated. Along with behavioral data, recorded eye 
movements during the task showed signature patterns of 
learning via a cost of attention. In addition, a simple neural 
network (perceptron) was able to use these eye-tracking data 
to predict success in learning. Thus, the observed attentional 
pattern – the cost of selective attention – was proposed as an 
indicator of category learning.  

Keywords: category learning, cost of attention, eye 
tracking, supervised learning, sparse category, classifier, 
perceptron, neural network 

Introduction 
Attention plays a central role in many models of category 
learning (Kruschke, 1992; Nosofsky, 1986). During 
category learning, the ability to selectively attend to 
category-relevant cues while ignoring category-irrelevant 
cues allows for more efficient category learning. However, 
attention should also be flexible to enable learning of new 
categories. Consider learning to discriminate plums from 
nectarines. The most efficient way to distinguish them 
visually would be focusing on color as a cue rather than 
shape. However, when encountering a new category like 
lemons versus bananas, the once useful color cue no longer 
helps, while the previously unhelpful cue of shape becomes 
a good dimension to efficiently learn the categories. The 
process of ignoring the shape cue in the first learning 
instance often results in learned inattention to this cue 
(Kruschke & Blair, 2000). Learned inattention to a 
previously irrelevant dimension creates a deficit in future 
learning. This deficit constitutes a cost of attention 
(Hoffman & Rehder, 2010). For example, Hoffman & 

Rehder (2010) recorded eye movements during a supervised 
category learning task and found evidence for a cost of 
attention. If category learning involves selective attention, 
then a cost of attention could function as an indicator of 
category learning.  

Overview of Current Experiments 
Two eye-tracking experiments were conducted with 
identical stimuli.  Experiment 1 tested participants in a two-
phase supervised category learning task that should promote 
learning. Experiment 2 tested participants in a two-phase 
unsupervised category learning task that should prevent 
learning. Critically, the second phase of each learning task 
relied on previously irrelevant cues to learn a new category. 
Based on previous research, it was predicted that 
supervision would facilitate category learning in Experiment 
1, compared to unsupervised learning in Experiment 2. 
However, there is also evidence with adults that supervision 
only facilitates category learning when a category does not 
have much structure (Kloos & Sloutsky, 2008). Category 
structure could be measured as category density or “a ratio 
of variance relevant for category membership to the total 
variance across members and nonmembers of the category” 
(Sloutsky, 2010). Therefore, categories that have many 
features in common and those features are not shared with 
non-members are statistically dense. On the other hand, 
categories that have few features in common while having 
many features that are common with non-members are 
statistically sparse. Thus, in the current research an artificial 
sparse category was used to manipulate learning via 
supervision. 

The first aim of the current research was to replicate a 
condition with a cost of attention during category learning 
and a condition with no cost of attention during category 
learning by manipulating the amount of supervision 
provided to participants. The second aim was to use the 
demonstrated cost and lack of cost to classify adults into 
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learners and non-learners so that the signature patterns of 
attention during category learning could be systematically 
examined. To achieve this aim, a classifier using a simple 
neural network (perceptron) was used to predict individual 
learning data on the basis of eye gaze patterns during 
category learning. 

Experiment 1 

Methods 
Participants Twenty-five adults with normal or corrected to 
normal vision participated in the experiment. Participants 
were undergraduate students at The Ohio State University 
participating for course credit. An additional 17 participants 
were excluded where 5 of them had problems tracking their 
eye movements, 4 missed the catcher trials (see Procedure), 
and 8 did not learn the category. 
Stimuli For the practice phase, two artificial categories that 
look like molecules were used on a black background (see 
Figure 1). Molecules consisted of five circles where four 
changed colors in a binary fashion and one remained 
constant throughout the practice phase, serving as a category 
relevant feature. There were 16 category members for each 
molecule category where the only difference between the 
categories was the color of the constant feature. The 
category relevant feature was always the upper left circle, 
which was purple in one category and yellow in the other 
category. For the main experiment, four artificial categories 
that looked like flowers were used (see Figure 1). Presented 
on a black background, each exemplar had a dark gray 
hexagon in the middle that was constant for every category 
with six colored shapes on every side. Among the six 
colored shapes, five changed their color/shape in a binary 
fashion; whereas, one was constant, serving as a category 
relevant feature. Therefore, there were 32 unique stimuli for 
each category with two categories having the relevant 
feature on the right-bottom side of the hexagon (i.e., 
category A: purple triangle, category B: blue semi-circle) 
and two categories having the relevant feature on the left 
side of the hexagon (i.e., category C: orange square, 
category D: yellow pentagon). For the catcher trials (see 
Procedure), four flower-like colored shapes were used. 
These colored shapes were similar to the four artificial 
categories but had unique shapes and colors so that it was 
easier to distinguish them from the four artificial categories. 
Procedure The experiment was controlled by E-prime 
version 2.0, and a Tobii T60 eye tracker was used to collect 
eye gaze with the sampling rate of 60Hz. Following a 
practice phase, the main experiment had two learning phases 
with each phase including 4 blocks where each block 
consisted of 8 learning trials followed by 4 test trials. All 
learning trials were presented for 1.5 seconds. Moreover, 
before each learning and test trial, participants fixated on a 
randomly placed fixation point (e.g., red cross) appearing on 
a random-dot background. The participants were told to 
look at the fixation to proceed with the experiment. 

 

 
 

Figure 1. Stimuli used in the experiment.  
 
In the practice phase, participants were told that they 

would see a set of molecules that have one common atom, 
and that they should try to find the common atom. After the 
practice learning trials, the participants were tested with two 
molecules side by side and were asked to choose the 
molecule that they had just seen by pressing a corresponding 
button on a keypad. The left/right side of the correct 
response was counterbalanced and onscreen feedback was 
provided as to whether the answer was correct or incorrect 
after every practice test trial. Moreover, a verbal explanation 
accompanied with actual stimuli explaining the relevant 
category was given after the four practice test trials. 
Instructions were also given before the four practice test 
trials to instruct participants to respond as fast and 
accurately as they could and to guess if they did not know 
the answer. 

In the main experiment, each block was similar to the 
practice phase except that the stimuli were different and at 
the start of every block participants were told that they 
would see flowers that have a common feature they had to 
find. Moreover, unknown to the participants, the categories 
presented in the first four blocks (first learning phase) 
differed from the categories presented in the last four blocks 
(second learning phase).  The categories differed by the 
position of the relevant feature. Therefore if the first half of 
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the blocks were presented with category A, the second half 
of the blocks were presented with category C or D. The 
category switching manipulation was intended to promote a 
cost of attention in the second half of the blocks, and the 
switch was never indicated to the participants. At test, two 
stimuli that had the relevant features at the same spatial 
location were presented side by side just as in the practice 
test. Therefore, if category A was learned, category B was 
presented with category A at test and same as for category C 
and D. Additionally, there was no feedback related to the 
test trials, and at the end of the last test trial of the second 
learning phase, there were four catcher trials with more 
obvious new category features on the novel item that were 
implemented to ensure the participants were paying 
attention during the entire experiment with continued 
motivation to participate. Moreover, participants who did 
not respond correctly to all four catcher trials were also 
excluded. 

Results 
To determine whether a cost was incurred, accuracy, 
reaction time, and eye gaze data were analyzed by block 
with a particular focus on the blocks before and after the 
unknown category switch, namely block 4 and block 5. 
Participants who were not accurate on the final four test 
trials in the last block of learning phase 1 were classified as 
non-learners and were excluded from the final analyses.  

The mean accuracy for all test trials was 92.75% (learning 
1: M = 94%, SD = 15.94%, learning 2: M = 91.5%, SD = 
17.12%), which was significantly higher than chance 
performance, p < .001, for all blocks indicating learning 
occurred. Results of a 2 × 4 (Learning × Block) within-
subjects ANOVA conducted on accuracy scores at test 
showed a main effect for Block, F(2.29, 55.01) = 9.96, p < 
0.001, indicating that accuracy differed by block. Moreover, 
a significant cost of attention was demonstrated between the 
last block of learning phase 1 (block 4) and the first block of 
learning phase 2 (block 5) with a significant decrease in 
accuracy from block 4 to block 5, t(24) = 4.27, p < .001 (see 
Figure 2). 

The mean reaction time for all test trials was 1032.47 ms 
(SD = 566.66 ms) (learning 1: M = 991.46, SD = 538.11, 
learning 2: M = 1071.00, SD = 592.36). A 2 × 4 (Learning × 
Block) within-subjects ANOVA conducted on mean 
reaction times showed a main effect for Block, F(1.99, 
37.84) = 15.20, p < .001, but there was no significant main 
effect for Learning or a Block X Learning interaction. 
Statistical difference between block 4 and block 5 were also 
found, t(23) = 4.36, p < .001, demonstrating a cost of 
attention (see Figure 3). 

Eye gaze data were also analyzed for each block by 
calculating the weighted proportion of looking to the 
relevant features. This value was calculated by taking the 
proportion of looking to the relevant features divided by the 
proportion of looking to the irrelevant and relevant features 
combined. However, since there was greater spatial area for 
irrelevant features (5 shapes) than the relevant features (1 

shape), the proportion of looking to the relevant features 
was multiplied by five to equate the spatial area. Note that a 
value 0.50 in the analysis represents an equal amount of 
looking to the relevant and irrelevant features at a given 
time. Using the same method, the cost of attention was 
calculated by comparing the last four blocks of learning 
phase 1 to the first four blocks of learning phase 2 (see 
Figure 3). 

As shown in Figure 4, the first 250 ms exhibit a random 
pattern of looking around 0.50 that reflected the first 
saccade away from a randomly moving fixation cross to the 
stimulus. In each learning phase, the proportion of looking 
to the relevant features increased across blocks, and in the 
last two blocks the proportion of looking to the relevant 
feature shows an asymptote. A 2 × 4 (Learning × Block) 
between-subject ANOVA  by the group data only showed a 
main effect for Block, F(3, 712) = 114.47, p < .001.  
However, comparing the first block and the 5th block, 
where the 5th block is the start of the second learning phase, 
we observed a lower proportion of looking in the 5th block, 
which indicates a cost of attention, t(178) = 2.68, p < .01. A 
cost of attention was also found by comparing the last block 
of learning phase 1 (M = .84, SD = .19) to the first block of 
learning phase 2 (M = .56, SD = .07), t(178) = 13.16, p 
< .001. Moreover, the cost was more dramatic when 
comparing the last 4 trials of the first learning phase with 
the first 4 trials of the second learning phase, t(178) = 16.4, 
p < .001. 

In sum, both behavioral and eye gaze patterns indicated a 
cost of attention for participants who learned the first 
category. Even though there were 8 non-learners, 
supervision was sufficient enough to help participant learn a 
sparse category, which is by definition harder to learn than a 
dense category (Kloos & Sloutsky, 2008).  

 
 
 

 

* 

Learning 2Learning 1 

Figure 2. Accuracy at test in Experiment 1. Error bars 
represent +/- one standard error. *p < .001 
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Figure 3. Reaction time at test in Experiment 1. Error bars 

represent +/- one standard error. *p < .001 
 
 

 

 
 

Figure 4. Eye gaze analysis for Experiment 1. Shaded 
area represents +/- one standard error. Weighted proportion 
of looking for learning phase 1 (top). Weighted proportion 

of looking for learning phase 2 (middle). Weighted 
proportion of looking before and after category switch 

(block 4 vs. block 5) (bottom). Please see online version for 
colored line graphs. 

Experiment 2 

Methods 
Participants Fourteen adults with normal or corrected to 
normal vision participated in the experiment. Participants 
were undergraduate students at The Ohio State University 
participating for course credit and none of the students 
participated in Experiment 1. An additional 13 participants 
were excluded where 8 of them had problems tracking their 
eye movements, 3 missed the catcher trials, and 2 learned 
the category. 
Procedure The procedure was identical to Experiment 1 
except there was no supervision given in the practice phase 
or main experiment. For the practice phase, participants 
were instructed that they would see different molecules one 
at a time but did not receive any feedback during or after the 
practice test trials. In the main experiment, the participants 
were told that they would merely see flowers one at a time. 
As in Experiment 1, participants who did not respond 
correctly to all four catcher trials were excluded from the 
analyses. 

Learning 2Learning 1 

Results 
To ensure no learning in the data, participants who 

performed perfectly on the four test trial in last block of 
learning were excluded from the analysis. 

The overall accuracy for the test trials was 55.8% 
(learning 1: M = 56.25%, SD = 26.22%, learning 2: M = 
55.36%, SD = 25.10%), where only block 5 was 
significantly different from chance, p < .05. However, block 
5 still had lower accuracy compared to blocks in Experiment 
1 (M = 0.62, SD = 0.19). A 2 × 4 (Learning × Block) within-
subjects ANOVA conducted on accuracy scores at test 
showed no main effect of Block, p = 0.41, Learning, p = .84, 
or interactions, p = .81. Moreover, a comparison of the last 
block of learning phase 1 (block 4) and the first block of 
learning phase 2 (block 5) was not statistically different, 
t(13) = 1.73, p = .12, indicating there was no cost of 
attention (see Figure 5). The mean reaction time for all test 
trials was 1032.47 ms, SD = 566.66 ms (learning 1: M = 
991.46 ms, SD = 538.11 ms, learning 2: M = 1071.00 ms, 
SD = 592.36 ms). A 2 X 4 (Learning × Block) within-
subjects ANOVA conducted on mean reaction times 
revealed no significant results. Furthermore, no evidence for 
a cost of attention was found by comparing block 4 and 
block 5, t(12) = .66 p = .52 (see Figure 6). 

Eye gaze data were analyzed in the same way as in 
Experiment 1. The same random looking pattern around 0.5 
at the first 250 ms was also observed as in Experiment 1. 
There was a significant main effect of Learning, F(1, 712) = 
196.60, p < .001, and of Block, F(3, 712) = 16.79, and a 
Learning × Block interaction, F(3, 712) = 15.698, p < .001. 
However, there were no significant theoretical patterns 
between the learning phases or blocks such as learning 
optimization (Blair, Watson, & Meier, 2009) or the cost of 
attention, block 4 (M = 0.18, SD = 0.16) versus block 5 (M 
= 0.43, SD = 0.17), p < 0.01 (see Figure 7).  
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Figure 5. Accuracy at test in Experiment 2. Error bars 

represent +/- one standard error. 
 

 
Figure 6. Reaction time at test in Experiment 2. Error bars 

represent +/- one standard error. 
 

 
 

Figure 7. Eye gaze analysis for Experiment 2. Shaded 
area represents +/- one standard error. Weighted proportion 
of looking for learning phase 1(top). Weighted proportion of 

looking for learning phase 2 (bottom). Please see online 
version for colored line graphs. 

As was predicted, the non-learners in Experiment 2 did 
not show a cost of attention, as indicated by both behavioral 
and eye gaze patterns. Comparing these results to those of 
Experiment 1, it is notable that the only difference in the 
experiment procedure was the presence or absence of 
supervision. Therefore, the results showed that in sparse 
categories, learning could be manipulated by the amount of 
supervision, and that those participants who learned 
incurred a cost of attention. 

Classifying Individual Learners 
Taken together, both experiments indicated that a cost of 
attention could be one of the unique patterns of category 
learning. Specifically, the cost of attention during category 
learning was distinctively captured by eye gaze data. In this 
section a classifier using a simple neural network examined 
the predictability of the cost of attention for classifying 
individual learners from non-learners. 

Learning 1  Learning 2 

To classify learners from non-learners, a classical 
perceptron was used (Minsky & Papert, 1969). The input 
structure was constructed from individual data. Since the 
eye-tracker had a refresh rate of 60Hz, every individual had 
90 sequential counts of whether they looked at the relevant 
or irrelevant features during every 1.5 sec of a trial. 
Moreover, since the cost of attention could be calculated by 
the difference in the eye gaze pattern between block 4 and 
block 5, individual eye gaze data from block 4 and block 5 
were used for input. Therefore, the input structure consisted 
of 180 units where the first 90 units were from block 4 and 
the later 90 units were from block 5. The value of each unit 
was an average of 4 trials that consisted of the whole block. 
For each trial, relevant features were coded by 5 and 
irrelevant features were coded by -1. The weighted values 
for the relevant features equated the spatial coverage as was 
done in the eye gaze analysis. Thereafter, the trials were 
averaged by blocks, resulting in 180 input units for each 
individual. Output structures had one unit where the learners 
had a value of 1 and non-learners had a value of 0, with 
learners defined as subjects who were perfectly accurate on 
the last 4 test trial of the first learning phase. 

Learning 2 Learning 1 

Learning was conducted using a traditional delta-rule 
with a total of 49 individual data for training, 33 from 
Experiment 1 (supervised condition, 25 learners and 8 non-
learners) and 16 from Experiment 2 (unsupervised condition, 
2 learners and 14 non-learners). After 5 epochs, the network 
was able to learn the data set without errors, suggesting that 
the classification was a linearly separable data set (Minsky 
& Papert, 1969). 

To simulate the predictability of the network, a Leave-
One-Out Cross-Validation (LOOCV) method was used. A 
subset of the total individual data set (n=48) was used as the 
training set and one data set was left out for validation. All 
sub-sets of the training data were perfectly learned after a 
mean epoch of 5.02. The error rate was 12.2% with 6 out of 
49 individual data sets and was significantly greater than 
chance, p < .0001. There were no systematic patterns among 
the 6 mis-predicted instances. 
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General Discussion 
The current set of experiments manipulated supervision in 
the course of category learning. Manipulating supervision 
affected learning, and as a consequence of learning 
contrasting categories back to back, a cost of selective 
attention occurred.  

The fact that supervision was required to learn sparse 
categories suggests that selective attention is necessary for 
learning a sparse category. Sparse categories have few 
relevant features and are therefore hard to learn. However, 
selective attention helps one to focus on relevant features 
while ignoring irrelevant features during learning. 
Additionally, relying on selective attention also results in 
learning to ignore irrelevant features (i.e., learned 
inattention), which can result in a cost of attention if a new 
category is introduced that requires shifting attention to 
previously irrelevant features.  

In general, eye gaze data, especially the examination of 
participants’ proportion of looking to the relevant features 
over time, provided a signature pattern of when learning 
occurred. Specifically, participants’ looking to the category 
relevant feature during learning increased as their accuracy 
at test increased, indicating that participants were able to 
selectively attend to the category-relevant feature to learn 
the category.  These results support previous research that 
adults will optimize their attention to category-relevant 
information for successful categorization (Hoffman & 
Rehder, 2010). Although eye-tracking confirmed 
participants’ engagement in selective attention over time 
(i.e., greater proportion of looking to the relevant feature), 
the cost of attention immediately after the unknown 
category switch also confirmed their use of selective 
attention in the first learning phase.  

The cost of attention as an indicator/predictor of learning 
was also examined using a neural network model. Using a 
section of eye gaze data that captured the cost of attention 
during the category switch, the network’s prediction was 
quite accurate. The network’s prediction is notable in that 
training was based on a relatively limited amount of samples. 
Moreover, the network’s classification abilities were 
restricted to a simple linearly separable data set, which 
implies that the cost of attention is one of the strong and 
unique indicators for category learning. However, the results 
do not imply that learning is a consequence of a cost of 
attention. Instead, a cost of attention should be the result of 
learning, with the cost having strong links to the existence 
of learning. 

Moreover, in future research it would be interesting to 
observe whether there are instances of category learning that 
are not accompanied by a cost of attention. Since a cost of 
attention is a consequence of selective attention, populations 
that have a relatively insufficiently developed prefrontal 
cortex may not rely on selective attention during category 
learning. It is known that infants and pigeons are capable of 
learning categories (Mareschal & Quinn, 2001; Soto & 
Wasserman, 2011), yet they arguably have immature 
prefrontal cortices, making for inept attentional control (e.g., 

selectively, inhibition). Therefore, it may be possible that 
populations of infants or animals with limited selective 
attention abilities would use alternative mechanisms to learn 
categories (Ashby, Alfonso-Reese, Turken, & Waldron, 
1998; Sloutsky, 2010), and thus providing instances where a 
cost of attention does not indicate/predict learning.  
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