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Abstract
Learning how to allocate attention properly is essential for 
success at many tasks. Extant  theories of categorization 
assume that learning to allocate attention  is an error-driven 
process, where shifts in attention are made to reduce error. 
The present work introduces a new measure, error bias, which 
compares the amount of attentional change in response to 
incorrect responses versus correct responses during  category 
learning. We first  confirm that  prominent categorization 
models predict high amounts of error bias. We then test  this 
prediction against  human eye-tracking data from 384 
participants.  Across 7 of 8 data sets  we find that participants 
show minimal or no error bias. This finding suggests that  
attentional learning mechanisms, as implemented  in 
influential computational models, cannot  be generalized to  
account for measures of overt attention.

Keywords: Attention; Error; Eyetracking; Categorization; 
Eye-Movements; Optimization; Learning; Modeling

Introduction
Giraffes have long necks, helicopters have propellers on top, 
and wedding cakes are taller than birthday cakes. Learning 
these categories often involves learning to attend to such 
highly predictive features. This kind of selective use of 
information is present very early in human development. 
For example, infants focus mostly on the head to 
discriminate cats from dogs (Quinn, Doran, Reiss, & 
Hoffman, 2009), but they use legs and wheels when 
distinguishing animals from vehicles (Rakison & 
Butterworth, 1998). People also learn to change how they 
attend to stimuli with experience, and experts with years of 
training can develop the ability to use subtle but highly 
informative stimulus dimensions (Biederman & Shiffrar, 
1987). Although the process by which people learn the right 
information to attend – what we shall call attentional 
learning – is a critical part of learning, from nascent stages 
to the highest levels of performance, its mechanisms are not 
well understood. Though overt attentional allocation can be 
studied directly and relatively accurately with modern eye-
tracking, there is no existing theory that makes specific 
behavioural predictions about how the allocation of overt 
attention changes during learning. Our work is intended to 
be some early steps toward the goal of building such a 
theory. 

Although there is not an existing theory intended to 
account for attention at the level of eye-movements, the 

literature on category learning has theories which contain 
precise descriptions of attentional learning more generally 
(e.g., Kruschke, 1992).  Researchers have created formal, 
computational models of how the effective allocation of 
attention is learned, and how it interacts with perception, 
memory and decision-making to improve categorization 
performance.   In these computational theories, attention is 
characterized as a weight on each stimulus feature that is 
adjusted to reduce error, and more specifically, adjusted 
such that the proportion of change is relative to the 
proportion of error. 

In the present study, we use eye movements as an index 
of attention and compare those measures to the model 
equivalents.  It is not always clear what attentional weights 
in models are supposed to correspond to in the real world. 
Attention is a complex series of independent means of 
biasing information processing. One very important source 
of such biases is the overt manipulation of sensory 
receptors,  like eye movements and although these models 
were not intended to account for eye-movements directly, 
given that there are tight connections between covert and 
overt forms of attention, they are an excellent starting place 
(McPeek, Maljkovic,  & Nakayama 1999).  Indeed, it is clear 
from several recent eye-tracking studies (Blair,  Watson, 
Walshe, & Maj,  2009; Rehder & Hoffman, 2005a, 2005b) 
that over the course of an experiment people get better at 
ignoring irrelevant information as they get better at 
categorizing, a finding in accord with existing error-driven 
accounts. 

There is some evidence, though, that error may not be 
the sole ingredient for attentional learning. Bott, Hoffman 
and Murphy (2007) have shown that participants attend to 
more dimensions than are strictly necessary to perform well.  
Blair, Watson, and Meier (2009) have shown that 
participants continue to optimize their attention, even after 
feedback is removed and participants have stopped making 
errors. Rehder and Hoffman (2005a,  2005b; Kim & Rehder, 
2009) have found that reductions in the probability of 
fixating irrelevant information occur several trials after 
reductions in incorrect responding, rather than before as one 
might expect. While these studies are suggestive, they are 
not necessarily a requiem for error-driven accounts. 

In the formal theories discussed above, the error that 
motivates change is error internal to the model, not response 
error. The difference is subtle, but important. Imagine 
believing that hockey team A was only slightly better than 
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team B. You might reevaluate your estimates of team A’s 
skill if they won ten games in a row, even though you would 
predict them to win every time. Your estimate of the teams’ 
relative strengths was erroneous, even though your 
predictions were correct. Internal error is calculated in a 
similar way in the models; attention is adjusted based on 
mismatches between feedback and the model’s internal 
estimates, not on the model’s actual choices. Because of this 
fact, it is possible for error-driven models to predict some 
attentional shifting even without incorrect responses as long 
as the internal estimates do not completely match the 
feedback.

Despite the indirect connection between response errors 
and attentional shifts, error-driven models still make testable 
predictions about their relationship. The larger the model’s 
internal error, the more likely it is to make a performance 
error, and internal error should, on average, be higher on 
incorrect trials. Thus,  error-driven models of attentional 
change might be said to predict an error bias. This 
prediction is straightforward to confirm by running 
simulations of the model, and, unlike predictions about 
internal error, is also easy to test in humans. While it may 
seem as though an error-bias would be a simple property of 
the model to predict solely based on the mathematics of 
back-propagation, this is not actually the case. Complex 
models like ALCOVE and RASHNL contain many explicit 
and structural parameter settings that have non-linear 
interactions with one another. These parameters could have 
a number of attenuating influences on the degree of error-
bias and the only real test of these interactions is simulation.

The goal of the present work is to empirically evaluate 
the idea that attentional allocation is adjusted in proportion 
to error during learning. In our study, we use a novel 
measure, the error bias, that is calculable from both formal 
models of category learning and human eye-gaze data. We 
first run simulations of two popular models of 
categorization, ALCOVE and RASHNL, to confirm that 
they indeed predict a strong error bias. We then compare the 
error bias distributions from our simulations to 8 sets of 
human data gathered from a variety of category structures. 

Recent thought in the methodology of model evaluation 
holds that a model should be evaluated on a broader basis 
than simply its performance with best-fitting parameters. 
For instance, Roberts & Pashler (2000) argued that a model 
can be considered a good fit to the data if it matches both 
the central tendency and the variability of the data. 
Following that idea, if the model assumptions (error-driven 
learning, proportional adjustment) are correct, we should see 
not only similar mean error bias scores, but similar 
distributions of error bias scores between the models and the 
human data.

Model Simulations
We chose to use the category learning models ALCOVE 

(Kruschke, 1992) and RASHNL (Kruschke & Johansen, 
1998) as prototypical error-driven attentional learning 
models. They are both popular models that enjoy 
widespread usage as benchmarks for current models (Little 
& Lewandowsky, 2009; Love,  Medin,  & Gureckis, 2004) 
Using them as a basis for our analysis allows our results to 

generalize widely. Both models are similar in that they rely 
on gradient descent on error to minimize the distance 
between the predicted and observed values on the output 
layers. In addition, both models have an attentional layer 
that modulates the gain of the features presented to the input 
layer. However, RASHNL extends ALCOVE in two 
important ways: first,  attention shift is iterated multiple 
times on a single training instance, resulting in faster overall 
attention shifting. Second, RASHNL incorporates annealed 
learning whereby the learning rate is reduced as a function 
of trial number, allowing the model to settle into a 
consistent response pattern despite early fast attention 
shifting.   

Method
The error bias measure. The models shift attention by 
changing the attentional weights assigned to stimulus 
dimensions.   We refer to the amount by which attentional 
allocations change between trials as the attentional change. 
If the allocation of attention is the same to all stimulus 
dimensions for the current trial as it was for the previous 
trial, attentional change would be 0.  If,  on the other hand, 
the model goes from attending only to dimension 1 (i.e., a 
weight of 1 on that dimension and a weight of 0 on the other 
stimulus dimensions) to attending only to dimension 2 (i.e., 
a weight of 1 on dimension 2 and weight of 0 on the other 
dimensions) then the attentional change will be 2. Our 
measure of error bias is the difference between the mean 
attentional change following error trials and the mean 
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Figure 1. Simulated Distributions of Error Biases. A. 
ALCOVE model: randomly-sampled parameter values 
that met the learning criterion. B. RASHNL model: 
randomly-sampled parameter values that met the learning 
criterion.  C. ALCOVE model: best-fitting parameter 
values.  D. RASHNL model: best-fitting parameter values. 
See text for details.
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attentional change following correct trials over the total of 
the two.  The error bias is +1 in cases where all the 
attentional change occurs following incorrect trials, 0 when 
there is no difference in the amount of attentional change 
following incorrect and correct trials, and -1 when all 
attentional change occurs following correct trials.

The random sampling procedure. We conducted a number 
of simulations to confirm the prediction that models which 
use an error signal to drive attentional shifting will exhibit 
an error bias. While an error bias can be predicted from the 
equations underlying of the model, the simulations allow us 
to translate more directly to experimental results. Our 
primary concern was the extent to which a random sampling 
of the parameter space would result in models that 
consistently predict a large error bias. The sampling for 
ALCOVE was conducted along the following dimensions 
and ranges: specificity (.01 - 40), choice decisiveness (1 - 
10), attention shift rate (0 - 50) and output learning rate (0 - 
3). In extending the analysis to RASHNL, sampling was 
also conducted on the annealing parameter (0 - 1). To add 
fast attention shifting to the model the number of attentional 
shift iterations set to 10. These bounds contain the 
historically best-fitting parameters for these models   
(Kruschke, 1992; Kruschke & Johansen, 1998).

Simulated experiment. We taught the models to classify 
four categories of stimuli that had three binary-valued 
dimensions.  Categories are deterministic, and are a function 
of the four combinations of two of the dimensions. The 
value of the third dimension was equally indicative of all 
categories,  and therefore non-diagnostic. On each trial,  the 
model was given the values of the three dimensions for the 
presented stimulus. The model then produced a response 
which was a weighted random selection based on the 
response probabilities produced by the model. After that, the 
model was given feedback to use as a teaching signal to 
make adjustments to its memory and attentional 
components. The experiment was 360 trials long. We 
calculated the error bias based on the changes in the 
models’ attentional weights that occurred directly after 
correct and incorrect trials. Stimulus presentation order was 
identical to the trial orderings generated for our human 
subjects. For both models,  each participant’s presentation 
order was used in conjunction with 100 randomly selected 
sets of parameter values to generate a distribution of error 
bias values. 

Results
It became immediately clear that large regions of the 
parameter space produce models which perform erratically: 
either not learning at all, or crashing the simulation when 
variables grow to infinity. To restrict our exploration to 
reasonable parameter settings we excluded any parameter 
values under which the model did not meet a learning 
criterion of 9 consecutive correct trials, which was the same 
criterion that human participants were expected to meet in 
the original experiment. The resulting predictions of 
ALCOVE and RASHNL can be seen in Figures 1A (M=.70, 
Mdn=.86 ) and B (M=.74, Mdn=.86 ), respectively. In both 

figures the modal prediction is the maximal error bias of 1. 
Overall, the models are most likely to produce high bias 
values.  Nevertheless,  both models predict a maximally wide 
distribution of error-bias scores.  This is a positive attribute 
of the model only if humans also produce a broad 
distribution of scores. 

Human Data Fits
One possible limitation to the above simulations might be 
that many of the thousands of random model samples lead 
to response patterns that are nothing like human 
performance.  As a result, the general model predictions may 
not be representative of the predictions from parameter 
settings which better characterize human performance in 
this particular task. To investigate this possibility, we fit 
both models directly to the human response data for this 
experiment. Using a bounded simplex search with a 
maximum of 5000 iterations, we found the 100 best-fitting 
parameter values for each of the 16 human subjects.

The error bias values produced by these best-fitting 
parameters are shown in Figure 1, C and D. The ALCOVE 
distribution is shown in panel C (M=.57, Mdn=.76) and the 
RASHNL distribution is shown in panel D (M=.44, Mdn=.
67). Using only the best-fitting values removed many of the 
maximal error biases, but the histograms share the primary 
properties of the results from random sampling: high error 
biases are far more likely than low error biases,  and the 
models produce values across the full range possibilities. 

Having produced specific quantitative predictions for the 
distribution of error biases in this task, we compare the 
simulation results to human data. 

Human Subjects Data
In this section we analyze the data from a number of eye-
tracking experiments to assess the error-bias under a variety 
of tasks and conditions. These range from simple 
unidimensional rules to complex categories where different 
features are relevant for different categories. For readability, 
these category structures are introduced as we discuss the 
error-bias distributions from those experiments. We compare 
this to the high median and broad range of the error biases 
predicted by the error-driven models.

Method
The human data reported here were collected using a 
standard category learning paradigm. In these tasks 
participants are asked to learn to classify stimuli based on 
the values of prominent features. A trial consists of the 
presentation of the stimulus, the participants’ category 
choice, and feedback specifying the correct category.  In the 
current experiments, as well as in the paradigm generally, 
learners tend to improve both in answering correctly and in 
allocating less attention to irrelevant features. Unless 
otherwise noted, all data sets reported below used categories 
with two relevant and one irrelevant dimension. If the 
presented category structure comes from a previously 
published study,  this is indicated. In all studies eye 
movement data were recorded using an eye-tracker 
sampling at 50, 60, or 120Hz (always consistent within an 
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experiment) with a spatial resolution of 0.5°. Fixations were 
defined using a modified dispersion threshold algorithm 
with thresholds at 1° and 75ms. Eye movements were 
counted as fixations to category features if they fell within 
100 pixels (≈ 1.9°) of a feature’s centre. Shifts of attention 
were calculated in the same way for the humans as for the 
models, except that the proportion of time spent fixating the 
three stimulus features constituted the raw attention data on 
each trial, instead of the model’s attention weights.  

Results and Discussion
The distribution of human error biases are plotted in Figure 
2.  Each panel represents a unique category structure. Panel 
A shows the human data from the experiment used in the 
model simulations reported above (M=.08, Mdn=.03). There 
is a stark contrast between the distribution of error bias 
scores of the human subjects and the model predictions 
shown in Figure 1. Two sample t-tests (unequal variances 
assumed) confirm that the human data are significantly 
different than all four of the simulations (ALCOVE, 
randomly sampled parameters - t(29.73)=7.99, p<.001; 
RASHNL, randomly sampled parameters - t(29.46)=8.91, 
p<.001; ALCOVE, best-fitting parameters - t(32.54)=5.35, 
p<.001; RASHNL, best-fitting parameters - t(33.97)=3.03, 
p<.01). The remaining panels in Figure 2 show human error 
biases from a number of other categorization experiments 
performed in our laboratory.

Panel B shows the error biases of 18 participants 
learning a two-category task with continuous dimensioned 
stimuli, very similar to Blair and Homa (2005, Experiment 
2). The mean of this distribution is .02, the median .04. 
Panel C plots the error biases of 23 participants who learned 
a four-category information integration category structure 
akin to that in Maddox, Filoteo, Hejl,  & Ing (2004).  The 
mean of this distribution is .03, and the median is .05. Panel 
D plots the error bias of 23 participants in a study using a 
four category rule-based structure (again,  similar to Maddox 
et al., 2004). The mean of this distribution is 0.04, the 
median = .02. Panel E shows data from a two-category 
information integration task with 24 participants (M=.08, 
Mdn=.04).  This kind of category has seen wide use in the 
category learning literature (e.g., Ashby and Gott, 1988). 

Figure 2, panel F shows the first data set to depart from 
the very consistent pattern found in the other data sets (M=.
29, Mdn=.25). The 30 participants learned a two category 
single-dimensional rule-based category structure similar to 
that used by Maddox and Ashby (2004). As can be seen, this 
data set shows a pronounced bias toward shifting on error 
trials (Mdn=0.26,  M=0.30, t(29)=2.61,  p<.05).  This is also 
the only data set for which the categories had only one 
relevant feature. We discovered, upon looking at the error 
and attentional allocation data of the most biased subjects, 
that this effect seems to result from an extraordinary 
stability in the gaze data once the categories have been 
learned. Participants in this task are much better at 
restricting their gaze to relevant data, and so there is very 
little change on the correct trials that occur once the rule has 
been learned. If this explanation is correct, we should expect 
that category structures for which the optimal allocation of 
attention is difficult may show less error bias. The next data 
set is from such a task.

Panel G in Figure 2 plots data from the stimulus-
responsive attention structure used in Blair,  Watson, Walshe, 
et al., (2009, Exp 2). Each category has two relevant and 
one irrelevant dimension, but unlike the previous category 
structures used, the relevant features are not the same for 
every category. Features 1 and 2 are relevant for two of the 
four categories,  and features 1 and 3 are relevant for the 
other two; participants can optimize their attention by 
looking at either 2 or 3, based on the value of feature 1. 

1 0.5 0 0.5 1
0

1

2

3

4

5

6

7

Error Bias

# 
of

 P
ar

tic
ip

an
ts

1 0.5 0 0.5 1
0

1

2

3

4

5

6

Error Bias

# 
of

 P
ar

tic
ip

an
ts

1 0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9

Error Bias

# 
of

 P
ar

tic
ip

an
ts

1 0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9

Error Bias

# 
of

 P
ar

tic
ip

an
ts

1 0.5 0 0.5 1
0

1

2

3

4

5

6

7

Error Bias

# 
of

 P
ar

tic
ip

an
ts

1 0.5 0 0.5 1
0

1

2

3

4

5

6

Error Bias

# 
of

 P
ar

tic
ip

an
ts

1 0.5 0 0.5 1
0

5

10

15

20

25

30

35

Error Bias

# 
of

 P
ar

tic
ip

an
ts

1 0.5 0 0.5 1
0

5

10

15

20

25

30

Error Bias

# 
of

 P
ar

tic
ip

an
ts

Figure 2: Human error bias distributions from eight 
different data sets. See text for descriptions.
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Attentional optimization is more difficult in this task than in 
the other data sets and participants continue to slowly 
optimize attention well after performance errors have 
ceased. This has the effect of shifting the error bias into the 
negative values for most of the 156 participants (M=-.08, 
Mdn = -.08; one-sample t-test, t(155)=107.91, p<.001). 

The final data set (Figure 2, panel H) consists of data 
from 95 subjects presented with the same category structure 
as the previous data set. This study was designed to 
investigate asymptotic attentional optimization in this 
complex task, and thus extended the original study (shown 
in panel G) by an average of 280 trials.  With this extended 
training, participants in this study eventually stabilize the 
relative allocation to the various stimulus features. The 
small negative error bias that occurs in panel G has 
disappeared and the mean error bias is .02, and the median 
is .03, very similar to the previous data sets. This supports 
the idea that the error bias measure is sensitive to the 
difficulty of learning the optimal attentional allocation. 
Interestingly, the data from panel H are collapsed across two 
between-subjects conditions. One condition exactly matched 
that of the previous data set (panel G), except for the 
training duration; the other condition is one where one pair 
of categories was 5 times more common than the other. 
While this frequency manipulation dramatically changes the 
pattern of attentional allocation to particular features such 
that Feature 2 is often fixated before Feature 1, there is no 
discernible difference in the error bias of these conditions. 
Overall, human error biases seem highly consistent across a 
variety of structures and manipulations.

General Discussion
The present work investigated the extent to which errors in 
performance lead to shifts in attention. We used two popular 
models of categorization to generate specific predictions 
about the extent to which attentional shifts would be biased 
to occur after error trials and not after correct trials. 
Simulations of the models using both random parameter 
values and best-fitting parameter values reveal consistent 
predictions: high error bias values are most likely, and a 
wide distribution of error biases are possible. We then 
examined error bias distributions from a variety of human 
eye-tracking studies of categorization. Across 8 data sets 
and 384 participants,  distributions of error bias scores in 
humans were remarkable both in their consistency and in 
their contrast to model predictions. Human error biases were 
clustered around zero, and both high and low values were 
quite rare. The ease of implementing optimal attention 
seems to influence error biases, but otherwise,  category 
structure does not influence scores. While error-driven 
accounts are clearly applicable in certain instances (Kopp & 
Wolff, 2000), the data presented here is a stark 
demonstration that under a variety of experimental 
circumstances mistakes do not have an immediate effect on 
the allocation of attention.

The present work is an attempt to understand how overt 
attentional allocation (i.e., gaze) changes over time and in 
response to classification feedback. There are currently no 
existing theories of category learning explicitly designed to 
account for attentional changes in category learning at the 

level of eye-movements. We used existing theories of 
attentional learning in categorization to guide our initial 
hypotheses about how such attentional learning might occur, 
while acknowledging that the modelers did not have eye-
movements specifically in mind when they developed their 
theory. While there is some indication from previous studies 
that general trends in attentional learning are captured by 
these models, our data suggests that the algorithms used in 
extant theories of categorization are not well suited to 
changes in trial-by-trial attentional allocation.

Our measure,  the error bias, captures the immediate 
effects of error. While our data are quite strong in 
suggesting that errors do not cause a lot more shifting of 
attention than correct trials, it is entirely possible, if not 
likely, that error still plays a role in the shifting of attention.  
The effects of error may accumulate, or be delayed in time. 
It is also possible that the learning of the categories is 
influenced by immediate errors, but that attentional 
allocation is a function of category knowledge and is thus 
only indirectly influenced by errors.

These data suggest that learning algorithms in extant 
models are not suitable for modeling eye-movements. 
Mixing supervised and unsupervised learning algorithms 
provides one possible solution. This approach has been 
taken within the LEABRA framework (O'Reilly,  1998) that 
incorporates Hebbian learning processes freeing the models 
from reliance upon an error signal. There has also been a 
recent interest in the various flavors of reinforcement 
learning, such as temporal difference learning (Holroyd & 
Coles, 2002; Jones & Cañas, 2010; Phillips & Noelle, 2004) 
or actor-critic models (Alexander,  2007), partially for 
reasons of biological plausibility. While these algorithms are 
error-driven, they accumulate a reinforcement history which 
may serve to diffuse the impact of trial-by-trial error on 
attentional shifting, spreading learning more evenly across 
trials. Our lab is currently investigating this possibility.

The problem of identifying the role of selective attention 
in learning has broad implications. One of the key benefits 
of selective attention is the reduction in complexity of an 
information source by biasing the selection of relevant 
information. Haider and Frensch (1999) argue that in a wide 
variety of tasks, performance is augmented when processing 
is limited to task-relevant properties. Research has also 
implicated impaired ability to selectively attend in a variety 
of clinical contexts. Greenaway and Plaisted (2005) suggest 
that autistic children’s distractibility is related to their 
inability to selectively attend to stimuli with certain 
properties. In more traditional empirical work, Blair and 
Homa (2005) demonstrate how training with incomplete 
sources of information can lead to selective attention 
patterns which hinder performance relative to participants 
with no prior training at all.  These studies highlight the 
importance of developing models that accurately capture the 
processes of selective attention.  The work presented here 
makes progress toward that goal by providing strong 
evidence that popular conceptions of error-driven attentional 
learning are unsuitable for modeling eye-movements.
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