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Abstract

The current study examines the extent to which the whole
number bias, especially whole number ordering, can
interfere with adult understandings of fractions. Using the
framework theory approach to conceptual change as outlined
by Vosniadou (2007; Vosniadou, Vamvakoussi & Skopeliti,
2008), this study supports the idea that initial concepts
formed in childhood can have lasting effects into adulthood.
Twenty-eight CMU undergraduates participated in a fraction
magnitude comparison task. Half of the fraction comparisons
were designed with the larger fraction consistent with whole
number ordering; the other half was inconsistent with this
ordering. Comparisons in the consistent condition had the
larger magnitude fraction have larger whole number parts
than the opposing fraction. Comparisons in the inconsistent
condition were the opposite. Participants were more accurate
and faster to respond to comparisons in the consistent
condition, supporting the hypothesis that an initial concept
of number as natural number constrains operations with
fractions even in adults.
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Introduction

In recent years conceptual change approaches to
learning have been applied to mathematics in order to
examine how mathematical concepts develop (Vosniadou
& Verschaffel, 2004; Gelman & Williams, 1998). The
discussion of fractions from a conceptual change approach
can shed light on why so many students have trouble
developing their conceptual understanding of fractions
(National Council of Mathematics, 2007; Mazzocco &
Delvin, 2008). Particularly, the framework theory
approach has been shown to have strong explanatory
power for the phenomena found within fractions
misconceptions (Stafylidou & Vosniadou, 2004; Christou
& Vosniadou, in press; Vamvakoussi & Vosniadou, 2010).

The framework theory approach to conceptual change
draws attention to the intuitive theories that children
develop based on their experiences with their environment
and prior knowledge. Vosniadou & Verschaffel (2004)
argue that before they are exposed to rational number,

students have formed an initial concept of number, which
is based on the act of counting and resembles the
mathematical concept of natural number (see also Ni &
Zhou, 2005). This initial number concept is a complex
knowledge system encompassing a number of background
assumptions and beliefs that underlie students’
expectations about what counts as a number and how it is
supposed to behave (Vamvakoussi & Vosniadou, 2004,
2007; Vosniadou et al., 2008; see also Smith et al. 2005).
For example, children consider that numbers are answers
to the “how many’ question, obey the successor principle
(in the sense that when a number is given its unique
successor can always be found), and are ordered by means
of their position on the count list, with longer numbers
being always bigger.

According to the framework theory, students’ initial
concept of number constrains their interpretation of new
information regarding rational number causing persistent
misconceptions (Vosniadou, Vamvakoussi & Skopeliti,
2008). Misconceptions such as ‘multiplication always
makes bigger’ and ‘the bigger the terms the bigger the
fraction’ reveal the interference of rational number
reasoning on rational number tasks. The framework theory
suggests that misconceptions are often caused as students
add the new, incompatible information to their initial
concept. Such misconceptions represent ‘synthetic’
attempts that can be thought of as evidence of a
progression toward a scientific model and therefore as a
part of the learning process (Vosniadou, Vamvakoussi &
Skopeliti, 2008).

Other researchers have also noticed that in the process
of building a scientific understanding, elements of the
initial concept can be very difficult to overcome and may
remain intact. Inagaki & Hatano, (2008) found evidence
for this idea in the domain of biology and Dunbar,
Fugelsang and Stein (2007) in the domain of physics.
Dunbar et al. (2007) looked at the presence of “impetus
theory” conceptions in students during an fMRI task.
They found that while some participants exhibited an
understanding of the Newtonian theory, there was
evidence that they still maintained elements of the impetus
theory conception. Physics’ students have to go through
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the difficult process of re-representing their initial concept
of force. The Dunbar et al. (2007) findings indicate that
even after transitioning to the scientific concept, remnants
of the initial theory can still be maintained, interfering at
times with the scientific concept.

It appears that something similar also happens in the
case of rational number. When learning about rational
numbers in any form (fraction or decimal) students often
use the properties of whole numbers to interpret rational
numbers (Ni & Zhou, 2005; Smith, Solomon, & Carey,
2005; Vamvakoussi & Vosniadou, 2007). Vamvakoussi
and Vosniadou (2010) found that students categorize
fractions and decimals as countable and discrete like
natural numbers. Natural numbers are countable because
the numbers have a specific order that is linked to
magnitude. However, no such countable relation exists for
fractions because of the infinite number of ways to express
a single magnitude. Vamvakoussi and Vosniadou (2010)
found that students used their prior knowledge as a
framework for interpreting the properties of fractions and
decimals. They applied what they knew about natural
numbers to fractions and decimals when asked about the
countability and discreteness of fractions and decimals.

According to Stafylidou and Vosniadou (2004) children
have three main explanatory frameworks for understanding
what fractions are: 1) fractions as two independent
numbers, 2) fractions as parts of a whole, 3) a ratio
relationship between numerator and denominator that can
be bigger, smaller, or equal to a whole. The third
explanatory framework closely represents the integrated
magnitude representation of fractions that would
characterize the scientific model of fraction magnitude.
However, Stafylidou and Vosniadou (2004) found that
most children have understandings of fractions that are
more closely related to the first two explanatory
frameworks.

There is evidence that adults widely maintain an
integrated magnitude representation of fractions.
Schneider and Siegler (2010) have found that on
magnitude comparison tasks that elicit processing of
fractions as parts in relation to the whole, adults show a
distance effect such that when the two fractions in the
comparison have a greater magnitude difference,
participants are faster to indicate which fraction is larger
than when the pairs have lesser magnitude difference.

This implies that adults may have a mental number line
representation of fractions (Schneider and Siegler, 2010).
However, in situations where comparisons can be made
that do not require processing of the fraction as a whole
magnitude, the distance effect is not present (Bonato,
Fabbri, Umilta & Zorzi, 2007). This suggests that strategy
use on fraction magnitude comparisons is dependent on the
fractions that are going to be compared.

Further, the results of Schneider and Siegler (2010) and
Bonato et al. (2007) suggest that when adults are able to
compare fractions using only the whole number parts of

the fractions, they use this method instead of looking at the
integrated magnitudes of the fractions. This would suggest
that adults first look at fractions in terms of their whole
number parts. If they can make a judgment about their
magnitudes based only on their whole number parts then
adults will do this. Nevertheless, they are able to think of
fractions as integrated magnitudes when their whole
number parts do not yield correct answers. This suggests
that adults still maintain elements of the whole number
bias they develop in childhood.

Consistent with the framework theory approach to
conceptual change, adults have developed a scientific
model of fractions but the strength and intuition of whole
number ordering may interfere with this scientific model.
The current study seeks to understand the relationship
between whole number ordering and judgments about
fraction magnitude among adults with a fraction magnitude
comparison task.

The hypothesis is that when the larger fraction in the
comparison has larger whole number parts than the other
fraction and is thus consistent with whole number
ordering, participants will be significantly more accurate
and will have significantly faster reaction times than when
the larger fraction in the comparison has smaller whole
number parts than the other fraction and thus inconsistent
with whole number ordering.

Methods

Participants

Twenty eight undergraduates from Carnegie Mellon
University taking introductory psychology courses
participated in the study to fulfill a requirement for their
course. The average age of students was 19.6 (SD=1.34).
There were equal numbers of males and females.

Design

The study was a within-subject design with 2
conditions (consistent vs. inconsistent).

In the consistent condition, the fractions were designed
so that the fraction with the larger overall magnitude was
made up of larger numbers compared to the opposing
fraction, for example, 2/5 and 5/7 where 5/7 is larger.
Because the fraction’s whole number parts and the actual
magnitude of the fraction was larger, these fractions were
consistent with whole number ordering.

The fractions in the inconsistent condition were
designed in the opposite way. The larger fraction in the
comparison was designed with smaller whole number parts
than the opposing fraction, for example, 3/7 and 2/3 where
2/3 is larger (see table 1 for more examples).

Overall, there were 40 fraction pairs. 20 of the pairs
were in the consistent condition and 20 in the inconsistent
condition. The fractions were carefully counterbalanced in
each condition to account for the following features. The
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Table 1: Sampling of Stimuli Used

Description Consistent Inconsistent
Single Digits 2/5 7/8 3/8 2/3
Opposite sides of
1/2
Single Digits Same  6/8 7/9 5/8 2/3
side of 1/2
Double Digits 4/11 1318  &/19 6/11
Opposite sides of
1/2
Double Digits 9/16 1719 13/18 11/13

Same sides of 1/2

Greater than 1 11/8 18/12 18/14 17/11

fractions were designed to have pairs that were on different
sides of 2, the same side of 2, have only single digits or
have double digits, both fractions greater than 1 or less
than 1, and be either in completely reduced form or be
reducible. The two sets of 20 pairs were equated for each
of these properties. Additionally, the fraction pairs were
counterbalanced so that half of the time the larger fraction
appeared on the right side of the screen and the other half
of the time the larger fraction appeared on the left side of
the screen.

Measures

Accuracy and reaction time (ms) were recorded using
E-Prime for each of the fraction comparisons. Participants
were instructed that speed and accuracy were both
important.

Procedure

Participants completed a computerized magnitude
comparison task designed with E-Prime. After obtaining
informed consent, participants read the instructions on the
computer screen, which explained that they should
complete the comparisons as fast as possible and as
accurately as possible. For each participant, the order of
the fraction comparisons was completely randomized.
Followed by the presentation of a 500 ms fixation cross,
participants saw two fractions on the screen. They were
instructed to press a key on the right side of the keyboard
to indicate that the fraction on the right was larger.
Conversely, the participants had to press a key on the left
side of the keyboard to indicate that the fraction on the left
was larger.

Results

Accuracy

Participants completed the comparisons that were
consistent with whole number order more accurately. The
mean accuracy of the comparisons completed in the
consistent group was 86% (SD = 13%) and the mean
accuracy of the inconsistent group was 77% (SD= 12%)
(#27)=2.92, p<.01) (see table 1 and figure 1).
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Figure 1: Mean Accuracy

Reaction Time

Reaction times (ms) for the consistent condition were
significantly shorter than reaction times for the
inconsistent condition including inaccurate trials. The
mean reaction time for the consistent condition was 3378
(SD = 1525) and the mean reaction time for the
inconsistent condition was 3665 (SD = 1625) (#(27)=2.22,
p=.03) (see table 1 and figure 2).

The reaction times were also significantly shorter for
the consistent condition compared to the inconsistent
condition for only accurate trials. The mean reaction time
for the consistent condition was 3240 (SD = 1467) and the
mean reaction time for the inconsistent condition was 3619
(SD =1579) (1(27) = 2.67, p=.01) (see table 2 and figure
3).

Table 2: Mean Accuracy and Reaction Time (ms)

Condition Accuracy Reaction Reaction
Time (ms)  Time (ms)

o all trials * only

accurate

trials **
Consistent 86% 3378 3240
Inconsistent  77% 3665 3619
Overall 82% 3521 3430
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Figure 2: Mean Reaction Time (ms) all trials

Analysis of Errors

There were a number of errors made in both the
consistent and inconsistent conditions. The mean reaction
time of the errors of the consistent condition was 4380 ms;
this was 1140 ms slower than the reaction time for the
correct trials for the consistent condition (M = 3240). 60%
of the comparisons that had errors in the consistent
condition were comparisons that involved double digit
numbers. This suggests that these problems may be more
difficult overall. In fact, 67% of the comparisons that had
errors in the inconsistent condition were also comparisons
that involved double digit numbers. There was a
significant interaction between condition and double digits
for accuracy, F(1,27) =21.263, p<.001, and for reaction
time, F(1,27) = 6.585, p=.01. The mean reaction time of
the errors in the inconsistent condition was 3485 ms; this
was 134 ms faster than the correct trials for the
inconsistent condition (M = 3619) (see table 2).

Individual Differences

Some individual participants had mean accuracies and
reaction times in directions opposite of the main findings.
An analysis of the mean accuracy (M= 86% consistent, M=
89% inconsistent) showed no significant difference
between the means, F(1,6)=.96, p=.33. The same is true of
an analysis of mean reaction time (M = 3998 consistent, M
=3651, F(1,9)=.9, p=.34). This indicates that there was no

Table 3: Analysis of Errors by Condition

Condition Mean Standard Percent of
Reaction Deviation  Incorrect
Time of RT Comparisons
(ms) (ms) that had 2 digits
Consistent 4383 1473 60%
Inconsistent 3294 1230 67%
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Figure 3: Mean Reaction Time (ms) accurate trials only

difference in the reaction times and means for these
participants between the two conditions. Of the 6
participants that exhibited higher accuracy for the
inconsistent condition than the consistent condition, 3 had
mean accuracies of 85% for the consistent condition and
90% for the inconsistent condition. This is a difference of
1 more trial incorrect in the consistent condition than the
inconsistent condition. The other three participants had
average overall accuracies of 71% which was well below
the overall accuracy of all participants, 82%.

Of the 10 participants whose reaction times were slower
for the consistent condition than the inconsistent condition,
4 participants also had mean accuracies that were the
reverse of the main findings.

The overall mean reaction time of these 10 participants
was 3610, which is slightly slower than the overall mean
reaction time (M=3521).

Discussion

Consistent with the hypothesis, participants were more
accurate and had faster reaction times for the magnitude
comparisons that were consistent with whole number
ordering compared to the magnitude comparisons that
were inconsistent with whole number ordering.
Participants were 9% more accurate and 287 ms faster over
all trials, 379 ms faster for only accurate trials, in the
consistent condition compared to the inconsistent
condition. While the reaction times are very close, the
difference may reflect the extra processing demanded by
the inconsistent condition.

These reaction time data support the hypothesis that
participants exhibit some interference from their initial
concept of whole number, which they have to inhibit. The
accuracy results indicate that the participants are not
always successful in inhibiting the response consistent
with whole number ordering — they often just use the
whole number parts to assess magnitude. This conclusion
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is also consistent with the reaction time data for errors in
the two conditions. Reactions times were faster for
erroneous responses in the inconsistent condition-
presumably because the participants incorrectly used
whole number ordering - but slower when the errors were
committed in the consistent condition - presumably
because the participants had to override the (correct in this
case) habitual response consistent with whole number
ordering.

Overall these results support the framework theory
approach in showing that even in the case of adults whole
number ordering can still interfere and delay responses or
cause errors in responses. In previous work we have
shown that the whole number bias can be the source of a
number of misconceptions often found in research
investigating the development of primary and secondary
students’ understanding of rational number (Stafylidou &
Vosniadou, 2004; Vamvakoussi & Vosniadou, 2010). The
present findings indicate that the whole number bias can
persist even in the case of college students who have
presumably achieved a more sophisticated understanding
of fractions and are not likely to commit the kinds of
misconceptions found in younger students.

These results are consistent with the findings of Dunbar
et al. (2007) in which participants exhibited interference
from their initial concepts of mechanics and physics. In
the current study, the results support the idea that
participants had interference from their concept of whole
number. The participants were slower to respond and less
accurate in their responses when these responses required
the inhibition of a competing response. The results also
consistent with the Dunbar et al. (2007) argument that
adults must change from one knowledge representation to
another during the process of conceptual change.

Additionally, these results can contribute to the
discussion between Schneider and Siegler (2010) and
Bonato et al. (2007) about how adults represent fraction
magnitudes. First, it is clear that adults do not represent
fractions only as whole number parts. If they did they
would never be able to succeed in the present task. On the
other hand, it is also clear that adults do not always use an
integrated magnitude representation. Rather the present
study provides more support to the idea that adults may
have different representations of fractions (whole number
parts, integrated magnitudes, or others) and may use
whichever representation is simplest and most readily
available for a particular stimulus pair. In the current
study, participants may have selected a strategy that was
quick and usually correct in order to maximize accuracy
and minimize response time. Thus, adults may have
different strategies that are context dependent.

The finding that the difference between reaction times
increases when examining only accurate trials suggests
that even when participants were able to generate the
correct judgment about magnitude, it is probable that they
may have started out with a whole number parts model that

was later modified. Alternatively, the increase in
difference may indicate that participants were trying to be
more methodical for these questions by using the
integrated magnitude representation. The finding that the
inaccurate trials were faster offers more evidence
supporting the interpretation that participants were not
successful in using the integrated magnitude model.

Overall, this study supports the idea that it is fruitful to
examine the development of fraction understanding from a
conceptual change point of view (Vosniadou &
Verschaffel, 2004). There is little doubt that children start
with a concept of number which is more consistent with
the mathematical concept of natural number and that this
initial concept constrains the development of fraction
understanding and can be the cause of persistent
misconceptions. The results of the present study indicate
that this whole number bias is so strong that it persists in
its interference with fraction magnitude tasks even into
adulthood. Although adults are able to overcome this
whole number bias it affects the accuracy and speed of
their responses.

It appears that the nature of the initial concepts children
create may have important implications for the
development of the more advanced scientific and
mathematical concepts of adulthood. The
overgeneralization of the properties of whole numbers, like
counting, to fractions needs to be addressed in order to
decrease the amount of interference the whole number bias
has in adulthood. More importantly, we can learn more
about adults’ difficulties in understanding scientific
concepts by examining their initial and synthetic
constructions. The failure to reconcile entrenched
presuppositions related to initial concepts in childhood can
have lasting negative effects for adult understandings of
scientific concepts.
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