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Abstract

We explore neural network learning and parallel human
learning on an artificial language task. The task generates rich
data on human interaction with syntactic systems, including
recursive ones. Studying the network’s properties, we argue for
a “Structured Manifold” view of syntactic representation. The
“Structured Manifold” lies in the parameter space (weight
space) of the network. It exhibits (1) loci of high order,
corresponding to complex rule systems, (2) continuity, which
explains how one rule system can morph into another one, and
(3) “recursion approximation”, a concept related to symbolic
recursion, which addresses some of the puzzles about
embedding patterns in human behavior.

Keywords: artificial grammar learning; artificial neural
networks; recurrent networks; simple recurrent networks;
sequence learning; recursion; center embedding; rules.

Introduction

What kind of structural system underlies human syntactic
processing ability? Much work in linguistics addresses this
question by exploring syntactic behaviors in natural
languages. Work on artificial grammars offers a chance to
obtain detailed information about human interaction with
formal syntactic systems in the absence of semantic content
or task-independent pragmatic function. Here, we introduce
a variant on existing artificial grammar learning tasks that
supports careful comparison between human and artificial
neural network models. The results help clarify the
difference between standard, rule-based conceptions of
grammatical knowledge and the claims of the neural net
perspective, providing some evidence that, at least in the
artificial grammar task, humans resemble the networks. We
focus, in particular, on the status of center embedding
recursion, which many authors view as an important feature
of natural language systems, but whose status in the theory
of representation has been much debated (e.g., Chomsky,
1957; Christiansen & Chater, 1999; Friederici, 2002).
Center-embedding recursive patterning can be generated
by context free grammars. Context free grammars are rule
systems like Grammar G (Table 1) in which rules take the
form (A 2 X; X;... Xy, for N a finite number), and there are
designated starting rules. The grammar is said to generate a
finite sequence of symbols, called a “sentence”, if it is
possible to make successive substitutions for symbols on the

right hand side of a starting rule until no more substitutions
can be made; the resulting right hand side is the generated
sentence. Grammar G generates the sentences “1 2 3 4” (a
Level 1 sentence), “1 12342347 (Level 2),“1112342
342 34” (Level 3), etc. In formal language terminology, a
case where the system shifts to a deeper level of embedding
(here, 1 after 1)—is called a “push” and a case where it
shifts back (2 after 4) is called a “pop”. Keeping track of the
syntactic dependencies requires correlating the pops with
the pushes. The term “recursion” refers to the situation in
which a rule can be invoked an unbounded number of times.
“Center embedding recursion” is the case in which the
symbol for such a repeatedly used rule occurs in the middle
of one of the rules with symbols on either side of it (e.g., in
G, “S” occurs with “1” to its left and “2” to its right in the
first rule). Center embedding context free grammars are of
particular interest because a system for generating or
recognizing all and only the sentences produced by a center
embedding grammar needs an unbounded memory.

It is generally recognized that some degree of center
embedding is present in natural languages, for there are
many situations where natural languages employ patterns
within patterns of the same type—e.g., in relative clauses.
This suggests that minds have recursive rule systems at their
disposal for keeping track of these patterns. The recursive
rule system is appealing as an explanation because it permits
efficient description of many cases and predicts the way
people exercise their language knowledge in many new
combinations of words and phrases (Pinker, 1994).

Yet humans have great difficulty processing more than a
few levels of embedding in natural language (see Lewis,
1996). Similar findings characterize artificial grammar work
on recursion (de Vries, Monaghan, Knecht, & Zwitserlood,
2008; Poletiek, 2002). If a symbol processing system must
only handle a few levels of embedding, then it is not strictly
necessary to employ a recursive process—a weaker, finite-
state device, which has a limited memory capacity, can do
the job. Proponents of recursive rules have suggested that
memory limitations obscure a fundamentally infinite

Table 1: Grammar G. Both rules are starting rules.
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mechanism. But even if humans had such a mechanism, it
would be impossible for finite life-span researchers to
observe its infinite behavior. Thus, the argument for human
employment of recursive systems seems to founder on a
shoal of infinity: true center-embedding recursion is
distinguished by its employment of infinite memory, but we
cannot observe infinite memory, so it is hard to justify
recursive rules.

Relevant to this discussion, artificial neural networks have
been used to model many aspects of natural language
behavior and they are often claimed to do so without
recourse to “explicit” rules (e.g., McClelland & Patterson,
2002; see also Pinker & Ullman 2002). Elman’s Simple
Recurrent Network or “SRN” (Elman 1991) is a model of
this sort that processes structured sequences. The SRN and
its relatives have learned some elaborate patterns of center-
embedded recursion and have successfully generalized from
training on less deeply embedded cases to prediction of
more deeply embedded cases (Rodriguez, 2001; Wiles &
Elman, 1995). However, they also do not typically extend
the patterns very far beyond their training (Christiansen &
Chater, 1999). In light of the difficulty that humans have
with processing deep center embeddings, Christiansen and
Chater argue that the networks’ behavior provides an
appealing alternative account to the recursive rule approach.

However, the network representations are not well
understood. In particular, if the networks do not employ
rules, it is not clear what kinds of order they predict should
occur; nor is it clear why observed behaviors can often be
given a parsimonious description with systems of rules. We
suggest that it will help to look closely at the nature of the
network representations, in conjunction with detailed
measurement of human behavior on a task that both
networks and humans can perform well. Through such an
approach, we can acquire some insight to the conundrums of
human recursive patterning.

In particular, we suggest that the network view is well
described as a “Structured Manifold” account. We use the
term manifold to draw attention to the fact that the network
parameters are real-valued so they can change continuously,
and continuous change of parameter values is associated
with continuous change in the network’s behavior (see
Spivey, 2007). This property is useful for explaining the
learning phenomena—it makes it so the networks can be
sensibly described as “getting closer” to a particular
structural behavior before the behavior actually appears. On
the other hand, the structured part of “Structured Manifold”
refers to the fact that the network behaviors in the context of
a particular environment tend to concentrate around a few
types. These types correspond to qualitatively distinct
lawful patterns in the network’s relationship to its
environment. They are closely related to rule-systems, for
they correspond to systematic insights about the patterns in
the world. In particular, the Structured Manifold approach
suggests a way of understanding “recursion” that avoids the
“shoal of infinity” mentioned above. We say that a pattern
of behavior approximates a recursive mechanism if

knowledge of one structural feature of the environment
transfers to another structural feature which is recursively
related to the first.'! The knowledge need not transfer
perfectly and thus the system may not follow the recursive
rule to arbitrary levels, but to the degree that the system’s
knowledge is iteratively effective, it will be said to form a
“good” approximation of the recursion. Thus the definition
clarifies the sense in which a network can be “close to” a
recursive behavior without embodying it. The definition
also allows perfect recursion to be present at a locus in
parameter space, in keeping with formal analyses of some
recurrent networks (Tabor, 2000; 2009). There is also a way
of gleaning empirical evidence for recursion approximation:
statistical evidence that a system bases its behavior with a
more embedded case on its knowledge about a less
embedded one counts as such.

The remainder of the paper is organized as follows: in
“Task” we introduce the grammar learning task. In “Simple
Recurrent Network Model”, we describe the outcome of
training many SRNs on the task and testing three
hypotheses—Grouping, Continuous Interpolation, and
Recursion Approximation—generated by the Structured
Manifold view. In “Human Grammar Learning
Experiment”, we report on a parallel study with human
grammar learners. “General Discussion” concludes.

Task

We employed a grammar learning task called the Box
Prediction Task that is a variant of sequence learning tasks
(Clegg, Di Girolamo, & Keele, 1998). In sequence learning,
a popular task is the Serial Reaction-Time task (Nissen &
Bullemer, 1987) where stimuli are presented sequentially
and participants respond to each stimulus (e.g., by clicking
on the place where the stimulus appeared). Participants’
responses trigger the presentation of the next stimulus. In
patterned sequential data, reaction times often reflect the
predictability of the sequence, suggesting that participants
develop a structured encoding of the data. However, it is
difficult to tell from the data in such a task when a
participant has reliably detected complex dependencies like
those that occur in center-embedding.

In the Box Prediction Task, stimuli are presented
sequentially but participants are asked to predict the next
stimulus instead of simply reacting to the current stimulus.
Human participants predict by clicking a box on a screen.
They immediately get feedback because the correct box
changes color (from black to green or blue). The networks
predict by activating output nodes corresponding to boxes.
They also get immediate feedback in the form of a vector
indicating which symbol the grammar produced next.

' We assume, for analysis purposes, that the environment
contains patterns which are describable by recursive rules. This
assumption does not commit us to claiming that actual
environments have infinite patterning. Instead, one can think of
this assumption as a tool for understanding the structure of human
and network behaviors.
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Figure 1: Network architecture.

Many artificial grammar learning tasks have tested
languages with high nondeterminism (e.g., Reber, 1967).
Performing the Box Prediction Task with such data would
be very frustrating because only a few responses are likely
to be correct. We therefore employed a grammar (G) with
very little nondeterminism and we color-coded the pushes
(blue), which are the only nondeterministic transitions,
telling the participants that they need not predict them.

Sentences generated by the grammar were concatenated
to form long training sequences that were presented
sequentially to networks and human participants.

Simple Recurrent Network Simulations

Method. 22 Simple Recurrent Networks (SRNs) with the
same architecture (Figure 1) were constructed and the initial
weights were randomly set (uniform distribution on [-0.1,
0.1]). Each network was trained twice from the same initial
weights on a sequence of Level 1 and Level 2 sentences. In
the first sequence, the average frequency of Level 2
sentences increased over the course of 8000 trials (Table 2).
In the second sequence, it decreased. We expected Sequence
1, which emphasized Level 1 before Level 2, to produce
better recursion approximation because, in recursive
generalization, (Level) 2 to 3 parallels 1 to 2, not 2 to 1.
Results. We asked three questions about the ensemble of
networks: (1 “Grouping”) Can the networks be grouped into
a few, qualitatively distinct behaviors which correspond to
rational responses to the task environment? (2 “Continuous
Interpolation™) Do the networks favor intermediate states, in
which they blend the qualitative behaviors just mentioned?
(3 “Recursion”) Is there evidence that the more successful
individuals approximate a recursive mechanism?

Table 2: Distribution of sentences in the 2 sequence types.

Sequence No. of sentences per phase
Type Phasel Phase2 Phase3 Phase4  Total
Sequence 1
L1 sentence 2000 2000 2000 2000 8000
L2 sentence 200 400 600 800 2000
Sequence 2
L1 sentence 2000 2000 2000 2000 8000
L2 sentence 800 600 400 200 2000
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Figure 2: Network Clusters. Li_j(k) means
Level i, j’th word, symbol k.

For (1 “Grouping”) we used a cluster analysis. After
training, we fixed the weights of each network and tested it
on a Level-1, a Level-2, and a Level-3 sentence, thus
examining a total of 24 word-to-word transitions. Level-1
and Level-2 sentences occurred in training, but Level-3 did
not. We interpreted the network’s output nodes as
probabilities by using the Luce Choice Rule with base ¢'
and computed the expected accuracy of each network at
each transition from these probabilities. We then applied K-
means clustering to the 24 accuracy values. A standard
method of choosing the number of clusters, selecting the
“knee” in the plot of within-group sum of squares vs.
number of clusters, suggested 3, 4, or 5 clusters.”? For
simplicity, and for alignment with the analysis of human
data reported below, we focused on the 3-cluster case.The
accuracies of the three clusters are shown in Figure 2
(means shown in bold). The means of Cluster 1 indicate that
Cluster 1 networks tend to employ a “Simple Markov”
strategy: 122, 223, 324, 4>1 (these numbers refer to
grammar symbols). Each prediction by the network is
conditioned strictly on the input, even if a push or a pop
produces a violation of expectation. The means of Cluster 2
indicate that Cluster 2 networks also use the rules, 122,
223, and 34, but the networks switch between two
modes of responding to input 4: if the previous successor of
4 was 1, then the next response to 4 is 1. If the previous
successor of 4 was 2, then the next response to 4 is 2. This
“2-Mode Perseverater” has some memory for the past, but
cannot keep track of the correlation between pushes and
pops. The Cluster 3 means indicate that Cluster 3 networks
expect a Level 1 sentence if the sentence begins 1-2, and
they expect a Level 2 sentence if the sentence begins 1-1-2.
However, they don’t, on average, generalize the dependency
to level 3; instead, most of them tend to treat 1-1-1-2 the
same as 1-1-2, thus failing on the second pop of Level 3
sentences. Nevertheless, these “Fragile 1-Counters”
approximate the behavior of the unbounded recursion
generating process better than the other two types (Mean

2 We also sought a maximum of the Calinski-Harabasz pseudo-
F statistic (Calinski & Harabasz, 1974), another standard method,
but there was no clear maximum.

1681



Table 3: Networks per cluster for each condition.

Cluster 1 Cluster 2 Cluster 3
Sequence 1 11 1 10
Sequence 2 6 5 11

Accuracies: Simple Markov 77%, 2-Mode Perseverator
77%, Fragile 1-Counters 83%). In sum, the clustering
analyses reveal that the networks fall into distinct qualitative
categories which are associated with distinct systematic
responses to the task. Although one might expect Sequence
1 to encourage 1-counting and Sequence 2 to discourage it,
a likelihood ratio test showed no effect of training condition
on the distribution of clusters, even with clusters 2 and 3
treated as one (y*(1) = 2.42, p = .120) (Table 3).

To investigate (2 “Continuous Interpolation”), we
contrasted two hypotheses: (a) network behaviors are
distributed as cluster prototypes + noise (equal distortion in
all directions); (b) the networks approximate blends of
behaviors associated with the various cluster prototypes.
Under both (a) and (b), a network could be proximal to a
pure complex behavior (e.g., a recursive grammar) without
precisely embodying it. But in (a) deviations have low
likelihood of leading to purer recursion because they can
occur in any direction; in (b) deviations are more likely to
lead to purer behavior because the models are restricted to a
low-dimensional manifold. In this sense, proximity of a
network in case (b) to an ideal complex behavior is a more
reliable indication that the network will robustly exhibit
complexity, than in (a). How can we tell (b) apart from (a)
empirically? If (a) holds, then the variation of each
network’s behavior on each transition is expected to be
equal. If (b) holds, then the individual networks are
expected to show greater variation on transitions in which
networks tend to contrast than on transitions in which all
networks tend to agree. We tested this hypothesis by
comparing the variances of individual networks’ behaviors
on different types of transitions during the last 99 trials to
the global variances on the same types of transitions (global
variance on a transition T is the total variance across all
network behaviors on T). Examining all 44 trained
networks, we considered the 24 transition types associated
with 1-level, 2-level and 3-level sentences. We hypothesized
that each 24-element vector of individual variances would
be more aligned with the 24-element vector of global
variances than with a 24-element vector of uniform
variances. Indeed, a paired t-test on our 44 network sample
showed that the cosine of the angle between the individual
variance vector and the global variance vector was
significantly bigger than the cosine of the angle between the
individual variance vector and any positive uniform
variance vector (p < .001).

For (3 “Recursion”), we examined individual network
response patterns to see if any of the networks generalized
to correct performance on Level 3, provided they had
learned correct performance on Level 2. We counted a
network as having correct performance on a sentence if its
accuracy was above 0.5 on all deterministic transitions in

the sentence. Indeed, by this criterion, three of the networks
from Cluster 3 exhibited correct performance on Level 3
sentences. Moreover, a regression analysis showed that even
when these three networks were removed from the data set,
better performance on Level 1 and 2 sentences predicted
better performance on Level 3 sentences (» = 0.32, p <.05).
These observations suggest that the networks that do well
on Level 3 sentences do so in virtue of their ability to do
well on Level 2 sentences, even if they do not precisely
embody the recursive generating process. Under the
definition given in the Introduction, this observation
suggests that the networks approximate a recursive
mechanism.

Human Grammar Learning Experiment

Method

Participants. 44 college students from the University of
Connecticut participated for course credit.

Materials. Two sequences of 400 trials each were created.
In both sequences 1 and 2 there were 38 Level-1 sentences,
25 Level-2 sentences, and 4 Level-3 sentences. The last 99
trials of both sequences were identical. The first instance of
a level-3 sentence occurred at trial 302 so trials 1-301
served as an analog of network training and trials 302-400
served as an analog of network testing. In Sequence 1 the
density of Level 2 sentences changed from low to high over
the course of trials 1-301. Sequence 2 had the reverse
progression. A windows PC with speakers on the monitor
and a standard mouse were used for the display and input.
The experiment was run in E-Prime.

Procedure. Participants saw 4 black boxes on a screen. The
boxes were positioned in a circle with grammar G numbers
associated counterclockwise, but not indicated on the
screen. Each participant ran only one sequence. When a
participant clicked a box, one of the 4 boxes would turn a
different color indicating that it was the next box in the
sequence. The participant was instructed to try to predict
which box would next change color and click on it. It was
emphasized that the goal was prediction, and not to simply
click the box which had previously changed color. If a
participant predicted the wrong box on non-push trial, a
short beep sounded. No sound was played if the participant
predicted the correct box. The correct next box generally
changed from black to green, except on push trials, where
the second 1 box changed to blue, and the third to cyan (in a
Level 3 sentence). Participants were instructed that they
need not predict the blue/cyan boxes. The computer
recorded the accuracy of the participants’ predictions.

Results

Mean accuracies over the course of the task are shown in
Figure 3, separated into 3 classes: sequential transitions
pops, and pushes. A logistic regression analysis supported
staged learning—e.g., final pops learned before intermediate
pops in Level 2 sentences for Sequence 1 (p < .001). We
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Figure 4: Human clusters.

focused our analysis on the last 99 trials, when both
sequence types experienced the same sequence of boxes.

(1 “Grouping”) In the human case, the Calinski-Harabasz
pseudo-F statistic had a clear maximum at 3 clusters so we
examined this case (Figure 4). Figure 4 suggests that the
participants in Human Cluster 1, like the networks in
Network Cluster 1, employ the Simple Markov system.
Cluster 2 is much more sensitive to the temporal structure of
pops and pushes, for these participants perform more
accurately on the Level 2 pop and the first Level 3 pop, than
Cluster 1 participants. Cluster 2 participants tend to employ
the rule, 1 > 1, so they have relatively high accuracies on
pushes (even though the instructions said that the blue boxes
need not be predicted). Although these “Push Predictors”
did numerically better than Cluster 1 on the second pop of
Level 3, their mean performance on this transition was less
than 0.5, suggesting that they are not robustly sensitive to
the correlation between pushes and pops. Cluster 3 uses a
different strategy with pushes—they generally predict 2
after 1, thus failing to predict the pushes and successfully
predicting the finite state transitions from 1 to 2. These
“Push Blindsiders” are even better than Cluster 2 at

Table 4: Participants per cluster for each condition.

Cluster 1  Cluster 2 Cluster 3
Sequence 1 7 3 12
Sequence 2 12 4 6

predicting the correlation between pushes and pops. In fact,
the Cluster 3 mean accuracy on the second Level 3 pop is
above 0.5. These results indicate that the human behaviors,
like the network behaviors, can be grouped into several
different coherent responses to the task, though the human
cluster prototypes are associated with somewhat different
strategies than the network cluster prototypes. Table 4 gives
the number of participants in each cluster as a function of
training sequences. A likelihood ratio test of showed no
effect of training condition on the distribution of clusters,
even with Clusters 2 and 3 treated as one (¥*(1) = 2.34, p
=.126).

Regarding (2 “Continuous Interpolation”), comparison of
variance vectors confirmed that, for humans, like networks,
most of the individual variation was on dimensions on
which there was high global variance (p <.001). As with the
nets, this result suggests that, when the humans diverge
from the coherent behaviors associated with the clusters,
they tend to diverge in the direction of other coherent
behaviors. Interestingly, when we performed the global
variance test on a cluster by cluster basis, Clusters 2 (N = 7)
and 3 (N = 18) showed significant correlation, but Cluster 1
(N = 19) did not, even though Cluster 1 had the largest
sample size. These results provide suggestive evidence that
the Push Predicters and the Push Blindsiders are hamstrung
between the pull of their cluster prototypes and the impulse
to be like Simple Markov processes, or like each other,
while the Simple Markov processors are, on average,
insensitive to the non Markovian structure in the data.

Regarding (3 “Recursion”), there were five participants,
all Push Blindsiders, whose mean accuracy on all
deterministic Level 1, Level 2, and Level 3 transitions never
strayed more than 0.5 away from the predictions of the
generating process over the last 99 trials. These people can
be said to have mastered the push-pop correlation across the
three levels, providing suggestive evidence that they employ
a recursive mechanism. Furthermore, a regression analysis
showed that mean accuracy on Level 3 sentences was
positively correlated with Level 1/2 accuracy in the last 99
trials (b = 0.633, r = 3.38, p < .01). This result is consistent
with the recursion approximation hypothesis: the correlation
between Level 1/2 and Level 3 suggests that the structural
insight about Level 1/2 is being used to solve Level 3.
However, the humans, unlike the networks, can keep on
learning during the “test” trials, so the correlation might
stem from a greater learning facility in some humans than
others: those who have greater learning facility will learn
Level 1 and 2 sentences better during trials 1-301 and they
will also learn Level 3 sentences better during trials 302-
400, but they might not use any of their knowledge of Level
1 and 2 sentences to solve Level 3. However, in a separate
analysis, Sequence Type predicted Level 1/2 accuracy (b = -
0.052, t = -2.53, p < .05). These results are unexpected on
the Learning Facility account for two reasons: the density
manipulation does not change the total amount of exposure
to Level 1 and Level 2 sentences, so if these were simply
learned on the basis of exposure, there would be no reason
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for a Sequence Type effect on Level 1/2. Second if, as
claimed by the Learning Facility account, Level 3 sentences
are learned independently of structural insight gleaned from
Levels 1 and 2, then there would be no reason to expect
Level 3 variation to be related to anything except participant
identity. Instead, the data suggest that Sequence type
influences the learning of Levels 1 and 2, and the nature of
this learning, in turn, influences performance on Level 3s,
consistent with the recursion approximation hypothesis.

General Discussion

The similarities between the network and human results
provide some evidence that the Structured Manifold is a
good framework for understanding human syntactic
encoding, at least in artificial grammar learning.

The network analysis helps clarify the notions of
“Grouping”, “Continuous Interpolation” and “Recursion
Approximation”. In particular, the Grouping results provide
evidence that network interaction with the environment
focuses on a small finite number of coherent behaviors.
Even the Simple Markov system, though it is not optimal
for the task, detects a level of regularity which is inherent in
the task structure---the so-called “second-order” statistical
approximation. In dynamical systems terms, it seems likely
that these structures are attractors of some sort. It may be
helpful to ask what the nature of their stability is within the
panoply of dynamical stabilities (see Tabor, 2009).

The Continuous Interpolation results are related to
parameter-setting models of syntax (e.g. Chomsky, 1981) in
the sense that they provide a reduce-dimension description
of the range of expected behavior. An important difference
between the current model and linguistic parameter setting
models, is that the structure of the “parameters” was derived
from the interaction of a very general-purpose learning
mechanism with the environmental data. Thus, this appears
to be a less nativist kind of parameter setting.

Finally, the Recursion Approximation analysis suggests a
way of reconciling the desirable properties of recursive rules
with the facts that human behavior is imperfect and cannot
be infinitely observed. Combined with the Continuous
Interpolation observation, the results suggest understanding
states of a system as being related not just to one but to
many ideal forms. This suggests shifting away from a view
of organisms as “having a knowledge system” and toward a
view in which they can be “in the sphere” of multiple
systems. Their actual behavior is not static, and may be
understood as a structured trajectory through these spheres.
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