Cost of Attention as an Indicator of Category Learning
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Abstract

Category learning often involves selective attention to
category relevant information, which may result in learned
inattention to category irrelevant information. This learned
inattention is a cost of selective attention. In the current
research, the cost of attention was used as an indicator of
category learning. Participants were given a category learning
task, and the amount of supervision given to them was
manipulated. Along with behavioral data, recorded eye
movements during the task showed signature patterns of
learning via a cost of attention. In addition, a simple neural
network (perceptron) was able to use these eye-tracking data
to predict success in learning. Thus, the observed attentional
pattern — the cost of selective attention — was proposed as an
indicator of category learning.

Keywords: category learning, cost of attention, eye
tracking, supervised learning, sparse category, classifier,
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Introduction

Attention plays a central role in many models of category
learning (Kruschke, 1992; Nosofsky, 1986). During
category learning, the ability to selectively attend to
category-relevant cues while ignoring category-irrelevant
cues allows for more efficient category learning. However,
attention should also be flexible to enable learning of new
categories. Consider learning to discriminate plums from
nectarines. The most efficient way to distinguish them
visually would be focusing on color as a cue rather than
shape. However, when encountering a new category like
lemons versus bananas, the once useful color cue no longer
helps, while the previously unhelpful cue of shape becomes
a good dimension to efficiently learn the categories. The
process of ignoring the shape cue in the first learning
instance often results in learned inattention to this cue
(Kruschke & Blair, 2000). Learned inattention to a
previously irrelevant dimension creates a deficit in future
learning. This deficit constitutes a cost of attention
(Hoffman & Rehder, 2010). For example, Hoffman &

Rehder (2010) recorded eye movements during a supervised
category learning task and found evidence for a cost of
attention. If category learning involves selective attention,
then a cost of attention could function as an indicator of
category learning.

Overview of Current Experiments

Two eye-tracking experiments were conducted with
identical stimuli. Experiment 1 tested participants in a two-
phase supervised category learning task that should promote
learning. Experiment 2 tested participants in a two-phase
unsupervised category learning task that should prevent
learning. Critically, the second phase of each learning task
relied on previously irrelevant cues to learn a new category.
Based on previous research, it was predicted that
supervision would facilitate category learning in Experiment
1, compared to unsupervised learning in Experiment 2.
However, there is also evidence with adults that supervision
only facilitates category learning when a category does not
have much structure (Kloos & Sloutsky, 2008). Category
structure could be measured as category density or “a ratio
of variance relevant for category membership to the total
variance across members and nonmembers of the category”
(Sloutsky, 2010). Therefore, categories that have many
features in common and those features are not shared with
non-members are statistically dense. On the other hand,
categories that have few features in common while having
many features that are common with non-members are
statistically sparse. Thus, in the current research an artificial
sparse category was used to manipulate learning via
supervision.

The first aim of the current research was to replicate a
condition with a cost of attention during category learning
and a condition with no cost of attention during category
learning by manipulating the amount of supervision
provided to participants. The second aim was to use the
demonstrated cost and lack of cost to classify adults into
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learners and non-learners so that the signature patterns of
attention during category learning could be systematically
examined. To achieve this aim, a classifier using a simple
neural network (perceptron) was used to predict individual
learning data on the basis of eye gaze patterns during
category learning.

Experiment 1

Methods

Participants Twenty-five adults with normal or corrected to
normal vision participated in the experiment. Participants
were undergraduate students at The Ohio State University
participating for course credit. An additional 17 participants
were excluded where 5 of them had problems tracking their
eye movements, 4 missed the catcher trials (see Procedure),
and 8 did not learn the category.

Stimuli For the practice phase, two artificial categories that
look like molecules were used on a black background (see
Figure 1). Molecules consisted of five circles where four
changed colors in a binary fashion and one remained
constant throughout the practice phase, serving as a category
relevant feature. There were 16 category members for each
molecule category where the only difference between the
categories was the color of the constant feature. The
category relevant feature was always the upper left circle,
which was purple in one category and yellow in the other
category. For the main experiment, four artificial categories
that looked like flowers were used (see Figure 1). Presented
on a black background, each exemplar had a dark gray
hexagon in the middle that was constant for every category
with six colored shapes on every side. Among the six
colored shapes, five changed their color/shape in a binary
fashion; whereas, one was constant, serving as a category
relevant feature. Therefore, there were 32 unique stimuli for
each category with two categories having the relevant
feature on the right-bottom side of the hexagon (i.e.,
category A: purple triangle, category B: blue semi-circle)
and two categories having the relevant feature on the left
side of the hexagon (i.e., category C: orange square,
category D: yellow pentagon). For the catcher trials (see
Procedure), four flower-like colored shapes were used.
These colored shapes were similar to the four artificial
categories but had unique shapes and colors so that it was
easier to distinguish them from the four artificial categories.
Procedure The experiment was controlled by E-prime
version 2.0, and a Tobii T60 eye tracker was used to collect
eye gaze with the sampling rate of 60Hz. Following a
practice phase, the main experiment had two learning phases
with each phase including 4 blocks where each block
consisted of 8 learning trials followed by 4 test trials. All
learning trials were presented for 1.5 seconds. Moreover,
before each learning and test trial, participants fixated on a
randomly placed fixation point (e.g., red cross) appearing on
a random-dot background. The participants were told to
look at the fixation to proceed with the experiment.
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Figure 1. Stimuli used in the experiment.

In the practice phase, participants were told that they
would see a set of molecules that have one common atom,
and that they should try to find the common atom. After the
practice learning trials, the participants were tested with two
molecules side by side and were asked to choose the
molecule that they had just seen by pressing a corresponding
button on a keypad. The left/right side of the correct
response was counterbalanced and onscreen feedback was
provided as to whether the answer was correct or incorrect
after every practice test trial. Moreover, a verbal explanation
accompanied with actual stimuli explaining the relevant
category was given after the four practice test trials.
Instructions were also given before the four practice test
trials to instruct participants to respond as fast and
accurately as they could and to guess if they did not know
the answer.

In the main experiment, each block was similar to the
practice phase except that the stimuli were different and at
the start of every block participants were told that they
would see flowers that have a common feature they had to
find. Moreover, unknown to the participants, the categories
presented in the first four blocks (first learning phase)
differed from the categories presented in the last four blocks
(second learning phase). The categories differed by the
position of the relevant feature. Therefore if the first half of

1764



the blocks were presented with category A, the second half
of the blocks were presented with category C or D. The
category switching manipulation was intended to promote a
cost of attention in the second half of the blocks, and the
switch was never indicated to the participants. At test, two
stimuli that had the relevant features at the same spatial
location were presented side by side just as in the practice
test. Therefore, if category A was learned, category B was
presented with category A at test and same as for category C
and D. Additionally, there was no feedback related to the
test trials, and at the end of the last test trial of the second
learning phase, there were four catcher trials with more
obvious new category features on the novel item that were
implemented to ensure the participants were paying
attention during the entire experiment with continued
motivation to participate. Moreover, participants who did
not respond correctly to all four catcher trials were also
excluded.

Results

To determine whether a cost was incurred, accuracy,
reaction time, and eye gaze data were analyzed by block
with a particular focus on the blocks before and after the
unknown category switch, namely block 4 and block 5.
Participants who were not accurate on the final four test
trials in the last block of learning phase 1 were classified as
non-learners and were excluded from the final analyses.

The mean accuracy for all test trials was 92.75% (learning
1: M = 94%, SD = 15.94%, learning 2: M = 91.5%, SD =
17.12%), which was significantly higher than chance
performance, p < .001, for all blocks indicating learning
occurred. Results of a 2 x 4 (Learning x Block) within-
subjects ANOVA conducted on accuracy scores at test
showed a main effect for Block, F(2.29, 55.01) = 9.96, p <
0.001, indicating that accuracy differed by block. Moreover,
a significant cost of attention was demonstrated between the
last block of learning phase 1 (block 4) and the first block of
learning phase 2 (block 5) with a significant decrease in
accuracy from block 4 to block 5, t(24) = 4.27, p < .001 (see
Figure 2).

The mean reaction time for all test trials was 1032.47 ms
(SD = 566.66 ms) (learning 1: M = 991.46, SD = 538.11,
learning 2: M = 1071.00, SD = 592.36). A 2 x 4 (Learning x
Block) within-subjects ANOVA conducted on mean
reaction times showed a main effect for Block, F(1.99,
37.84) = 15.20, p < .001, but there was no significant main
effect for Learning or a Block X Learning interaction.
Statistical difference between block 4 and block 5 were also
found, t(23) = 4.36, p < .001, demonstrating a cost of
attention (see Figure 3).

Eye gaze data were also analyzed for each block by
calculating the weighted proportion of looking to the
relevant features. This value was calculated by taking the
proportion of looking to the relevant features divided by the
proportion of looking to the irrelevant and relevant features
combined. However, since there was greater spatial area for
irrelevant features (5 shapes) than the relevant features (1

shape), the proportion of looking to the relevant features
was multiplied by five to equate the spatial area. Note that a
value 0.50 in the analysis represents an equal amount of
looking to the relevant and irrelevant features at a given
time. Using the same method, the cost of attention was
calculated by comparing the last four blocks of learning
phase 1 to the first four blocks of learning phase 2 (see
Figure 3).

As shown in Figure 4, the first 250 ms exhibit a random
pattern of looking around 0.50 that reflected the first
saccade away from a randomly moving fixation cross to the
stimulus. In each learning phase, the proportion of looking
to the relevant features increased across blocks, and in the
last two blocks the proportion of looking to the relevant
feature shows an asymptote. A 2 x 4 (Learning x Block)
between-subject ANOVA by the group data only showed a
main effect for Block, F(3, 712) = 114.47, p < .001.
However, comparing the first block and the 5th block,
where the 5th block is the start of the second learning phase,
we observed a lower proportion of looking in the 5th block,
which indicates a cost of attention, t(178) = 2.68, p <.01. A
cost of attention was also found by comparing the last block
of learning phase 1 (M = .84, SD = .19) to the first block of
learning phase 2 (M = .56, SD = .07), t(178) = 13.16, p
< .001. Moreover, the cost was more dramatic when
comparing the last 4 trials of the first learning phase with
the first 4 trials of the second learning phase, t(178) = 16.4,
p <.001.

In sum, both behavioral and eye gaze patterns indicated a
cost of attention for participants who learned the first
category. Even though there were 8 non-learners,
supervision was sufficient enough to help participant learn a
sparse category, which is by definition harder to learn than a
dense category (Kloos & Sloutsky, 2008).
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Figure 2. Accuracy at test in Experiment 1. Error bars
represent +/- one standard error. *p <.001
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Figure 4. Eye gaze analysis for Experiment 1. Shaded
area represents +/- one standard error. Weighted proportion
of looking for learning phase 1 (top). Weighted proportion

of looking for learning phase 2 (middle). Weighted

proportion of looking before and after category switch
(block 4 vs. block 5) (bottom). Please see online version for
colored line graphs.

Experiment 2

Methods

Participants Fourteen adults with normal or corrected to
normal vision participated in the experiment. Participants
were undergraduate students at The Ohio State University
participating for course credit and none of the students
participated in Experiment 1. An additional 13 participants
were excluded where 8 of them had problems tracking their
eye movements, 3 missed the catcher trials, and 2 learned
the category.

Procedure The procedure was identical to Experiment 1
except there was no supervision given in the practice phase
or main experiment. For the practice phase, participants
were instructed that they would see different molecules one
at a time but did not receive any feedback during or after the
practice test trials. In the main experiment, the participants
were told that they would merely see flowers one at a time.
As in Experiment 1, participants who did not respond
correctly to all four catcher trials were excluded from the
analyses.

Results

To ensure no learning in the data, participants who
performed perfectly on the four test trial in last block of
learning were excluded from the analysis.

The overall accuracy for the test trials was 55.8%
(learning 1: M = 56.25%, SD = 26.22%, learning 2: M =
55.36%, SD = 25.10%), where only block 5 was
significantly different from chance, p < .05. However, block
5 still had lower accuracy compared to blocks in Experiment
1(M=0.62,SD =0.19). A 2 x 4 (Learning x Block) within-
subjects ANOVA conducted on accuracy scores at test
showed no main effect of Block, p = 0.41, Learning, p = .84,
or interactions, p = .81. Moreover, a comparison of the last
block of learning phase 1 (block 4) and the first block of
learning phase 2 (block 5) was not statistically different,
t(13) = 1.73, p = .12, indicating there was no cost of
attention (see Figure 5). The mean reaction time for all test
trials was 1032.47 ms, SD = 566.66 ms (learning 1: M =
991.46 ms, SD = 538.11 ms, learning 2: M = 1071.00 ms,
SD = 592.36 ms). A 2 X 4 (Learning x Block) within-
subjects ANOVA conducted on mean reaction times
revealed no significant results. Furthermore, no evidence for
a cost of attention was found by comparing block 4 and
block 5, t(12) = .66 p = .52 (see Figure 6).

Eye gaze data were analyzed in the same way as in
Experiment 1. The same random looking pattern around 0.5
at the first 250 ms was also observed as in Experiment 1.
There was a significant main effect of Learning, F(1, 712) =
196.60, p < .001, and of Block, F(3, 712) = 16.79, and a
Learning x Block interaction, F(3, 712) = 15.698, p < .001.
However, there were no significant theoretical patterns
between the learning phases or blocks such as learning
optimization (Blair, Watson, & Meier, 2009) or the cost of
attention, block 4 (M = 0.18, SD = 0.16) versus block 5 (M
=0.43,SD =0.17), p < 0.01 (see Figure 7).
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As was predicted, the non-learners in Experiment 2 did
not show a cost of attention, as indicated by both behavioral
and eye gaze patterns. Comparing these results to those of
Experiment 1, it is notable that the only difference in the
experiment procedure was the presence or absence of
supervision. Therefore, the results showed that in sparse
categories, learning could be manipulated by the amount of
supervision, and that those participants who learned
incurred a cost of attention.

Classifying Individual Learners

Taken together, both experiments indicated that a cost of
attention could be one of the unique patterns of category
learning. Specifically, the cost of attention during category
learning was distinctively captured by eye gaze data. In this
section a classifier using a simple neural network examined
the predictability of the cost of attention for classifying
individual learners from non-learners.

To classify learners from non-learners, a classical
perceptron was used (Minsky & Papert, 1969). The input
structure was constructed from individual data. Since the
eye-tracker had a refresh rate of 60Hz, every individual had
90 sequential counts of whether they looked at the relevant
or irrelevant features during every 1.5 sec of a trial.
Moreover, since the cost of attention could be calculated by
the difference in the eye gaze pattern between block 4 and
block 5, individual eye gaze data from block 4 and block 5
were used for input. Therefore, the input structure consisted
of 180 units where the first 90 units were from block 4 and
the later 90 units were from block 5. The value of each unit
was an average of 4 trials that consisted of the whole block.
For each trial, relevant features were coded by 5 and
irrelevant features were coded by -1. The weighted values
for the relevant features equated the spatial coverage as was
done in the eye gaze analysis. Thereafter, the trials were
averaged by blocks, resulting in 180 input units for each
individual. Output structures had one unit where the learners
had a value of 1 and non-learners had a value of 0, with
learners defined as subjects who were perfectly accurate on
the last 4 test trial of the first learning phase.

Learning was conducted using a traditional delta-rule
with a total of 49 individual data for training, 33 from
Experiment 1 (supervised condition, 25 learners and 8 non-
learners) and 16 from Experiment 2 (unsupervised condition,
2 learners and 14 non-learners). After 5 epochs, the network
was able to learn the data set without errors, suggesting that
the classification was a linearly separable data set (Minsky
& Papert, 1969).

To simulate the predictability of the network, a Leave-
One-Out Cross-Validation (LOOCV) method was used. A
subset of the total individual data set (n=48) was used as the
training set and one data set was left out for validation. All
sub-sets of the training data were perfectly learned after a
mean epoch of 5.02. The error rate was 12.2% with 6 out of
49 individual data sets and was significantly greater than
chance, p <.0001. There were no systematic patterns among
the 6 mis-predicted instances.
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General Discussion

The current set of experiments manipulated supervision in
the course of category learning. Manipulating supervision
affected learning, and as a consequence of learning
contrasting categories back to back, a cost of selective
attention occurred.

The fact that supervision was required to learn sparse
categories suggests that selective attention is necessary for
learning a sparse category. Sparse categories have few
relevant features and are therefore hard to learn. However,
selective attention helps one to focus on relevant features
while ignoring irrelevant features during learning.
Additionally, relying on selective attention also results in
learning to ignore irrelevant features (i.e., learned
inattention), which can result in a cost of attention if a new
category is introduced that requires shifting attention to
previously irrelevant features.

In general, eye gaze data, especially the examination of
participants’ proportion of looking to the relevant features
over time, provided a signature pattern of when learning
occurred. Specifically, participants’ looking to the category
relevant feature during learning increased as their accuracy
at test increased, indicating that participants were able to
selectively attend to the category-relevant feature to learn
the category. These results support previous research that
adults will optimize their attention to category-relevant
information for successful categorization (Hoffman &
Rehder, 2010). Although eye-tracking confirmed
participants’ engagement in selective attention over time
(i.e., greater proportion of looking to the relevant feature),
the cost of attention immediately after the unknown
category switch also confirmed their use of selective
attention in the first learning phase.

The cost of attention as an indicator/predictor of learning
was also examined using a neural network model. Using a
section of eye gaze data that captured the cost of attention
during the category switch, the network’s prediction was
quite accurate. The network’s prediction is notable in that

training was based on a relatively limited amount of samples.

Moreover, the network’s classification abilities were
restricted to a simple linearly separable data set, which
implies that the cost of attention is one of the strong and
unique indicators for category learning. However, the results
do not imply that learning is a consequence of a cost of
attention. Instead, a cost of attention should be the result of
learning, with the cost having strong links to the existence
of learning.

Moreover, in future research it would be interesting to
observe whether there are instances of category learning that
are not accompanied by a cost of attention. Since a cost of
attention is a consequence of selective attention, populations
that have a relatively insufficiently developed prefrontal
cortex may not rely on selective attention during category
learning. It is known that infants and pigeons are capable of
learning categories (Mareschal & Quinn, 2001; Soto &
Wasserman, 2011), yet they arguably have immature
prefrontal cortices, making for inept attentional control (e.g.,

selectively, inhibition). Therefore, it may be possible that
populations of infants or animals with limited selective
attention abilities would use alternative mechanisms to learn
categories (Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Sloutsky, 2010), and thus providing instances where a
cost of attention does not indicate/predict learning.
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