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Abstract 

The current study examines the extent to which the whole 
number bias, especially whole number ordering, can 
interfere with adult understandings of fractions. Using the 
framework theory approach to conceptual change as outlined 
by Vosniadou (2007; Vosniadou, Vamvakoussi & Skopeliti, 
2008), this study supports the idea that initial concepts 
formed in childhood can have lasting effects into adulthood. 
Twenty-eight CMU undergraduates participated in a fraction 
magnitude comparison task. Half of the fraction comparisons 
were designed with the larger fraction consistent with whole 
number ordering; the other half was inconsistent with this 
ordering. Comparisons in the consistent condition had the 
larger magnitude fraction have larger whole number parts 
than the opposing fraction.  Comparisons in the inconsistent 
condition were the opposite. Participants were more accurate 
and faster to respond to comparisons in the consistent 
condition, supporting the hypothesis that an initial concept 
of number as natural number constrains operations with 
fractions even in adults. 
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Introduction 

     In recent years conceptual change approaches to 
learning have been applied to mathematics in order to 
examine how mathematical concepts develop (Vosniadou 
& Verschaffel, 2004; Gelman & Williams, 1998).  The 
discussion of fractions from a conceptual change approach 
can shed light on why so many students have trouble 
developing their conceptual understanding of fractions 
(National Council of Mathematics, 2007; Mazzocco & 
Delvin, 2008).  Particularly, the framework theory 
approach has been shown to have strong explanatory 
power for the phenomena found within fractions 
misconceptions (Stafylidou & Vosniadou, 2004; Christou 
& Vosniadou, in press; Vamvakoussi & Vosniadou, 2010). 
     The framework theory approach to conceptual change 
draws attention to the intuitive theories that children 
develop based on their experiences with their environment 
and prior knowledge.  Vosniadou & Verschaffel (2004) 
argue that before they are exposed to rational number, 

students have formed an initial concept of number, which 
is based on the act of counting and resembles the 
mathematical concept of natural number (see also Ni & 
Zhou, 2005). This initial number concept is a complex 
knowledge system encompassing a number of background 
assumptions and beliefs that underlie students’ 
expectations about what counts as a number and how it is 
supposed to behave (Vamvakoussi & Vosniadou, 2004, 
2007; Vosniadou et al., 2008; see also Smith et al. 2005). 
For example, children consider that numbers are answers 
to the ‘how many’ question, obey the successor principle 
(in the sense that when a number is given its unique 
successor can always be found), and are ordered by means 
of their position on the count list, with longer numbers 
being always bigger.  
          According to the framework theory, students’ initial 
concept of number constrains their interpretation of new 
information regarding rational number causing persistent 
misconceptions (Vosniadou, Vamvakoussi & Skopeliti, 
2008). Misconceptions such as ‘multiplication always 
makes bigger’ and ‘the bigger the terms the bigger the 
fraction’ reveal the interference of rational number 
reasoning on rational number tasks.  The framework theory 
suggests that misconceptions are often caused as students 
add the new, incompatible information to their initial 
concept. Such misconceptions represent ‘synthetic’ 
attempts that can be thought of as evidence of a 
progression toward a scientific model and therefore as a 
part of the learning process (Vosniadou, Vamvakoussi & 
Skopeliti, 2008). 
     Other researchers have also noticed that in the process 
of building a scientific understanding, elements of the 
initial concept can be very difficult to overcome and may 
remain intact. Inagaki & Hatano, (2008) found evidence 
for this idea in the domain of biology and Dunbar, 
Fugelsang and Stein (2007) in the domain of physics.  
Dunbar et al. (2007) looked at the presence of “impetus 
theory” conceptions in students during an fMRI task.  
They found that while some participants exhibited an 
understanding of the Newtonian theory, there was 
evidence that they still maintained elements of the impetus 
theory conception.  Physics’ students have to go through 
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the difficult process of re-representing their initial concept 
of force. The Dunbar et al. (2007) findings indicate that 
even after transitioning to the scientific concept, remnants 
of the initial theory can still be maintained, interfering at 
times with the scientific concept.      
          It appears that something similar also happens in the 
case of rational number. When learning about rational 
numbers in any form (fraction or decimal) students often 
use the properties of whole numbers to interpret rational 
numbers (Ni & Zhou, 2005; Smith, Solomon, & Carey, 
2005; Vamvakoussi & Vosniadou, 2007).  Vamvakoussi 
and Vosniadou (2010) found that students categorize 
fractions and decimals as countable and discrete like 
natural numbers.  Natural numbers are countable because 
the numbers have a specific order that is linked to 
magnitude.  However, no such countable relation exists for 
fractions because of the infinite number of ways to express 
a single magnitude.  Vamvakoussi and Vosniadou (2010) 
found that students used their prior knowledge as a 
framework for interpreting the properties of fractions and 
decimals.  They applied what they knew about natural 
numbers to fractions and decimals when asked about the 
countability and discreteness of fractions and decimals. 
     According to Stafylidou and Vosniadou (2004) children 
have three main explanatory frameworks for understanding 
what fractions are: 1) fractions as two independent 
numbers, 2) fractions as parts of a whole, 3) a ratio 
relationship between numerator and denominator that can 
be bigger, smaller, or equal to a whole.  The third 
explanatory framework closely represents the integrated 
magnitude representation of fractions that would 
characterize the scientific model of fraction magnitude.  
However, Stafylidou and Vosniadou (2004) found that 
most children have understandings of fractions that are 
more closely related to the first two explanatory 
frameworks. 
     There is evidence that adults widely maintain an 
integrated magnitude representation of fractions.  
Schneider and Siegler (2010) have found that on 
magnitude comparison tasks that elicit processing of 
fractions as parts in relation to the whole, adults show a 
distance effect such that when the two fractions in the 
comparison have a greater magnitude difference, 
participants are faster to indicate which fraction is larger 
than when the pairs have lesser magnitude difference.  
This implies that adults may have a mental number line 
representation of fractions (Schneider and Siegler, 2010).  
However, in situations where comparisons can be made 
that do not require processing of the fraction as a whole 
magnitude, the distance effect is not present (Bonato, 
Fabbri, Umilta & Zorzi, 2007).  This suggests that strategy 
use on fraction magnitude comparisons is dependent on the 
fractions that are going to be compared. 
     Further, the results of Schneider and Siegler (2010) and 
Bonato et al. (2007) suggest that when adults are able to 
compare fractions using only the whole number parts of 

the fractions, they use this method instead of looking at the 
integrated magnitudes of the fractions.  This would suggest 
that adults first look at fractions in terms of their whole 
number parts.  If they can make a judgment about their 
magnitudes based only on their whole number parts then 
adults will do this.  Nevertheless, they are able to think of 
fractions as integrated magnitudes when their whole 
number parts do not yield correct answers.  This suggests 
that adults still maintain elements of the whole number 
bias they develop in childhood. 
      Consistent with the framework theory approach to 
conceptual change, adults have developed a scientific 
model of fractions but the strength and intuition of whole 
number ordering may interfere with this scientific model.  
The current study seeks to understand the relationship 
between whole number ordering and judgments about 
fraction magnitude among adults with a fraction magnitude 
comparison task.   
      The hypothesis is that when the larger fraction in the 
comparison has larger whole number parts than the other 
fraction and is thus consistent with whole number 
ordering, participants will be significantly more accurate 
and will have significantly faster reaction times than when 
the larger fraction in the comparison has smaller whole 
number parts than the other fraction and thus inconsistent 
with whole number ordering. 

Methods 

Participants 
     Twenty eight undergraduates from Carnegie Mellon 
University taking introductory psychology courses 
participated in the study to fulfill a requirement for their 
course.  The average age of students was 19.6 (SD= 1.34).  
There were equal numbers of males and females. 

Design 
     The study was a within-subject design with 2 
conditions (consistent vs. inconsistent).   
      In the consistent condition, the fractions were designed 
so that the fraction with the larger overall magnitude was 
made up of larger numbers compared to the opposing 
fraction, for example, 2/5 and 5/7 where 5/7 is larger.  
Because the fraction’s whole number parts and the actual 
magnitude of the fraction was larger, these fractions were 
consistent with whole number ordering.   
      The fractions in the inconsistent condition were 
designed in the opposite way.  The larger fraction in the 
comparison was designed with smaller whole number parts 
than the opposing fraction, for example, 3/7 and 2/3 where 
2/3 is larger (see table 1 for more examples). 
    Overall, there were 40 fraction pairs.  20 of the pairs 
were in the consistent condition and 20 in the inconsistent 
condition.  The fractions were carefully counterbalanced in 
each condition to account for the following features.  The  
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Table 1: Sampling of Stimuli Used 
 

Description Consistent Inconsistent 

Single Digits 
Opposite sides of 
1/2 

2/5 7/8 3/8 2/3 

Single Digits Same 
side of 1/2 

6/8 7/9 5/8 2/3 

Double Digits 
Opposite sides of 
1/2 

4/11 13/18 8/19 6/11 

Double Digits 
Same sides of 1/2 

9/16 17/19 13/18 11/13 

Greater than 1 11/8 18/12 18/14 17/11 

 
fractions were designed to have pairs that were on different 
sides of ½, the same side of ½, have only single digits or 
have double digits, both fractions greater than 1 or less 
than 1, and be either in completely reduced form or be 
reducible.  The two sets of 20 pairs were equated for each 
of these properties.  Additionally, the fraction pairs were 
counterbalanced so that half of the time the larger fraction 
appeared on the right side of the screen and the other half 
of the time the larger fraction appeared on the left side of 
the screen.    

Measures 
     Accuracy and reaction time (ms) were recorded using 
E-Prime for each of the fraction comparisons.  Participants 
were instructed that speed and accuracy were both 
important. 

Procedure 
     Participants completed a computerized magnitude 
comparison task designed with E-Prime.  After obtaining 
informed consent, participants read the instructions on the 
computer screen, which explained that they should 
complete the comparisons as fast as possible and as 
accurately as possible.   For each participant, the order of 
the fraction comparisons was completely randomized.  
Followed by the presentation of a 500 ms fixation cross, 
participants saw two fractions on the screen.  They were 
instructed to press a key on the right side of the keyboard 
to indicate that the fraction on the right was larger.  
Conversely, the participants had to press a key on the left 
side of the keyboard to indicate that the fraction on the left 
was larger.   

 

 

Results 

Accuracy 
     Participants completed the comparisons that were 
consistent with whole number order more accurately.  The 
mean accuracy of the comparisons completed in the 
consistent group was 86% (SD = 13%) and the mean 
accuracy of the inconsistent group was 77% (SD= 12%) 
(t(27) = 2.92, p<.01) (see table 1 and figure 1). 

 

 

 

 

 

 

 

 

 

Reaction Time 
     Reaction times (ms) for the consistent condition were 
significantly shorter than reaction times for the 
inconsistent condition including inaccurate trials.  The 
mean reaction time for the consistent condition was 3378 
(SD = 1525) and the mean reaction time for the 
inconsistent condition was 3665 (SD = 1625) (t(27)=2.22, 
p=.03) (see table 1 and figure 2). 
     The reaction times were also significantly shorter for 
the consistent condition compared to the inconsistent 
condition for only accurate trials.  The mean reaction time 
for the consistent condition was 3240 (SD = 1467) and the 
mean reaction time for the inconsistent condition was 3619 
(SD = 1579) (t(27) = 2.67, p=.01) (see table 2 and figure 
3).  
 

Table 2: Mean Accuracy and Reaction Time (ms) 

Condition Accuracy 

** 

Reaction 
Time (ms) 
all trials * 

Reaction 
Time (ms) 
only 
accurate 
trials ** 

Consistent 86%  3378 3240 

Inconsistent 77% 3665 3619 

Overall 82% 3521 3430 

**	
  

inconsistent         consistent 
Condition 

Error Bars: +/- 2SE 

Figure 1: Mean Accuracy 
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Analysis of Errors 
     There were a number of errors made in both the 
consistent and inconsistent conditions.  The mean reaction 
time of the errors of the consistent condition was 4380 ms; 
this was 1140 ms slower than the reaction time for the 
correct trials for the consistent condition (M = 3240).  60% 
of the comparisons that had errors in the consistent 
condition were comparisons that involved double digit 
numbers.  This suggests that these problems may be more 
difficult overall.  In fact, 67% of the comparisons that had 
errors in the inconsistent condition were also comparisons 
that involved double digit numbers.  There was a 
significant interaction between condition and double digits 
for accuracy, F(1,27) = 21.263, p<.001, and for reaction 
time, F(1,27) = 6.585, p=.01.  The mean reaction time of 
the errors in the inconsistent condition was 3485 ms; this  
was 134 ms faster than the correct trials for the 
inconsistent condition (M = 3619) (see table 2). 

Individual Differences 
     Some individual participants had mean accuracies and 
reaction times in directions opposite of the main findings.  
An analysis of the mean accuracy (M= 86% consistent, M= 
89% inconsistent) showed no significant difference 
between the means, F(1,6)=.96, p=.33.  The same is true of 
an analysis of mean reaction time (M = 3998 consistent, M 
= 3651, F(1,9)=.9, p=.34).  This indicates that there was no  
 

Table 3: Analysis of Errors by Condition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
difference in the reaction times and means for these 
participants between the two conditions.  Of the 6 
participants that exhibited higher accuracy for the 
inconsistent condition than the consistent condition, 3 had 
mean accuracies of 85% for the consistent condition and 
90% for the inconsistent condition.  This is a difference of 
1 more trial incorrect in the consistent condition than the 
inconsistent condition.  The other three participants had 
average overall accuracies of 71% which was well below 
the overall accuracy of all participants, 82%. 
     Of the 10 participants whose reaction times were slower 
for the consistent condition than the inconsistent condition, 
4 participants also had mean accuracies that were the 
reverse of the main findings.   
The overall mean reaction time of these 10 participants 
was 3610, which is slightly slower than the overall mean 
reaction time (M=3521).   
 

Discussion 
     Consistent with the hypothesis, participants were more 
accurate and had faster reaction times for the magnitude 
comparisons that were consistent with whole number 
ordering compared to the magnitude comparisons that 
were inconsistent with whole number ordering.  
Participants were 9% more accurate and 287 ms faster over 
all trials, 379 ms faster for only accurate trials, in the 
consistent condition compared to the inconsistent 
condition.  While the reaction times are very close, the 
difference may reflect the extra processing demanded by 
the inconsistent condition.  
     These reaction time data support the hypothesis that 
participants exhibit some interference from their initial 
concept of whole number, which they have to inhibit.  The 
accuracy results indicate that the participants are not 
always successful in inhibiting the response consistent 
with whole number ordering – they often just use the 
whole number parts to assess magnitude. This conclusion 

Condition Mean 
Reaction 
Time 
(ms) 

Standard 
Deviation 
of RT 
(ms) 

Percent of 
Incorrect 
Comparisons 
that had 2 digits 

Consistent 4383 1473 60% 

Inconsistent 3294 1230 67% 

*	
  

Figure 2: Mean Reaction Time (ms) all trials Figure 3: Mean Reaction Time (ms) accurate trials only 

 

**	
  

inconsistent         consistent 
Condition 

Error Bars: +/- 2SE 

inconsistent         consistent 
Condition 

Error Bars: +/- 2SE 
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is also consistent with the reaction time data for errors in 
the two conditions.  Reactions times were faster for 
erroneous responses in the inconsistent condition- 
presumably because the participants incorrectly used 
whole number ordering - but slower when the errors were  
committed in the consistent condition - presumably 
because the participants had to override the (correct in this 
case) habitual response consistent with whole number 
ordering.  
     Overall these results support the framework theory 
approach in showing that even in the case of adults whole 
number ordering can still interfere and delay responses or 
cause errors in responses.  In previous work we have 
shown that the whole number bias can be the source of a 
number of misconceptions often found in research 
investigating the development of primary and secondary 
students’ understanding of rational number (Stafylidou & 
Vosniadou, 2004; Vamvakoussi & Vosniadou, 2010). The 
present findings indicate that the whole number bias can 
persist even in the case of college students who have 
presumably achieved a more sophisticated understanding 
of fractions and are not likely to commit the kinds of 
misconceptions found in younger students.  
     These results are consistent with the findings of Dunbar 
et al. (2007) in which participants exhibited interference 
from their initial concepts of mechanics and physics.  In 
the current study, the results support the idea that 
participants had interference from their concept of whole 
number.  The participants were slower to respond and less 
accurate in their responses when these responses required 
the inhibition of a competing response.  The results also 
consistent with the  Dunbar et al. (2007) argument  that 
adults must change from one knowledge representation to 
another during the process of conceptual change.   
     Additionally, these results can contribute to the 
discussion between Schneider and Siegler (2010) and 
Bonato et al. (2007) about how adults represent fraction 
magnitudes.  First, it is clear that adults do not represent 
fractions only as whole number parts.  If they did they 
would never be able to succeed in the present task.  On the 
other hand, it is also clear that adults do not always use an 
integrated magnitude representation.  Rather the present 
study provides more support to the idea that adults may 
have different representations of fractions (whole number 
parts, integrated magnitudes, or others) and may use 
whichever representation is simplest and most readily 
available for a particular stimulus pair.  In the current 
study, participants may have selected a strategy that was 
quick and usually correct in order to maximize accuracy 
and minimize response time.  Thus, adults may have 
different strategies that are context dependent.   
     The finding that the difference between reaction times 
increases when examining only accurate trials suggests 
that even when participants were able to generate the 
correct judgment about magnitude, it is probable that they 
may have started out with a whole number parts model that 

was later modified.  Alternatively, the increase in 
difference may indicate that participants were trying to be 
more methodical for these questions by using the 
integrated magnitude representation.  The finding that the 
inaccurate trials were faster offers more evidence 
supporting the interpretation that participants were not 
successful in using the integrated magnitude model.   
      Overall, this study supports the idea that it is fruitful to 
examine the development of fraction understanding from a 
conceptual change point of view (Vosniadou & 
Verschaffel, 2004). There is little doubt that children start 
with a concept of number which is more consistent with 
the mathematical concept of natural number and that this 
initial concept constrains the development of fraction 
understanding and can be the cause of persistent 
misconceptions.  The results of the present study indicate 
that this whole number bias is so strong that it persists in 
its interference with fraction magnitude tasks even into 
adulthood.  Although adults are able to overcome this 
whole number bias it affects the accuracy and speed of 
their responses.   
     It appears that the nature of the initial concepts children 
create may have important implications for the 
development of the more advanced scientific and 
mathematical concepts of adulthood.  The 
overgeneralization of the properties of whole numbers, like 
counting, to fractions needs to be addressed in order to 
decrease the amount of interference the whole number bias 
has in adulthood.  More importantly, we can learn more 
about adults’ difficulties in understanding scientific 
concepts by examining their initial and synthetic 
constructions.  The failure to reconcile entrenched 
presuppositions related to initial concepts in childhood can 
have lasting negative effects for adult understandings of 
scientific concepts. 
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