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Abstract

Learning how to allocate attention properly is essential for
success at many tasks. Extant theories of categorization
assume that learning to allocate attention is an error-driven
process, where shifts in attention are made to reduce error.
The present work introduces a new measure, error bias, which
compares the amount of attentional change in response to
incorrect responses versus correct responses during category
learning. We first confirm that prominent categorization
models predict high amounts of error bias. We then test this
prediction against human eye-tracking data from 384
participants. Across 7 of 8 data sets we find that participants
show minimal or no error bias. This finding suggests that
attentional learning mechanisms, as implemented in
influential computational models, cannot be generalized to
account for measures of overt attention.
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Introduction

Giraffes have long necks, helicopters have propellers on top,
and wedding cakes are taller than birthday cakes. Learning
these categories often involves learning to attend to such
highly predictive features. This kind of selective use of
information is present very early in human development.
For example, infants focus mostly on the head to
discriminate cats from dogs (Quinn, Doran, Reiss, &
Hoffman, 2009), but they use legs and wheels when
distinguishing animals from vehicles (Rakison &
Butterworth, 1998). People also learn to change how they
attend to stimuli with experience, and experts with years of
training can develop the ability to use subtle but highly
informative stimulus dimensions (Biederman & Shiffrar,
1987). Although the process by which people learn the right
information to attend — what we shall call attentional
learning — is a critical part of learning, from nascent stages
to the highest levels of performance, its mechanisms are not
well understood. Though overt attentional allocation can be
studied directly and relatively accurately with modern eye-
tracking, there is no existing theory that makes specific
behavioural predictions about how the allocation of overt
attention changes during learning. Our work is intended to
be some carly steps toward the goal of building such a
theory.

Although there is not an existing theory intended to
account for attention at the level of eye-movements, the

literature on category learning has theories which contain
precise descriptions of attentional learning more generally
(e.g., Kruschke, 1992). Researchers have created formal,
computational models of how the effective allocation of
attention is learned, and how it interacts with perception,
memory and decision-making to improve categorization
performance. In these computational theories, attention is
characterized as a weight on each stimulus feature that is
adjusted to reduce error, and more specifically, adjusted
such that the proportion of change is relative to the
proportion of error.

In the present study, we use eye movements as an index
of attention and compare those measures to the model
equivalents. It is not always clear what attentional weights
in models are supposed to correspond to in the real world.
Attention is a complex series of independent means of
biasing information processing. One very important source
of such biases is the overt manipulation of sensory
receptors, like eye movements and although these models
were not intended to account for eye-movements directly,
given that there are tight connections between covert and
overt forms of attention, they are an excellent starting place
(McPeek, Maljkovic, & Nakayama 1999). Indeed, it is clear
from several recent eye-tracking studies (Blair, Watson,
Walshe, & Maj, 2009; Rehder & Hoffman, 2005a, 2005b)
that over the course of an experiment people get better at
ignoring irrelevant information as they get better at
categorizing, a finding in accord with existing error-driven
accounts.

There is some evidence, though, that error may not be
the sole ingredient for attentional learning. Bott, Hoffman
and Murphy (2007) have shown that participants attend to
more dimensions than are strictly necessary to perform well.
Blair, Watson, and Meier (2009) have shown that
participants continue to optimize their attention, even after
feedback is removed and participants have stopped making
errors. Rehder and Hoffman (2005a, 2005b; Kim & Rehder,
2009) have found that reductions in the probability of
fixating irrelevant information occur several trials after
reductions in incorrect responding, rather than before as one
might expect. While these studies are suggestive, they are
not necessarily a requiem for error-driven accounts.

In the formal theories discussed above, the error that
motivates change is error internal to the model, not response
error. The difference is subtle, but important. Imagine
believing that hockey team A was only slightly better than
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team B. You might reevaluate your estimates of team A’s
skill if they won ten games in a row, even though you would
predict them to win every time. Your estimate of the teams’
relative strengths was erroneous, even though your
predictions were correct. Internal error is calculated in a
similar way in the models; attention is adjusted based on
mismatches between feedback and the model’s internal
estimates, not on the model’s actual choices. Because of this
fact, it is possible for error-driven models to predict some
attentional shifting even without incorrect responses as long
as the internal estimates do not completely match the
feedback.

Despite the indirect connection between response errors
and attentional shifts, error-driven models still make testable
predictions about their relationship. The larger the model’s
internal error, the more likely it is to make a performance
error, and internal error should, on average, be higher on
incorrect trials. Thus, error-driven models of attentional
change might be said to predict an error bias. This
prediction is straightforward to confirm by running
simulations of the model, and, unlike predictions about
internal error, is also easy to test in humans. While it may
seem as though an error-bias would be a simple property of
the model to predict solely based on the mathematics of
back-propagation, this is not actually the case. Complex
models like ALCOVE and RASHNL contain many explicit
and structural parameter settings that have non-linear
interactions with one another. These parameters could have
a number of attenuating influences on the degree of error-
bias and the only real test of these interactions is simulation.

The goal of the present work is to empirically evaluate
the idea that attentional allocation is adjusted in proportion
to error during learning. In our study, we use a novel
measure, the error bias, that is calculable from both formal
models of category learning and human eye-gaze data. We
first run simulations of two popular models of
categorization, ALCOVE and RASHNL, to confirm that
they indeed predict a strong error bias. We then compare the
error bias distributions from our simulations to 8 sets of
human data gathered from a variety of category structures.

Recent thought in the methodology of model evaluation
holds that a model should be evaluated on a broader basis
than simply its performance with best-fitting parameters.
For instance, Roberts & Pashler (2000) argued that a model
can be considered a good fit to the data if it matches both
the central tendency and the variability of the data.
Following that idea, if the model assumptions (error-driven
learning, proportional adjustment) are correct, we should see
not only similar mean error bias scores, but similar
distributions of error bias scores between the models and the
human data.

Model Simulations

We chose to use the category learning models ALCOVE
(Kruschke, 1992) and RASHNL (Kruschke & Johansen,
1998) as prototypical error-driven attentional learning
models. They are both popular models that enjoy
widespread usage as benchmarks for current models (Little
& Lewandowsky, 2009; Love, Medin, & Gureckis, 2004)
Using them as a basis for our analysis allows our results to
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generalize widely. Both models are similar in that they rely
on gradient descent on error to minimize the distance
between the predicted and observed values on the output
layers. In addition, both models have an attentional layer
that modulates the gain of the features presented to the input
layer. However, RASHNL extends ALCOVE in two
important ways: first, attention shift is iterated multiple
times on a single training instance, resulting in faster overall
attention shifting. Second, RASHNL incorporates annealed
learning whereby the learning rate is reduced as a function
of trial number, allowing the model to settle into a
consistent response pattern despite early fast attention
shifting.

Method

The error bias measure. The models shift attention by
changing the attentional weights assigned to stimulus
dimensions. We refer to the amount by which attentional
allocations change between trials as the attentional change.
If the allocation of attention is the same to all stimulus
dimensions for the current trial as it was for the previous
trial, attentional change would be 0. If, on the other hand,
the model goes from attending only to dimension 1 (i.e., a
weight of 1 on that dimension and a weight of 0 on the other
stimulus dimensions) to attending only to dimension 2 (i.e.,
a weight of 1 on dimension 2 and weight of 0 on the other
dimensions) then the attentional change will be 2. Our
measure of error bias is the difference between the mean
attentional change following error trials and the mean
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Figure 1. Simulated Distributions of Error Biases. A.
ALCOVE model: randomly-sampled parameter values
that met the learning criterion. B. RASHNL model:
randomly-sampled parameter values that met the learning

criterion.

C. ALCOVE model: best-fitting parameter

values. D. RASHNL model: best-fitting parameter values.

See text for details.
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attentional change following correct trials over the total of
the two. The error bias is +1 in cases where all the
attentional change occurs following incorrect trials, 0 when
there is no difference in the amount of attentional change
following incorrect and correct trials, and -1 when all
attentional change occurs following correct trials.

The random sampling procedure. We conducted a number
of simulations to confirm the prediction that models which
use an error signal to drive attentional shifting will exhibit
an error bias. While an error bias can be predicted from the
equations underlying of the model, the simulations allow us
to translate more directly to experimental results. Our
primary concern was the extent to which a random sampling
of the parameter space would result in models that
consistently predict a large error bias. The sampling for
ALCOVE was conducted along the following dimensions
and ranges: specificity (.01 - 40), choice decisiveness (1 -
10), attention shift rate (0 - 50) and output learning rate (0 -
3). In extending the analysis to RASHNL, sampling was
also conducted on the annealing parameter (0 - 1). To add
fast attention shifting to the model the number of attentional
shift iterations set to 10. These bounds contain the
historically best-fitting parameters for these models
(Kruschke, 1992; Kruschke & Johansen, 1998).

Simulated experiment. We taught the models to classify
four categories of stimuli that had three binary-valued
dimensions. Categories are deterministic, and are a function
of the four combinations of two of the dimensions. The
value of the third dimension was equally indicative of all
categories, and therefore non-diagnostic. On each trial, the
model was given the values of the three dimensions for the
presented stimulus. The model then produced a response
which was a weighted random selection based on the
response probabilities produced by the model. After that, the
model was given feedback to use as a teaching signal to
make adjustments to its memory and attentional
components. The experiment was 360 trials long. We
calculated the error bias based on the changes in the
models’ attentional weights that occurred directly after
correct and incorrect trials. Stimulus presentation order was
identical to the trial orderings generated for our human
subjects. For both models, each participant’s presentation
order was used in conjunction with 100 randomly selected
sets of parameter values to generate a distribution of error
bias values.

Results

It became immediately clear that large regions of the
parameter space produce models which perform erratically:
either not learning at all, or crashing the simulation when
variables grow to infinity. To restrict our exploration to
reasonable parameter settings we excluded any parameter
values under which the model did not meet a learning
criterion of 9 consecutive correct trials, which was the same
criterion that human participants were expected to meet in
the original experiment. The resulting predictions of
ALCOVE and RASHNL can be seen in Figures 1A (M=.70,
Mdn=.86 ) and B (M=.74, Mdn=.86 ), respectively. In both

figures the modal prediction is the maximal error bias of 1.
Overall, the models are most likely to produce high bias
values. Nevertheless, both models predict a maximally wide
distribution of error-bias scores. This is a positive attribute
of the model only if humans also produce a broad
distribution of scores.

Human Data Fits

One possible limitation to the above simulations might be
that many of the thousands of random model samples lead
to response patterns that are nothing like human
performance. As a result, the general model predictions may
not be representative of the predictions from parameter
settings which better characterize human performance in
this particular task. To investigate this possibility, we fit
both models directly to the human response data for this
experiment. Using a bounded simplex search with a
maximum of 5000 iterations, we found the 100 best-fitting
parameter values for each of the 16 human subjects.

The error bias values produced by these best-fitting
parameters are shown in Figure 1, C and D. The ALCOVE
distribution is shown in panel C (M=.57, Mdn=.76) and the
RASHNL distribution is shown in panel D (M=.44, Mdn=.
67). Using only the best-fitting values removed many of the
maximal error biases, but the histograms share the primary
properties of the results from random sampling: high error
biases are far more likely than low error biases, and the
models produce values across the full range possibilities.

Having produced specific quantitative predictions for the
distribution of error biases in this task, we compare the
simulation results to human data.

Human Subjects Data

In this section we analyze the data from a number of eye-
tracking experiments to assess the error-bias under a variety
of tasks and conditions. These range from simple
unidimensional rules to complex categories where different
features are relevant for different categories. For readability,
these category structures are introduced as we discuss the
error-bias distributions from those experiments. We compare
this to the high median and broad range of the error biases
predicted by the error-driven models.

Method

The human data reported here were collected using a
standard category learning paradigm. In these tasks
participants are asked to learn to classify stimuli based on
the values of prominent features. A trial consists of the
presentation of the stimulus, the participants’ category
choice, and feedback specifying the correct category. In the
current experiments, as well as in the paradigm generally,
learners tend to improve both in answering correctly and in
allocating less attention to irrelevant features. Unless
otherwise noted, all data sets reported below used categories
with two relevant and one irrelevant dimension. If the
presented category structure comes from a previously
published study, this is indicated. In all studies eye
movement data were recorded using an eye-tracker
sampling at 50, 60, or 120Hz (always consistent within an
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experiment) with a spatial resolution of 0.5°. Fixations were
defined using a modified dispersion threshold algorithm
with thresholds at 1° and 75ms. Eye movements were
counted as fixations to category features if they fell within
100 pixels (= 1.9°) of a feature’s centre. Shifts of attention
were calculated in the same way for the humans as for the
models, except that the proportion of time spent fixating the
three stimulus features constituted the raw attention data on
each trial, instead of the model’s attention weights.
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Figure 2: Human error bias distributions from eight
different data sets. See text for descriptions.

Results and Discussion

The distribution of human error biases are plotted in Figure
2. Each panel represents a unique category structure. Panel
A shows the human data from the experiment used in the
model simulations reported above (M=.08, Mdn=.03). There
is a stark contrast between the distribution of error bias
scores of the human subjects and the model predictions
shown in Figure 1. Two sample t-tests (unequal variances
assumed) confirm that the human data are significantly
different than all four of the simulations (ALCOVE,
randomly sampled parameters - t(29.73)=7.99, p<.001;
RASHNL, randomly sampled parameters - t(29.46)=8.91,
p<.001; ALCOVE, best-fitting parameters - t(32.54)=5.35,
p<.001; RASHNL, best-fitting parameters - t(33.97)=3.03,
p<.01). The remaining panels in Figure 2 show human error
biases from a number of other categorization experiments
performed in our laboratory.

Panel B shows the error biases of 18 participants
learning a two-category task with continuous dimensioned
stimuli, very similar to Blair and Homa (2005, Experiment
2). The mean of this distribution is .02, the median .04.
Panel C plots the error biases of 23 participants who learned
a four-category information integration category structure
akin to that in Maddox, Filoteo, Hejl, & Ing (2004). The
mean of this distribution is .03, and the median is .05. Panel
D plots the error bias of 23 participants in a study using a
four category rule-based structure (again, similar to Maddox
et al., 2004). The mean of this distribution is 0.04, the
median = .02. Panel E shows data from a two-category
information integration task with 24 participants (M=.08,
Mdn=.04). This kind of category has seen wide use in the
category learning literature (e.g., Ashby and Gott, 1988).

Figure 2, panel F shows the first data set to depart from
the very consistent pattern found in the other data sets (M=.
29, Mdn=.25). The 30 participants learned a two category
single-dimensional rule-based category structure similar to
that used by Maddox and Ashby (2004). As can be seen, this
data set shows a pronounced bias toward shifting on error
trials (Mdn=0.26, M=0.30, t(29)=2.61, p<.05). This is also
the only data set for which the categories had only one
relevant feature. We discovered, upon looking at the error
and attentional allocation data of the most biased subjects,
that this effect seems to result from an extraordinary
stability in the gaze data once the categories have been
learned. Participants in this task are much better at
restricting their gaze to relevant data, and so there is very
little change on the correct trials that occur once the rule has
been learned. If this explanation is correct, we should expect
that category structures for which the optimal allocation of
attention is difficult may show less error bias. The next data
set is from such a task.

Panel G in Figure 2 plots data from the stimulus-
responsive attention structure used in Blair, Watson, Walshe,
et al., (2009, Exp 2). Each category has two relevant and
one irrelevant dimension, but unlike the previous category
structures used, the relevant features are not the same for
every category. Features 1 and 2 are relevant for two of the
four categories, and features 1 and 3 are relevant for the
other two; participants can optimize their attention by
looking at either 2 or 3, based on the value of feature 1.
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Attentional optimization is more difficult in this task than in
the other data sets and participants continue to slowly
optimize attention well after performance errors have
ceased. This has the effect of shifting the error bias into the
negative values for most of the 156 participants (M=-.08,
Mdn = -.08; one-sample t-test, t(155)=107.91, p<.001).

The final data set (Figure 2, panel H) consists of data
from 95 subjects presented with the same category structure
as the previous data set. This study was designed to
investigate asymptotic attentional optimization in this
complex task, and thus extended the original study (shown
in panel G) by an average of 280 trials. With this extended
training, participants in this study eventually stabilize the
relative allocation to the various stimulus features. The
small negative error bias that occurs in panel G has
disappeared and the mean error bias is .02, and the median
is .03, very similar to the previous data sets. This supports
the idea that the error bias measure is sensitive to the
difficulty of learning the optimal attentional allocation.
Interestingly, the data from panel H are collapsed across two
between-subjects conditions. One condition exactly matched
that of the previous data set (panel G), except for the
training duration; the other condition is one where one pair
of categories was 5 times more common than the other.
While this frequency manipulation dramatically changes the
pattern of attentional allocation to particular features such
that Feature 2 is often fixated before Feature 1, there is no
discernible difference in the error bias of these conditions.
Overall, human error biases seem highly consistent across a
variety of structures and manipulations.

General Discussion

The present work investigated the extent to which errors in
performance lead to shifts in attention. We used two popular
models of categorization to generate specific predictions
about the extent to which attentional shifts would be biased
to occur after error trials and not after correct trials.
Simulations of the models using both random parameter
values and best-fitting parameter values reveal consistent
predictions: high error bias values are most likely, and a
wide distribution of error biases are possible. We then
examined error bias distributions from a variety of human
eye-tracking studies of categorization. Across 8 data sets
and 384 participants, distributions of error bias scores in
humans were remarkable both in their consistency and in
their contrast to model predictions. Human error biases were
clustered around zero, and both high and low values were
quite rare. The ease of implementing optimal attention
seems to influence error biases, but otherwise, category
structure does not influence scores. While error-driven
accounts are clearly applicable in certain instances (Kopp &
Wolff, 2000), the data presented here is a stark
demonstration that under a variety of experimental
circumstances mistakes do not have an immediate effect on
the allocation of attention.

The present work is an attempt to understand how overt
attentional allocation (i.e., gaze) changes over time and in
response to classification feedback. There are currently no
existing theories of category learning explicitly designed to
account for attentional changes in category learning at the

level of eye-movements. We used existing theories of
attentional learning in categorization to guide our initial
hypotheses about how such attentional learning might occur,
while acknowledging that the modelers did not have eye-
movements specifically in mind when they developed their
theory. While there is some indication from previous studies
that general trends in attentional learning are captured by
these models, our data suggests that the algorithms used in
extant theories of categorization are not well suited to
changes in trial-by-trial attentional allocation.

Our measure, the error bias, captures the immediate
effects of error. While our data are quite strong in
suggesting that errors do not cause a lot more shifting of
attention than correct trials, it is entirely possible, if not
likely, that error still plays a role in the shifting of attention.
The effects of error may accumulate, or be delayed in time.
It is also possible that the learning of the categories is
influenced by immediate errors, but that attentional
allocation is a function of category knowledge and is thus
only indirectly influenced by errors.

These data suggest that learning algorithms in extant
models are not suitable for modeling eye-movements.
Mixing supervised and unsupervised learning algorithms
provides one possible solution. This approach has been
taken within the LEABRA framework (O'Reilly, 1998) that
incorporates Hebbian learning processes freeing the models
from reliance upon an error signal. There has also been a
recent interest in the various flavors of reinforcement
learning, such as temporal difference learning (Holroyd &
Coles, 2002; Jones & Caiias, 2010; Phillips & Noelle, 2004)
or actor-critic models (Alexander, 2007), partially for
reasons of biological plausibility. While these algorithms are
error-driven, they accumulate a reinforcement history which
may serve to diffuse the impact of trial-by-trial error on
attentional shifting, spreading learning more evenly across
trials. Our lab is currently investigating this possibility.

The problem of identifying the role of selective attention
in learning has broad implications. One of the key benefits
of selective attention is the reduction in complexity of an
information source by biasing the selection of relevant
information. Haider and Frensch (1999) argue that in a wide
variety of tasks, performance is augmented when processing
is limited to task-relevant properties. Research has also
implicated impaired ability to selectively attend in a variety
of clinical contexts. Greenaway and Plaisted (2005) suggest
that autistic children’s distractibility is related to their
inability to selectively attend to stimuli with certain
properties. In more traditional empirical work, Blair and
Homa (2005) demonstrate how training with incomplete
sources of information can lead to selective attention
patterns which hinder performance relative to participants
with no prior training at all. These studies highlight the
importance of developing models that accurately capture the
processes of selective attention. The work presented here
makes progress toward that goal by providing strong
evidence that popular conceptions of error-driven attentional
learning are unsuitable for modeling eye-movements.
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