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Abstract

It is now well-established that intrinsic fluctuations in human
behavior tend to exhibit long-range correlations in the form of
1/f scaling. Their meaning is an ongoing matter of debate, and
some researchers argue they reflect the tendency for neural
and bodily systems to poise themselves near critical states. A
spiking neural network model is presented that self-tunes to a
critical point in terms of its spike branching ratio (i.e. critical
branching). The model is shown to exhibit 1/f scaling near
critical branching, as well neural avalanches, and critical
branching is associated with maximal computational capacity
when assessed in terms of reservoir computing. The model
provides a basis for connecting neural and behavioral activity
and function via criticality.

Keywords: Critical branching, 1/f scaling, neural avalanche,
criticality, metastability, reservoir computing.

Introduction

Variability is the essence of neural and behavioral activity,
and this variability is what theories of cognition must
ultimately account for. Some of this variability can be
ascribed to effects of sensory stimulation, but much of it is
intrinsic in nature (Fox, Snyder, Vincent, & Raichle, 2007).
Like all biological systems, neural and behavioral systems
exhibit activities that can neither be attributed to extrinsic
factors, nor controlled by them. These systems are
constantly at work to maintain themselves, and this work
results in intrinsic variations in activities. The nature of
intrinsic variability provides basic information about how
components of these systems work together.

Intrinsic variability is observed when experimental
manipulations are minimized, e.g. when spontaneous neural
activity is measured in cortical slice preparations (Beggs &
Plenz, 2003), or in brain images during the wakeful resting
state (Bullmore et al., 2001), or when behavioral acts are
repeated with minimal variation in intentions and
measurement conditions (Kello, Anderson, Holden, & Van
Orden, 2008). What should one expect from system activity
when components are in this “relaxed”, default state?

A reasonable hypothesis is that component activities (e.g.
neurons, cortical columns, brain areas, muscle groups, etc.)
decouple to become relatively independent, and effectively
random. If fluctuations in system activities reflect
component sums in intrinsic measurement conditions, then
activities should tend towards “white noise”, i.e. random
samples drawn from a normal distribution. In fact this is the
basic assumption of linear models with Gaussian error
terms. However, numerous studies of intrinsic variability do
not bear out this assumption.

Scaling Laws in Neural and Behavioral Activity

In many different studies of neural and behavioral
activity, intrinsic variations have been reported to follow
scaling laws across a wide range of scales. Scaling laws
generally relate one variable as function of another raised to
a power, f(X) ~ X% where typically a < 0. Well-known
examples from psychology and cognitive science include
Steven’s law, Zipf’s law, scale-free semantic networks, and
power laws of learning and forgetting (for review see Kello
etal., 2010).

Here we focus on two different scaling laws that have
attracted a great deal of attention in recent years. One is a
power law distribution in neural activity referred to as a
“neural avalanche” (Beggs & Plenz, 2003), and the other is
long-range correlated fluctuations in behavioral and neural
activity, known as 1/f scaling (Kello et al., 2008).

The term “neural avalanche” originally referred to bursts
of neural spiking activity found in local field potentials
recorded from slice preparations that are designed for
observing intrinsic variations. Probability distributions of
burst sizes S were found to go as P(S) ~ 1/S”, where g ~ 3/2
over a moderate range of scales. Analogous burst size
distributions have also been found in EEG, MEG, and fMRI
recordings (see Poil, van Ooyen, & Linkenkaer-Hansen,
2008).

1/f scaling refers to autocorrelations in time series of
repeated measurements, in our case taken from neural or
behavioral systems. Each measurement is correlated with
previous ones, and correlations decay slowly as an inverse
power of lag between measurements. In the frequency
domain, this scaling relation holds between spectral power S
and frequency f as S(f) ~ 1/, where a ~ 1 over a moderate
to wide range of scales. This scaling law has been observed
in local field potentials, EEG, fMRI, and a wide variety of
behavioral measures of intrinsic variation, including
tapping, walking, reaction times, interval estimates, and the
acoustics of spoken word repetitions (see Kello et al., 2008).

Criticality and Computation

What do neural avalanches and 1/f scaling tell us about
neural and behavioral systems? One possibility is suggested
by the particular exponent values observed, because they are
both predicted to occur in the intrinsic variations of systems
near their critical points. Critical points occur at the
transitions between phases (i.e. modes) of component
interactions, and many different kinds of complex systems
have been hypothesized to self-organize towards their
critical points (Bak, 1996). Theoretical work has shown that
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systems near their critical points universally exhibit scaling
laws in their intrinsic dynamics (Sornette, 2004). 1/f scaling
with a ~ 1 has been shown to hold for a wide range of
model systems poised near transitions between ordered
versus disordered states, whereas neural avalanches with S ~
3/2 hold for systems poised near transitions between
diminishing versus expanding branching processes.

While the predicted scaling exponents lend credence to
the idea that neural and behavioral systems tend to be poised
near critical points, one is led to ask, why would this be so0?
One possible reason is that both kinds of phase transitions
have been associated with adaptive cognitive properties
(Kello et al., 2010). Here we focus on the maximization of
information transmission and memory capacity in critical
branching networks (more on this in the Conclusion).

Any given spiking neural network can be viewed as a
branching process whereby a given spike occurring at time t
may subsequently “branch” into some number of spikes at
time t + At over the neurons connected via its axonal
synapses. Let us call the former an “ancestor” presynaptic
spike, and the latter are “descendant” postsynaptic spikes.
The expected number of descendants for each given
ancestor is the branching ratio of a spiking network,
0 = E(Npost/ Npre), Where E() is expected value.

If o is less than one, then spikes diminish over time, and
information transmission through the network is inhibited in
terms of dampened propagation of spiking activity. If ¢ is
greater than one, then spikes grow over time and eventually
come to saturate the network, which also inhibits
information transmission. ¢ = 1 is the critical branching
point at which spikes are conserved over time, and so
propagate without dying out or running rampant.

An analogous critical point between convergent and
divergent dynamics (i.e. Lyapunov exponents near one) has
been shown to maximize memory capacity in a recurrent
network of threshold gating units known as a liquid state
machine (Bertschinger & Natschlager, 2004). Weights on
connections between units were set to be near the critical
point, and intrinsic gate dynamics (switches between 1 and
-1) were perturbed by external inputs. There were two
arbitrary input patterns (i.e. one “bit” of information), and
one of the patterns was chosen randomly for input on each
time step.

Past inputs may have effects on gate dynamics that carry
forward in time. The memory capacity of the network was
defined by two factors: The distance in time over which
information about past inputs was carried forward in current
gate values, and the degree to which different patterns of
past inputs were distinguishable in current gate values.
Memory capacity was assessed by using a linear regression
“readout” function to classify patterns of gate values over
units according to nonlinear functions of past input bits (i.e.
XOR and parity). Linear readout can only succeed if the
effects of past inputs carry forward to current gate values,
and only if gate dynamics take nonlinearly separable inputs
and make them linearly separable. Results showed that
memory capacity was maximal when weights were set near

the critical
dynamics.

point between convergent and divergent

Critical Branching Model

The studies reviewed thus far leave us with two gaps: 1) a
single model has not been shown to exhibit both neural
avalanches and 1/f scaling, and 2) a biologically plausible
neural network algorithm has not been formulated to drive
synapses towards a critical branching point. Kello and
Mayberry (2010) made progress towards filling these gaps
by presenting a spiking neural network model with a critical
branching self-tuning algorithm. The model exhibited neural
avalanches and maximal memory capacity near its critical
point, but 1/f scaling was not demonstrated, and the model
was not biologically realistic.

Here we present a more realistic, spiking neural network
model that self-tunes to a critical branching point, and in
doing so exhibits both neural avalanches and 1/f scaling.
Moreover, deviations from both scaling laws are exhibited
as the model moves either toward subcritical or supercritical
phases, and memory capacity is maximized near the critical
branching point. Memory capacity is measured by applying
reservoir computing functions to spike dynamics, as done in
liquid state machines. Our work provides a basis for spiking
neural network models that connect neural and cognitive
functions via the principle of criticality.

Model Variables and Update Equations. A basic kind
of model spiking neuron is the leaky integrate-and-fire (LIF)
unit. LIF units generally have the following variables
(Roman letters) and parameters (Greek letters): A
membrane potential V; for each neuron i, a membrane
threshold 6; and membrane leak A;, and a level of
potentiation w; for each axonal synapse j, where w;>= 0 for
excitatory neurons and w; <= 0 for inhibitory neurons.
Models may also include variable synaptic delays t;, as well
as parameters governing the time course of action potentials
and postsynaptic potentials (e.g. membrane resistance).

Our model included all of the above, except that action
potentials and postsynaptic potentials were instantaneous for
the sake of simplicity. The model was biologically realistic
in that 1) variable updates were local in time and local with
respect to immediately connected synapses and neurons
(numerical values were not transmitted over connections
among neurons, as they are in e.g. backpropagation), and 2)
synaptic and neuronal updates were asynchronous and
event-based (i.e. time was not discretized, it was coded with
arbitrary precision). The latter criterion helped ensure the
plausibility of our critical branching tuning algorithm.

Each update event in the model begins when a given
neuron receives as input a postsynaptic potential I; at time t,
which may either come from another neuron within the
model, or to from an external input source (i.e. neurons
outside the model or sensory stimulation):

Vi« Ve ht g [1]
where <— denotes the instantaneous update of a variable,
and t'is the previous time that V; was updated. Thus the

1686



model included continuous exponential leak, applied each
time a given neuron received an input. Immediately after
each V; update, if V; > 6;, then V;<—0, and a postsynaptic
potential I; was generated for each axonal synapse of i.
Each I;= w;, and was applied at time t + 1.

In a typical connectionist model, w; can be any real-
valued number, possibly bounded by some minima and
maxima. However, recent neurophysiological evidence
suggests that synapses may be similar to noisy binary
switches with only two levels of potentiation (e.g.
O'Connor, Wittenberg, & Wang, 2005), and it has been
argued that this limitation has little effect on the
computational capacity of synapses (Baldassi, Braunstein,
Brunel, & Zecchina, 2007). Therefore we used discrete-
valued synapses in order to limit the number of activated
synapses (w; # 0), and to enable a stochastic tuning
algorithm. In particular, we used synapses with only two
possible levels of potentiation, 0 or ¢;.

Each LIF model neuron has two free parameters, A; and 6,
and each synapse has two free parameters, 7j and ¢;. In some
spiking network models, parameters are set according to
empirical data on particular kinds of neurons (e.g. pyramidal
cells; ref). However, perhaps the most basic and overarching
fact about neurons is their heterogeneity: Parameters vary
across different kinds of neurons, and across different
neurons of a given kind. To reflect the general fact of
heterogeneity, values for all four free parameters were
sampled randomly from uniform distributions whose ranges
were set to reasonable default values. In particular, values
were real numbers inthe ranges 1 < ;< 2,05<A;<1,1<
1j < 1.5, 1 < ¢; < 2 for excitatory units, and -1 < ¢; <-0.1 for
inhibitory units.

The set of membrane potentials V and postsynaptic
potentials | comprise the dynamics of neurons in our LIF
model. These variables are governed by event-based updates
(Eq 1, plus threshold dynamics) that may occur
asynchronously across neurons, at any point in continuous
time (simulated with arbitrary precision, no need to choose a
time discretization). The set of synaptic weights w comprise
the dynamics of synapses, and are governed by the critical
branching algorithm described next.

Self-Tuning Algorithm. The objective of the self-tuning
algorithm is to activate and de-activate synapses so that each
ancestor spike is followed by one descendant spike on
average. A local estimate for o is computed over the
interspike interval (I1SI) for each model neuron i. This means
that only Ny need be estimated, because Npi=1 by
definition with respect to a given neuron’s ISI. Thus, to
achieve critical branching, Ny should sum to one.

When a given neuron spikes, its local estimate of o is
reset, Nposti€—0. For each axonal synapse’s first spike

occurring at time t, Nyosti Was incremented by S; = g4t

. For each increment, each descendant spike was weighted
as a decaying function of the time interval between pre- and
postsynaptic spikes, with maximal weighting when the
former was immediately followed by the latter.

The sum of time-weighted descendants is used (before it
is reset to zero) each time the neuron spikes to update
weights on its axonal synapses. In particular, if Nyt < 1,
then perform the update w;<—¢; for each synapse j with
probability

771: (SiXNpost,i _]"/U ) [2]
where 7 is a global tuning rate parameter (fixed at 0.1), and
U is the number of synapses available for potentiation.

f(s,)=1—e " if neuron i was excitatory, and

f(Si): e A if inhibitory. If Npost > 1, then perform

the update w;<—0 with probability set according to Eq 3,
except U is the number of synapses available for de-

potentiation, and the assignment of f(Si) is switched for

excitatory versus inhibitory neurons.

In essence, the critical branching algorithm activates
synapses when too few descendant spikes occur, and de-
activates when too many occur. Spikes are time-weighted
because effects of ancestor spikes on descendant neurons
diminish according to their leak rates. Critical branching
weight updates increase in likelihood as local branching
ratio estimates diverge from one, and depend on spike
timing. With regard to spike timing, excitatory synapses are
more likely to be potentiated when postsynaptic neurons
have not fired recently (and vice versa), which helped to
spread spikes across neurons. The same principle leads to
the opposite rule for inhibitory neurons.

Model Architecture. The model consisted of 200 inputs
units and 1000 reservoir units. All input units were
excitatory, and reservoir units were excitatory or inhibitory
with probability 0.5. Input units were connected to each
reservoir unit with probability 0.2, and reservoir units were
connected to each other with probability 0.2. All synaptic
weights were initialized to zero.

Simulation 1: Scaling Laws

We first examine intrinsic variations exhibited by the model
under two different random noise input conditions. In the
high input condition, exactly one half of the input units were
induced to spike at a random time within the first half of
each unit time interval. In the low input condition, only five
input units were induced to spike per unit time interval.
High input caused a steady fluctuation in spikes, whereas
low input caused “bursts” of activation above baseline.

In Figure 1, two time series are shown for the first 8000
time intervals of an example run in the high input condition.
The top series is the mean branching ratio estimate per unit
interval, and the bottom series is the number of reservoir
units that spiked per unit time interval. The top series shows
the ability of the critical branching self-tuning algorithm to
reach and maintain ¢ ~ 1, starting from zero potentiated
synapses. The bottom series shows variations around a
mean of ~210 spikes per time interval. These variations are
largely intrinsic to the model, because there was no
variation in the number of input spikes per time interval.
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In Figure 2, a spectral analysis is shown for the last 4096
data points in Figure 1, in log-log coordinates. Fluctuations
in numbers of spikes are shown to closely follow a 1/f
scaling relation in the lower frequencies (ideal 1/f shown by
the dashed line), which represents the vast majority of
variation in the time series because power is on a
logarithmic scale. The small amount of remaining variation
(despite appearances in the figure) in the higher frequencies
is uncorrelated noise (slope near zero). This general pattern
is common to nearly all empirical observations of 1/f
scaling, including those in behavioral and neural activity. At
least some of this variation comes from the temporal
dispersion of inputs within each time interval, and variations
in neuron and synapse parameters.
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Figure 1: Branching Ratio and Spike Variations in the
High Input Condition

In Figure 3, a portion of the spike series from the low
input condition is shown. Only a small stretch is shown in
order to highlight the “burst-like” nature of the time series.
As in the high input condition, these bursts are intrinsic
variations because the rate of inputs spikes was held
constant at 5 per time interval. The size of each avalanche
(i.e. burst) was defined as the sum of spikes over contiguous
points with 10 or more spikes (red arrows show three
example avalanches).
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the Low Input Condition
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In Figure 4, a histogram of avalanche sizes is plotted in
log-log coordinates for a run of 200,000 time steps in the
low input condition (after first tuning to critical branching).
The ideal 3/2 power law is shown by the dashed line. The
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fall off in larger avalanche sizes is also characteristic of real
neural avalanche data, and is likely due to the limited size of
the model (a similar fall off in local field potential data is
apparently due to limited numbers of electrodes).
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Results thus far show that intrinsic variations in critical
branching spiking activity exhibit near ideal neural
avalanches and 1/f scaling under low and high input
conditions, respectively. These results alone do not
distinguish whether the scaling laws are associated with
critical branching, or something more general about how the
algorithm works.

To test whether critical branching is important for
simulating these scaling laws, the critical branching
algorithm was generalized to target branching ratios other
than one. In particular, the tuning algorithm was generalized
to target a given branching ratio R by replacing the

‘N posti —1‘ term with ‘N posti — R‘/R in Eq 3. In Figures

5 and 6, results are shown at three different targeted
branching ratios, i.e. ¢ = 0.5, ¢ = 1.0, and ¢ = 1.5. Spike
burst size distributions are shown to diverge from ideal
neural avalanches when the branching ratio diverges from
one, and summed spike fluctuations are shown to diverge
from 1/f scaling. For avalanches, the power law tail of the
distribution either becomes too light (subcritical, R = 0.5) or
too heavy (supercritical, R = 1.5). For spectra, either
fluctuations lose their long-range correlations as seen in a
flattening of the spectrum in the lower frequencies (R = 0.5),
or fluctuations deviate towards Brownian motion (R = 1.5).

Simulation 2: Memory Capacity

The memory capacity of spiking dynamics was assessed as a
liquid state machine (Maass, Natschlager, & Markram,
2002). The only change to the critical branching model was
in the inputs. Half of the input units were assigned to
represent one bit value (0), and the other half were assigned
to the other (1). For each time interval, one of the bit values
was chosen at random, and all of its corresponding input
units were induced to spike. The resulting sequence of bit
inputs caused reservoir units to spike, and the critical
branching tuning algorithm was engaged as in Simulation 1.
Once tuning asymptoted, a group of 15 “readout” units was
used to test the XOR function on adjacent input bits that
occurred from 1 to 15 time intervals in the past. Readout
units used logistic outputs (instead of spiking), and were
only for assessing spike dynamics (not part of critical
branching). Weights on connections into readout units were
real-valued and initialized in the range [-0.1, 0.1].
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Figure 7. XOR classification accuracy as a function of
time lag for three different targeted branching ratios

For each unit time interval, reservoir spikes resulted in
output activations over readout units. For 10000 trials of
training, readout units received XOR targets based on past
input bits, and targets were compared with outputs using
sum squared error. The resulting error signal was used to
update connection weights using the delta learning rule
(momentum = 0.5, learning rate = 0.00005). At testing, net
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inputs to each readout unit had to be on the correct side of 0
to be considered correct. It is important to note that net
inputs were a linear function of their weights, which meant
that XOR performance relied on the memory and
representational capacity of reservoir spiking dynamics.

The model was tested at 11 different branching ratios
from 0.3 to 1.5 (run 10 times each per ratio). In Figure 7,
XOR performance is shown to be greatest for the most
recent time lags, and falls off to chance (0.5) by lag 15 (for
replication, see Bertschinger & Natschlager, 2004).
Performance was best when the targeted branching ratio was
0.95; ideal critical branching is at 1, and mean performance
was slightly less for this target ratio (see Figure 8). This
slight shift in the predicted peak at 1 is due to the use of a
model with no output units where spikes could “exit” the
system (see Kello & Mayberry, 2010).
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Figure 8. XOR classification accuracy, averaged over time

delays, and plotted as function of targeted branching ratio

Conclusion

An LIF spiking network model was tuned to its critical
branching point, which vyielded 1/f scaling and neural
avalanches, as well as maximal memory capacity. The
model’s basis in criticality provided the connection between
these two heretofore unconnected scaling laws, and between
the scaling laws and functional, cognitive properties of
neural networks. The ability to address both neural and
behavioral phenomena was facilitated by modeling at the
level of spikes. In future simulations, we will further
leverage the model by examining temporal autocorrelations
and mutual dependencies among spike trains, interspike
interval and spike rate distributions, and pervasive 1/f
scaling in intrinsic fluctuations of behavioral activity.

If the model continues to account for basic facts about
intrinsic variations in neural and behavioral activity, and
grows to integrate the readout function, then it may provide
a theoretical framework with broad empirical support that
enables spiking dynamics models of cognitive function.
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