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Abstract

The present study used eye-tracking to examine the
relationship between attention and category learning in
probabilistic environments. While training, participants
received either perfect feedback (100% accurate), or one of
three different levels of probabilistic feedback (87.5%,
75% or 62.5% accurate). It was found that participants in
the 87.5% condition were more accurate than participants
in the other two probabilistic feedback conditions.
However, despite their greater accuracy, participants in the
87.5% condition continued to attend to irrelevant
information as frequently as those in the other two
probabilistic conditions. This shows that: (1) cues that are
not utilized in making a categorization decision may still be
frequently attended to, and (2) attentional learning is not as
tightly coupled to improving accuracy as current formal
models suggest.

Keywords: Category Learning; Attention; Eye-Tracking;
Categorization; Probability Learning.

Introduction

Although our actual learning environment is frequently
probabilistic, most of what we know about human
category learning comes from experiments where
participants are provided with an ideal learning
environment: both perfectly predictive cues and
completely accurate feedback. While there is valuable
information to be gained from such studies, it is also
possible that they overlook interesting learning processes
found only in more natural, probabilistic environments.

In the real world, people must frequently assess the
quality of the information they receive to guide their
actions. Although the weather forecast might predict
sunshine for the day a cloud formation over head may
then further change our expectation: we may prepare for
rain instead. In this probabilistic environment, the forecast
is not a perfect predictor of outcome. Alternatively, the
user of a damaged GPS system is unlikely to rely on the
device for directions to an important meeting given that it
is unreliable, while that same driver is very likely to let
off the gas when the very reliable speedometer gets too
far above the speed limit. Knowing what information
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around us is a valid predictor of the state of the
environment is an important skill.

One way in which probabilistic environments are
especially interesting is that they make it difficult for
learners to determine which information is relevant. For
example, in a classic study of learning from probabilistic
cues, Castellan (1973) demonstrated that the mere
presence of irrelevant cues tended to reduce the use of
relevant ones. Further, he found that use of relevant cues
was impacted most when they were moderately
predictive. When the relevant cues were highly predictive,
participants seldom used irrelevant information, and when
cues were only slightly predictive, participants could not
learn which which of them were predictive. Not
surprisingly, the concept of attention is often invoked to
account for data of this type, as in the case of Kruschke
and Johanson’s (1999) Rapid Attention Shifts ‘N’
Learning (RASHNL) model of probabilistic cue learning.
In RASHNL attention to cues shifts after the agent
receives an error signal. The purpose of attentional shift is
solely for error reduction. The model performs its task
well, in that it successfully learns to classify categories in
a probabilistic environment. However the literature is
beginning to show that attentional shifts in probabilistic
category learning serve purposes above and beyond error
reduction.

In a recent study, Little and Lewandowsky (2009)
found that participants learning categories with
probabilistic cues retained more information about an
irrelevant cue than participants in a non-probabilistic
condition. This suggests that attention to irrelevant cues
increases in probabilistic environments, and that
participants in such environments may allocate their
attention for purposes other than reducing errors. It also
suggests that people may attend to information that they
do not use in their category judgments.

Unfortunately, differentiating attention to a cue from
cue use has been difficult. Often methods of gauging
attention to a cue have equated attention with utilization
through the use of transfer stimuli (e.g. Blair and Homa,
2005). While this method does provide a great deal of
insight into learning, it is unable to tell us when
participants are sampling information without actually
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using it. One way to examine attention independent of cue
use is with eye-tracking. Eye-tracking has successfully
been used to study a range of cognitive phenomena
(Yarbus, 1967) such as visual search (Liversedge and
Findlay, 2000) and reading (Rayner, 1998). Recently it
has also been employed to study the allocation of
attention in the context of category learning (e.g. Rehder
and Hoffman, 2005a; Blair, Watson, Walshe, & Maj,
2009). By recording eye movements and fixations, we
gain fine-grained spatial and temporal information about
what participants are overtly attending that cannot be
measured by via cue utilization. Support for eye-tracking
as a measure of attention is found in neurological studies
showing that eye movements share the same anatomical
and functional networks used for covert shifts in attention
(Corbetta et al., 1998). Perhaps more importantly, eye-
tracking results have been shown to mirror the attentional
biases and parameters found in formal models of
categorization (Rehder and Hoffman, 2005b; Kruschke,
Kappenman, and Hetrick, 2005).

The present study uses eye-tracking to further
investigate the effect of probabilistic environments on
attentional allocation. Participants trained on a category
structure with an irrelevant dimension while receiving
feedback that was either 100% accurate, or probabilistic
(either 87.5%, 75%, or 62.5% accurate). Consistent with
the findings of Castellan (1973) and Little and
Lewandowsky (2009) it is expected that attentional
allocation will be less efficient in probabilistic
environments. It is also expected, based on previous
research (e.g. Nosofsky & Little, 2010), that this negative
impact of probabilistic feedback on attentional learning
will be mirrored by a similar impact on accuracy. In light
of previously documented dissociations between task
accuracy and attentional allocation (e.g., Blair, Watson &
Meier, 2009; Rehder & Hoffman, 2005a), we are
particularly interested in evidence that participants may
be strategically attending to information that does not
influence their categorization decision. In the context of a
probabilistic task, there may be strategic uses of attention
that are not concerned with immediate response accuracy.
For example, one might attend to irrelevant information
just in case there is a shift in the environmental
contingencies, or to avoid settling on a sub-optimal
strategy. If such dissociations between attentional learning
and category learning exist, then, following Castellan
(1973), it is likely they will occur in conditions where the
probabilities are moderate.

Some of the prior work examining probabilistic
environments has looked at validity assessment. For
example, Droll, Abbey & Eckstein (2009) asked
participants to estimate the validity of a cue in terms of
predicting the presence of a target. They found that
participants slightly overestimated the validity of poor
predictors (those that predicted the target on about 10% of
trials) and slightly underestimated the better predictors
(those that were predictive of target on 60% of trials). In
the present study, we are interested to see how people
assess the accuracy of the feedback they receive.
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Methods

Participants

157 Simon Fraser University undergraduate students with
normal or corrected-to-normal vision participated in the
study for course credit. Four participants were excluded
from analysis for not completing all trials in the
experiment. Eleven participants were excluded for
random response behavior indicated by both abnormally
fast response times (1 SD below the mean) and poor
performance (accuracy at chance (0.25)).

Stimuli

The stimulus resembled a three-armed microorganism,
with one feature located in each arm (see Figure 1). The
background image of the three-armed organism was
selected randomly on each trial from nine possible
images. The images differed subtly in background detail
to increase the presentation of unique images in the task.

Each arm contained one of three possible feature types.
The locations of the three possible features were
randomized for each participant, but were presented in the
same location on the micro-organism throughout the
experiment. Each of the three features had two possible
values. The difference between the two values was a
subtle change in a feature property. This binary structure
allows for eight possible combinations of specific feature
values. Our design used four categories, defined by the
values of two relevant features (Table 1). The third feature
was always irrelevant. Relevance was assigned randomly
across the possible locations and the possible feature
images.

The full micro-organism subtended 16.3° of visual
angle. The features contained within the micro-organism
were located centrally in the arm. The features each
subtended 1.3° and were separated by 10.6°.

Procedure

At the start of the experiment participants viewed a series
of instructions telling them that they had been hired by a
space laboratory to classify samples of alien organisms
according to which chemical the organism produced:
sodium, potassium, calcium, or lithium. They were told

Figure 1. An example of the stimulus background (left)
and the possible features values (right).



Table 1. Category Structure by Feature Value.

Relevant Relevant  Irrelevant Cat
Feature #1 Feature #2  Feature ategory

0 0 0

A
0 0 1
0 1 0 B
0 1 1
1 0 0

C
1 0 1
1 1 0 D
1 1 1

that after each trial a professor would offer an opinion
about which element the organism provided. Participants
were informed that the professor may not be correct on all
trials.

The experiment consisted of 15 blocks of 24 trials each,
for a total of 360 trials. Trials began with a fixation cross
which flashed between indigo and yellow in the center of
a white screen. When the fixation cross flashed to indigo,
participants pressed a button on the controller. If the
participant did not press the button on one of the three
indigo cross presentations, then the stimulus was
displayed after 1500ms. This was designed to ensure that
participants fixated on the central cross between trials, a
necessity if accurate post-hoc drift corrections were
needed. Participants then viewed the stimulus until they
were ready to make a category decision. The possible
responses were assigned to categories A, B, C and D (as
in Table 1). Participants responded using four buttons on a
Logitech game pad. After they made their category
response, the stimulus remained on screen, and text with
both the participant’s response (e.g. “You: sodium”) and
the feedback response (e.g. “Professor: lithium”) were
presented. The location of professor feedback was counter
balanced between participants (top left or top right corner
of the feedback screen). Participant response was
presented in the opposite corner (top left or top right).

The accuracy of the professor’s feedback varied by
subject condition. The possible feedback conditions,
counterbalanced across participants, were 100%, 87.5%,
75% and 62.5% correct feedback. When a subject was
assigned to the 100% feedback condition, the professor’s
feedback was correct for every trial of the experiment. In
cases of imperfect feedback the professor was correct on a
pre-specified number of trials. For example, in the 75%
condition, the professor provided the correct answer on a
randomly selected 18 of the 24 trials in each blocks. On
trials where the professor was incorrect, the answer
provided was randomly selected from one of the three
possible incorrect answers.

At the end of the experiment, participants were asked to
provide an estimate of how accurate they thought the
professor was. They were reminded that chance was 25%
accuracy (given that there are four possible categories).
They typed in their response, prompted to respond
between 0-100%.
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All gaze data were collected with a Tobii X120
eyetracker (sampling at 120 Hz) accurate to within 0.5°,
Raw gaze locations were transformed into fixations. We
used a modified dispersion threshold algorithm (Salvucci
& Goldberg, 2000) to transform raw gaze data to fixations
(thresholds or of 1.9° and 75 ms were used. Circular areas
of interest were defined, extending to 140 pixels from
each feature’s centre. Absolute values of fixation locations
were corrected using information from the fixation cross
to adjust for shifts in participants’ posture and eye-tracker
drift.

Results

Accuracy

As seen in Figure 2, participant’s performance generally
improved, though there were also clear differences
between conditions. This was supported by a mixed
model analysis of variance (ANOVA) using Condition
(100%, 87.5%, 75% and 62.5% feedback accuracy) as a
between subjects factor and Block (early, middle and late
trials) as a within subjects factor. This showed a main
effect of Condition (F(3,142)=15.33, p<0.001) and a main
effect of Block (£(1.39, 196.89)=93.71, p<0.001, Huynh-
Feldt correction).

The effect of training on performance was not uniform
across conditions as was shown by a significant
interaction between Block and Condition (F(4.16, 196.89)
=6.246, p<0.001, Huynh-Feldt correction). Looking at
Figure 2, it is clear that the interaction between Block and
Accuracy is due to relatively rapid improvement in the
87.5% condition. As the experiment progresses, accuracy
in the 87.5% condition diverges from accuracy in the 75%
condition, and converges with accuracy in the 100%
condition. Pairwise comparisons confirmed that accuracy
in the 87.5% condition is not statistically different from
accuracy in the 75% condition within Block 1 (p=0.15),
but is different in Blocks 2 and 3 (ps<0.02).

By Block 2, accuracy in the 87.5% condition has
increased to the point where it is no longer significantly
different from the 100% condition (p=0.35), but accuracy
in the 75% condition has not improved as rapidly,
remaining significantly below accuracy in the 87.5% and
100% conditions (ps<0.02). These changes seen in Block
2 continue through Block 3 where there is no significant
difference in accuracy between the 87.5% and 100%
conditions (p=0.69), while accuracy in the 75% condition
continues to fall behind the 87.5% condition, remaining
significantly worse than in both the 87.5% and 100%
conditions (ps<0.005).

Accuracy in the 62.5% condition was significantly
different from the 100% and 87.5% conditions
(ps<0.001), and marginally different from the 75%
condition (p=0.07) in Block 1. In Blocks 2 and 3,
accuracy in the 62.5% condition was significantly
different from accuracy in all other conditions (ps<0.01).
These findings suggest that performance (measured by
accuracy) is robust against some levels of probabilistic
feedback.
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Figure 2. Classification accuracy in the early, middle
and late stages of the experiment. Error bars reflect
standard error of the mean.

Attentional Learning

Attentional learning was measured by the probability of
fixating the irrelevant feature. If participants are learning
to more efficiently allocate their attention, then there
should be a decrease in the probability of fixating this
third feature.

As seen in Figure 3, participants in all conditions
showed a decrease in probability of fixating the irrelevant
feature over time, but there were some differences
between conditions. This was supported by a repeated
measures ANOVA using Condition as a between-subjects
factor and Block as a within-subjects factor. There was a
main effect of Block (F(1.54, 219.43)=107.7, p<0.001,
Np>=0.431 Huynh-Feldt correction), and a main effect of
Condition (F(3,142)=7.134, p<0.001, ny>=0.131). Unlike
the results for accuracy, probability of fixating the
irrelevant feature showed no significant interaction
between Block and Condition (F(4.64, 219.43)=1.40,
p=0.229 Huynh-Feldt correction). This indicates that no
condition changed at a rate different from the others the
way that the 8§7.5% condition did compared to the other
conditions with respect to accuracy.

The results suggest that whereas performance
(measured by accuracy) is robust against some levels of
probabilistic feedback, attentional learning (measured by
probability of fixating the irrelevant feature) is not. There
is no increase in attentional learning in the 87.5%
condition relative to the 75% condition that parallels the
relative increase in accuracy shown by the 87.5%
condition. Although the 87.5% and 75% conditions
diverge with respect to accuracy after Block 1, no similar
divergence was found in the probability of fixating the
irrelevant feature. Multiple comparisons showed that the
87.5% condition never significantly differs from the 75%
condition with respect to probability of fixating the
irrelevant feature (p=0.689). In fact, there were no
significant differences in probability of fixating the
irrelevant feature between any of the probabilistic
feedback (87.5%, 75% and 62.5%) conditions (ps>0.119).
There were however significant differences in the

Feedback Estimate

Feedback Estimate
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Figure 3. The probability of fixating an irrelevant
dimension during stimulus presentation in the
early middle, and late stages of the experiment.
Error bars reflect standard error of the mean.

probability of fixating the irrelevant feature between the
100% condition and the 62.5% and 75% conditions
(»s<0.029), and a marginal difference between the 100%
condition and the 87.5% condition (p=0.071).

Estimates of Feedback Accuracy

Participants in all conditions tended to underestimate
feedback quality. The mean estimates were 72%
(SD=26.9) for the 100% condition, 65% (SD=18.5) for
the 87.5% condition, 60% (SD=18.0%) for the 75%
condition, and 48% (SD=17.1) for the 62.5% condition.
However, participants also tended to provide higher
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Figure 4. Estimate of feedback accuracy versus
participant accuracy for (A) the 100% condition, (B)
the 87.5% condition, (C) the 75% condition and (D)
the 62.5% condition.



feedback estimates if their own accuracy was higher,
except in the 62.5% condition (Figure 4D).

Analyses show significant strong correlations between
participant accuracy and estimate of feedback accuracy in
the 100% condition (» = 0.615, p < 0.001), 87.5%
condition (» = 0.517, p < 0.001), and the 75% condition (»
=0.474, p = 0.003). There is no significant correlation in
the 62.5% condition (r = -0.063, p = 0.724). This suggests
that participants’ perceptions of the accuracy of feedback
were influenced by their own overall performance, though
it is also possible that performance was improved by
increased confidence in the feedback.

Discussion

The present study reveals an interesting difference
between category learning (measured by accuracy) and
attentional learning (measured by probability of fixating
the irrelevant feature). Of particular interest to us was the
effect of moderate probabilistic feedback. We see that
average accuracy in the 87.5% feedback condition
diverges from the other two probabilistic conditions, and
rapidly matches accuracy in the 100% correct feedback
condition. However, the probability of fixating the
irrelevant feature displays no parallel improvement. The
probability of fixating the irrelevant feature in the 87.5%
condition never differs from that of the other two
conditions (62.5% and 75%), and remains higher than in
the 100% condition. This suggests that attentional
learning is more sensitive to probabilistic feedback than
performance. In other words, when faced with some
levels of probabilistic feedback, people are able to
improve their accuracy even though they do not show a
corresponding improvement in attentional learning.
Although attending to all of the information available on
the stimulus is inefficient, participants may have had
strategic reasons for continuing to attend to it, for
example, to reduce the risk that meaningful information
might be skipped over.

In the categorization literature, “attention” is often
operationalized as the influence of a cue on a behavioral
response. However, the dissociation of attentional
learning and accuracy improvement supports the idea that
there is more to attention than using a cue in making a
category decision. Participants can attend an irrelevant
feature without the irrelevant cue influencing their
response accuracy (Figure 2). The idea that category
learning and attentional learning are distinct is supported
by recent research. For example, Rehder and Hoffman
find that participants will optimize their attention only
after their responses are mostly accurate (Rehder &
Hoffman, 2005a). Further understanding the complex
relationship between category learning and attentional
learning is important for developing a comprehensive
model of categorization. In future work, we intend to
examine the relationship between the duration, ordering
and frequency of fixations in addition to the probability of
fixating an irrelevant feature as it was reported above.
These measures would provide a richer description of
attentional learning to inform the development of a model
of categorization.
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This paper takes a step in answering a broader research
question: what happens in category learning beyond
classification? Attention seems to function in a more
conservative and less error driven way, whereas in
models, changes in attention are strictly for error
reduction (e.g. Krushke & Johansen, 1999). Our findings
also suggest that participants are more active than these
models suggest. Humans actively sample the information
in the environment even when not using it to make
judgments, which is inconsistent with these models’
predictions that learning agents passively wait for
feedback and correct weights to reduce error.

Our findings also show that there are qualitative
differences between different levels of probabilistic
feedback. Even though the feedback quality was spaced
evenly between conditions, there were qualitative
differences isolated to certain groups. Only the
participants in the 87.5% feedback condition showed
dissociation between accuracy and attentional learning. It
appears that below a certain threshold, the limited
information available in a probabilistic learning
environment more severely hinders both accuracy and
attentional learning. This is exemplified by poor
performance and reduced attentional learning the 62.5%
condition. Further support for a nonlinear difference
between the four feedback conditions comes from
participants’ estimates of feedback accuracy. Participants
with moderate probabilistic (75% or 87.5%) or perfect
(100%) feedback accuracies tend to estimate higher
feedback accuracy as their own performance improves
(see Figure 4), but this finding does not extend to the low
feedback quality condition (62.5%). This suggests that
there is an important difference between 62.5% and 75%
conditions. In our experiment, 12.5% feedback accuracy
evenly separates the adjacent conditions. These qualities
found in some conditions but not others (the accuracy
versus attentional learning dissociation in 87.5%
condition and the non-predictiveness of performance in
estimating feedback accuracy in the 62.5% condition)
indicate that the linear manipulations of the probabilistic
learning environment - equally separating conditions - do
not impact learning in a linear way.

Participants assigned to conditions that provide
moderate feedback quality (75% and 87.5%) estimate that
their feedback quality is similar (60% and 65%,
respectively). These groups also showed a similar
probability of fixating an irrelevant feature (see Figure 3).
It may be that confidence in feedback (as measured by
participant estimate of feedback accuracy) influences
participants’ strategy. Those who are less confident in
their feedback quality, but who still have sufficient
information to gauge their performance (the 87.5% and
75%) are more likely to adopt a conservative attentional
allocation strategy and fixate irrelevant features.

We suggest that the observed dissociation between
attentional learning and accuracy results from a delay in
attentional learning (Rehder & Hoffman, 2005a; Blair,
Watson & Meier, 2009). A next step would be to increase
the number of trials in the experiment to see if accuracy in
lower probabilistic conditions (e.g. 75% and 62.5%



feedback) would improve to match participants in a
perfect feedback baseline condition for poor feedback
conditions (as seen with the the 87.5% condition).

Another direction for future research is to investigate
whether merely being told that feedback might be
probabilistic, even when it is not actually probabilistic - as
occurred with participants in the 100% condition - is
enough to influence accuracy, attentional learning, and
estimates of feedback accuracy. We are currently
conducting an experiment wherein all participants receive
perfect feedback, but half receive instructions that
indicate that feedback is perfect, while the other half
receive instructions that indicate that feedback might be
probabilistic.

We should note that probabilistic environments are
created in different ways. Past research has investigated
exception patterns (Homa, Proulx, & Blair, 2008),
probabilistic cuing (Little & Lewandowsky, 2009) and
probabilistic feedback (Krushke & Johansen, 1999).
While some of these cases are structurally identical, it is
not clear whether participants would actually treat them
identically. For example, fixating irrelevant stimulus
features may persist even longer in situations where the
participants believe the cues are probabilistic, than in
situations where they believe it is the feedback is
unreliable. This would not be the first finding of an
asymmetry in categorization. For example Ross and
Markman (2003) provide evidence that people do not treat
the category label as just another cue. Probabilistic
environments, including ones created by imperfect
feedback, provide an interesting platform for
experimentation. They act as improvements over ideal
learning environments with respect to ecological validity
and they elicit interesting learning strategies. The results
of this paper show an example of such a learning strategy:
conservative attentional allocation in the face of an
uncertain environment.
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