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Abstract

This paper presents a computational model of word learning
with the goal to understand the mechanisms through which
word learning is grounded in multimodal social interactions
between young children and their parents. We designed and
implemented a novel multimodal sensing environment
consisting of two head-mounted mini cameras that are placed
on both the child’s and the parent’s foreheads, motion
tracking of head and hand movements and recording of
caregiver’s speech. Using this new sensing technology, we
captured the dynamic visual information from both the
learner’s perspective and the parent’s viewpoint while they
were engaged in a free-play toy-naming interaction. We next
implemented various data processing programs that
automatically extracted visual, motion and speech features
from raw sensory data. A probabilistic model was developed
that can predict the child’s learning results based on
sensorimotor features extracted from child-parent interaction.
More importantly, through the trained regression coefficients
in the model, we discovered a set of perceptual and motor
patterns that are informatively time-locked to words and their
intended referents and predictive of word learning. Those
patterns provide quantitative measures of the roles of various
sensorimotor cues that may facilitate word learning, which
sheds lights on understanding the underlying real-time
learning mechanisms in child-parent social interactions.

Keywords: computational modeling, word
embodied cognition, perception and action.
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Introduction

Just as in many other cognitive learning tasks, a critical
problem in word learning is the uncertainty and ambiguity
in the learning environment — young word learners need to
discover correct word-referent mappings among many
possible candidate words and many possible candidate
referents from potentially many objects that are
simultaneously available. At the macro level, we know a
great deal about object name learning and how it seems to
be characterized by attentional biases to attend to the shape
of the whole object (Landau, Smith & Jones, 1998), by
conceptual biases that make some kinds of word-meaning
mappings more likely than others (Markman, 1989), and by
all sorts of linguistic bootstraps whereby children use the
words they already know to help figure out new meanings
(Gleitman, 2005). But we know very little about how any of
this works in real time and in the cluttered context of the
real world interactions of toddlers and parents, contexts
typically characterized by many interesting objects, many
shifts in attention by each participant, and many goals
(beyond teaching and learning words).

Previous studies have examined early word learning in
constrained experimental tasks with only one or two objects
in view. The adult partner (usually the experimenter)
focuses on the child and on effective teaching, and provides
clear and repeated signals of her attention to the object
being named (E.g. Baldwin, 1993; Tomasello & Akhtar,
1995). In this way, the attentional task is simple, and easily
described in discrete and categorical terms (the attended
object vs. the distractor). These contexts are not at all like
the real world in which word learning is embedded in a
stream of activity -- in which parents both react to and
attempt to control toddler behaviors and in which toddlers
react to, direct, and sometimes ignore parents as they pursue
their own goals.

To truly understand the mechanisms of word learning, we
need to focus on more micro-level behaviors as they unfold
in real time in the richly varying and dynamically complex
interactions of children and their mature partners in more
naturalistic tasks (such as toy play). Further, whereas the
studies at the macro-level clearly demonstrate many
intelligent behaviors in infant word learning, they have not
yet led to a formal account of the underlying mechanisms.
Thus, we want to know not only that learners use various
cues in social interaction to facilitate learning (see a good
example of macro-level modeling by Frank, Goodman &
Tenenbaum, 2009), but also exactly how they do so in terms
of the real-time processes in the naturalistic tasks wherein
everyday language learning must take place.

To this end, we developed a novel paradigm with two
critical components. First, we developed a multisensory
experimental environment to capture multimodal data with
the goal to study the dynamics of child-parent social
interactions, that ultimately lead to word learning, at the
sensorimotor levels — in the bodily gestures and as well as
momentary visual and auditory perception of the
participants. We developed various signal processing tools
to automatically annotate such rich dataset. Second, we
proposed and implemented a new probabilistic model based
on state-of-the-art machine learning techniques to discover
the perceptual and motor patterns that are informatively
time-locked to words and their intended referents and
predictive of word learning. In the following sections, we
first describe our experimental setup and data. We then
introduce our model of word learning. After that, we present
the results from a set of simulation studies. Finally, we
offer some general discussions and conclude our work.

Experiment

As shown in Figure 1, the naturalistic interaction of parents
and toddlers in the task of table-top toy play was recorded
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by three cameras from different perspectives: 1) A
lightweight mini camera mounted on a sports-headband and
placed low on the forehead of the child provided
information about the scene from the child learner’s point of
view. This is a particularly important and novel component
of our set-up. The angle of the camera is adjustable, and has
a visual field of approximately 90°.  2) A ceiling camera
provided a top-down third-person view, allowing a clear
observation of exactly what was on the table at any given
moment (mostly the participants’ hands and the objects
being played with). 3) Another head-mounted camera
provided the parent’s viewpoint. In addition, our
multimodal system recorded participants’ body movements
through a motion tracking system as well as the parent’s
speech through a headset.

Participants. The target age period for this study was 18 to
20 months. We invited parents in the Bloomington, Indiana
area to participate in the experiment. 13 dyads of parent and
child were part of the study (5 male and 7 female). 7
additional children were not included because of failure to
keep the head camera on. For the child participants
included, the mean age was 19.6, ranging from 17 to 20
months. All participants were white and middle-class.
Stimuli. Parents were given two sets, with three toys in each
set, in this free-play task. The toys were rigid plastic objects
of simple shapes and were painted with one primary color.
Each set had a red, a green and a blue object.

Procedure. The task was a common one in the everyday
lives of children and parents — to take turns in jointly acting
on, attending to, and naming objects. This is a common
context in which children learn names for things. The toys
used in this experiment were novel items. The child and

Child’s Head
Mounted Camera

Bird-eye View
Perspective Camera

Parent’s Head
Mounted Camera

Child’s Head
Motion Sensor

b

Parent’s Head
Motion Sensor
e

WU !--"ﬂ ‘L."w_ﬁ’j A

Parent’s Speech ¥
D I L S

Figure 1. Our multimodal sensing system. The child and the
mother played with a set of toys at a table. Two mini cameras
were mounted on the child’s and the parent’s forehead,
respectively to collect visual information from two first-person
views. A third camera mounted on the top of the table recorded
the bird’s eye view of the whole interaction. They also wore
motion sensors to track their head movements. A headset was
used to record the parent’s speech.

parent sat opposite each other at a small table and the parent
was instructed to interact naturally with the child, engaging
their attention with the toys while teaching the words for
them.

Parent-child free play session. The instructions given to the
parent were to take all three objects from one set, place
them on the table, play with the child and after hearing a
command from the experimenters, remove the objects in this
trial and move to the next set to start the next trial. Parents
were given the names of the objects that they were to use
and were instructed to teach the children those object
names. However, there was no special instruction as to what
the parents had to say or what they had to perform, just that
they were to engage their child. All the names were artificial
words. There were a total of four trials with each object set
repeated twice, each about 1 minute long. The interaction
between parent and child lasted between 4 and 7 minutes
and was free-flowing in form.

Name-comprehension test. After the period of free
interaction, the experimenter tested the child’s
comprehension of the object name for each of the 6 objects.
This was done by placing three objects out of reach of the
child about 30 inches apart, one to the left of the child, one
in the middle, and one to the right. The experimenter then
looked directly into the child’s eyes, said the name of one of
the objects and asked for it. For this portion of the
experiment, a camera was focused on the child’s eyes.
Direction of eye gaze — looking to the named object when
named — was scored as indicating comprehension. These
recorded eye movements were coded (with the sound off) by
a scorer naive to the purpose of the experiment. Each word
was tested twice with a score ranging from 0, 1 to 2: A word
was given a score 2 if the child selected the correct target in
both testing trials of that word, score 1 if the child
successfully selected the correct one only once and score 0
if the child failed to select the correct one twice.

Multimodal Data and Data Processing
Given the multimodal data from child-parent interactions,
we have developed various image and sensory processing
tools to automatically annotate the data. This section briefly
reviews our solutions to these problems. Technical details
can be found in (Yu, Smith, Shen, Pereira, and Smith,2009).
Video Processing The recording rate for each of the three
cameras was 30 frames per second. In the preliminary
studies, there were 3 toy-play trials (with different sets of
toys), each lasting about 60 seconds. Thus we collected
approximately 24,300 (30 x 90 x 3 x 3) image frames from
each interaction. The resolution of each image frame is
720*480. We analyzed the image data in two ways: (1) At
the pixel level, we used the saliency map model developed
by Itti, Koch, & Niebur (1998) to measure which areas in an
image are most salient based on motion, intensity,
orientation and color cues. Itti et al.’s saliency map model
applies bottom-up attention mechanisms to encode for
conspicuity (or “saliency") at every location in the visual
input. (2) At the object level, the goal was to automatically
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extract visual information, such as the locations and sizes of
objects, hands, and faces, from sensory data in each of three
cameras. These are based on computer vision techniques,
and include three major steps. The combination of using
pre-defined simple visual objects and utilizing start-of-the-
art computer vision techniques resulted in high accuracy in
visual data processing. The technical details can be found in
(Yu, et al., 2009).

Motion data processing Six motion tracking sensors on
participants’ head and hands (3 sensors on each participant)
recorded 6 DOF of their head and hand movements at the
frequency of 240 Hz. Given the raw motion data from each
sensor, the primary interest in the current work was the
overall dynamics of body movements. We grouped the 6
DOF data vector into position {Xx, y, z} and orientation {h,
p, r}. We then developed a motion detection program that
computes the magnitudes of both position movements and
orientation movements. In addition, we manually annotated
which objects were in the child’s or the parent’s hands.

Speech processing We first segmented the continuous
speech stream into multiple spoken utterances based on
speech silence. Next, we asked human coders to listen to the
recording and transcribe the speech segments. From the
transcriptions, we calculated the statistics of linguistic
information, such as the size of vocabulary and the average
number of words per spoken utterance. Moreover, we
extracted the onset and offset timestamps wherein an object
name occurred in transcription and used them to define a
naming event. In the next section, we will use these naming
events to determine the learning patterns in visual and
motion data streams.

As a result of our data processing, multiple heterogeneous
time series were derived from multimodal raw data. In the
present study, a set of 28 temporal sequences were selected
which covered a wide range of sensorimotor dynamics in
child-parent interaction, from the child’s visual perception,
to the child’s hand and head actions, to the parent’s hand
and head actions. Figure 2 illustrates the meanings of some
temporal variables.

The Model

We correlated the number of naming events for each object
name with the score (0, 1 or 2) at test. We did not find a
strong correlation between these two (r=0.1; p=0.28). The
average number of naming events is 9 for a learned object
name and 11 for an unlearned object name. Some object
names that were provided just once or twice were actually
learned, while others labeled by parents 5 or 6 times were
not learned. This suggests that what matters were the
specific contexts where those object names were named,
what both parents and children visually attended to at those
moments, and what they were doing at that time.

To discover those important sensorimotor features that led
to successful learning through social interaction, we
developed a formal model that predicts word learning
results from multimodal features. Through the estimated
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Figure 2. Derived temporal variables from multimodal data. Left:
the child’s view image and saliency map. Right: the parent’s view
image and saliency map. The naming of variables follows this
standard: C(hild)/P(arent)_A(ction)/V/(ision)_meaning. Eg.
C_V_target_size means the size of the target object in the child’s
VIEW.

regression coefficients, our main goal was to infer which
features contribute to the learning outcome.

For notational simplicity, we begin by introducing our
model in the case of a single parent-child interaction
session, and only a single word was taught in that session.
This will be generalized later. During the session the child is
given #Events training naming events to learn the target
word. These are encoded by some d-dimensional feature
VECLOrS X ...Xugpents € R As customary in machine
learning, we assume that each feature vector is augmented
by an extra dimension with constant value 1 for bias. We
define the “gain” (from the child's perspective) from the k-
th training naming event as

wx,
where w is a learning weight vector to be estimated. The
total gain for the word is the sum over training naming
events:

T #Events

#Events ¢,, T —
k=1 W Xp =W 2p=1

X, =w'X
where X = Y #Eventsx,  Let z € {0, 1} be the hidden binary
variable indicating whether the child actually learns the
word. We model z with a logistic function;
1

Pe=11wX)= 1+ exp (—wT'X)
such that a larger total gain leads to a higher probability of
learning. We cannot observe z directly. Instead, #Test test
events are conducted after training. In each test event, the
child had to choose the target object out of m different
objects (m=3 in our case). Let y; € {0,1} be the observed
variable on whether the child succeeded on the [-th test
event, for [ = 1..#Test. We assume that if the child has
learned the word (z = 1), she would most likely pick the
correct object (but there is a still probability that she may
not pick the correct answer even when z = 1). This
variability is captured by:
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i Y, Vi = 1
P(.Vllz_l)_{l_y’ yl=0
where y is a parameter less than 1. If the child does not
learn the word (z = 0), we assume that she will randomly
pick a test object with equal probability, resulting in
1/m, =1
P(yllz_o)_{(m—l)/m, }’1=0
These assumptions therefore model the likely noise in
testing data.

To make a Bayesian probabilistic model, we introduce a
prior distribution on w. Sparse w (i.e., only a small number
of features are relevant to learning) is preferred for
interpreting the model, but we are also interested in
including all related variables even they are pairwise
correlated. Therefore, we employ the elastic net (Zou &
Hastie, 2005), which corresponds to the prior,

d
Pw) = h(BB) | | exp (=1 1wyl — Baw)

where 8; and 3, are non-negative parameters which control
the tradeoff between prior and likelihood. The complete
graphical model is given below.
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We are now ready to state the modeling problem: Given
training naming events X; ... Xygvents (X = YaEvents x, ) and
test outcomes y = (V; ... Varest) " (and hyper-parameters 8,
and S,), what is the most likely weight coefficients w? The
non-zero (and large magnitude) elements can then be
interpreted as the subset of features contributing to learning.
The hidden variable z is of less interest, and is integrated
out. Formally, we solve the maximum a posteriori (MAP)
problem
arg max log P(w | X,y ) = arg max log P(w)p(y | w,X)

weRd weR4d
The objective function can be equivalently written as
ming,cga B1||Wly + B2|lwll3

+10g(X,=01P(z | W,X) P(y | 2))
where P(z | w,X) and P(y | z) have been defined earlier.

Now, we are ready to extend the model to the multiple
parent-child pairs and multiple words case. Let i=
1 ...#Pairs be the index for parent-child pairs. The i-th pair
studied j = 1 ...#words(i) different words. Note the i-th
pair's first word may be different than i 4+ 1-th pair's first
word and so on. For the i-th pair's j-th word, there were
k =1..#Events(ij) training naming events. These
naming events need not happen consecutively in time. We
use x; € R? to denote the feature vector for the k-th
naming event. Similarly, for the i-th pair's j-th word, there
were [ = 1...#Test(ij) test events y;;,. In each test event,

the child has to pick out the object corresponding to the
word from m different objects.
We assume that all parent-child pairs share the same weight
vector w € R®. For parent-child pair i on word j, the gain
from learning experience k is

WTXijk
For parent-child pair i on word j the total gain from learning

experiences is

:Iizents(l]) WTXijk
In the same way, we can define z;; and P(y;j | z;;). The
different pairs are independent to each other, so the MAP

problem becomes
min By ||wlly + Ba|Iwl|Z +
weR

TP 3V log (ZZi,:m P(zi; | w,Xy;)P(y; | zi; ))
This optimization problem is non-convex and we optimize it
with the Constrained Concave Convex Procedure (CCCP)
(Yuille & Rangarajan, 2003).

Simulations and Results

Several parameters have to be set before we can identify
interesting features with our model. First, in our model, we
assume that the child may choose an incorrect object in the
test events even when z = 1 and denote the probability as
Y. However, there is no well-studied y we can use. 8 and
B, are the weights of regularizers, which control the
tradeoff between fitness to data and model complexity. To
set them appropriately, we first chose several candidate
parameters and use cross-validation to choose the best
settings based on log-likelihood on the training set.
Intuitively, ¥ should be greater than 0.5 and therefore the
candidate set of {0.6,0.7,...,1.0} was chosen. We tested
several different 8, values {107%,1073, ..., 10%} to produce
different solutions with different levels of sparsity and
meanwhile the candidates of B, were evaluated with a
larger but sparser grid {1076,1074,...,10%}. The thirteen
parent-child pairs were randomly split into seven folds.
Each time, one fold was left out as a tuning set and a model
was trained on the remaining folds with each combination of
three candidate parameters. The parameter setting with the
highest average tuning set log-likelihood was selected,
which is {y =0.7,8, =0.001,8, = 0.01}. We fixed
this setting in the following experiments.

Through applying the model to sensorimotor features and
showing that the model can predict word learning results
(y=0, 1 or 2) based on cross-validation, our main goal of the
present study here was to gather and analyze the weights
w of sensorimotor features x from training, and interpret
those weight results to better understand what sensorimotor
features may be predictive to learning results and therefore
contribute to successful learning. To this end, our first study
examined sensorimotor dynamics around object naming
events with the assumption that what happened at those
moments was more relevant to learning than other moments.
In practice, we decomposed the whole training dataset into
three groups based on when object naming events happened:
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1) “during” moments defined by the onset and offset of a
naming event; 2) “before” moments defined by 5 seconds
prior to the onset of a naming event to that onset; 3) “after”
moments defined by the offset of a naming event to 5
seconds after that offset. For each group based on the above
timing definition, we extracted 28 features from the
continuous time series ( a subset of them were illustrated in
Figure 2) and fed the data into the model as feature vector
x to predict y. This is done separately for before, during
and after moments.

during after before
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Figure 3. Normalized log-likelihood values from three temporal
groups compared with the baseline (the dotted line).

First, the log-likelihood results shown in Figure 3 indicate
the fitness of data from those three moments compared with
a baseline calculation. Sensorimotor features from “during”
and “after” moments are more predictive to word learning
than those features from “before”, while all three features
sets are predictive as compared with chance (the dotted line
in Figure 3). Next, we asked exactly what features in each
moment are predictive to learning. This information can be
inferred from the trained regression coefficients w. In
practice, we selected top 5 features that have gained largest
absolute weights based on training (note weights can be
positive or negative). As shown in Figure 4, some
sensorimotor features consistently played a role in all of the
three temporal moments. For example, the child’s holding
of the target object (C_A _target_holding) appeared to be a
predictive cue in all of the three moments, suggesting that
the target object held by the learner is more likely to be
learned. Manually holding the named object around the
moments of hearing that object name indicates the learner’s
sustained attention and interest on the named object. In
addition, in both “during” and “after” moments, the size of
the target object in the child’s view (C_V_target size) and
the  parent’s holding of the target object
(P_V_target_holding) are good for learning but probably for
different reasons. The size of target object in the child’s
view is a direct measure of visual saliency of that object —
an indicator of the learner’s attention. On the other hand,
holding the target object by parents may facilitate learning if
and only if this action can attract the child’s attention — an
open question worth more studies. Moreover, the stability of
the child’s head (C_A head_rotSpeed) before and during
naming also predicts good learning as compared with other
cues. That is, the learner not only paid attention to the right
object, manually held the object, but also stabilized their
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Figure 4. The top 5 features within before/during/after naming
events that are critical for predicting word learning results.

attention for a certain period of time. All these led to better
learning.

Since there were different types of sensorimotor features
in training data, our next study focused on discovering
which types of features are more important. To do so, we
divided 28 features into four semantic subsets: child’s
perception, parent’s perception, hand action and head
movement. We then fed the features in each subset into the
model and asked the model to predict word learning only
based on those features within each subset. Figure 5 shows
the results of log-likelihood values, suggesting the child’s
visual perception is more directly predictive than both the
child’s and the parent’s actions. One plausible explanation is
that the ultimate role of actions in learning is to select visual
information for the internal learning processes.
Interestingly, just head movements of the child and the
parent can also somehow predict learning (not perfectly but
far above chance). The stability and dynamics of head
movements are good indicators of sustained attention of the
learner and the teacher if they jointly attend to the same
object. Lastly, the parent’s perception is less relevant to
learning, suggesting that the parent’s perception may
determine what action the parent may generate next and this
next action can indirectly influence the child’s action and
the child’s perception, but the parent’s perception may not
be directly relevant to learning.

We next closely examined each group and analyzed what
features in each group contribute more toward predicting
word learning results. Due the page limit, we selected only
two most influential groups (child’s perception and hand
actions) and within each group, we selected only two most
influential features to show in Figure 6. The child’s holding
of the target object didn’t matter before/after naming
moments but played a critical role exactly during naming
moments. In contrary, the parent’s holding of the target
object had a negative weight before naming, no influence
during naming, and became critical after naming. There are
two plausible interpretations of those patterns. One is that
the child held the target object while the parent named it and
then passed that object to the parent’s hands. The other
possibility is that those patterns were mixed from two
different interaction modes, both of which can lead to
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Figure 5. Normalized log-likelihood values of the four semantic
feature groups.

successful learning. In one mode, the child led the
interaction by holding the named object during naming. In
the other mode, the parent named the object first and
manually held the object to attract the child’s attention after
naming it. We need further studies to understand this better.
Also shown in Figure 6 (right), the sizes of objects (both the
target and other objects) seem to be a more direct measure
of what the child visually attended to compared with other
visual features (e.g. distance to the center or visual
saliency). In particular, the size of the target object in the
child’s view is weakly relevant before and after naming, but
right at the naming moment, this visual property seems to be
critical. In contrast, the size of other objects played a
negative role after naming. It is an open question why the
size of other objects has a positive impact during naming.

6 2
! /A\ T /\
2 0 T T
/ \ before during ° after
0 / T T -1
2 before~” during after )
Il "€ 7| et C_V_target_size |
==t child holding target —V_target_size
4 ] 3 C_V_other_size
-4 - ‘parent holding target -

Figure 6. Left: the weights of the child’s holding and the parent’s
holding of the target object. Right: the weights of the target object
size and the size of other objects.

General Discussions and Conclusion
Most of children’s word learning takes place in messy
contexts — like the tabletop play task used here. There are
multiple objects, multiple shifts in attention and multiple
bodily cues by both partners, and many object names
simultaneously available. In this paper, we used advanced
sensing equipment and state-of-the-art experimental
paradigms to collect multiple streams of real-time sensory
data in parent-child interactions. Given such fine-grained
data, we developed a formal model to analyze these
multisensory data and to extract statistical regularities in the
physical and social learning environment. We conducted
two simulation studies to address questions such as which
types of sensorimotor features are more important for
learning, what moments are the right moment for the teacher

to name objects and for the learner to build a mapping
between names and objects, and how those feature may
work together to facilitate learning. Those results derived
from our modeling efforts (e.g. the regression coefficients of
features) provided gquantitative measures of how various
bodily cues and sensory features may be relevant to learning
at different moments and through different ways. Some
results confirmed our original hypotheses and others were
rather surprising, opening up new research questions with
the potential to lead to new findings that we do not know
yet. The present paper represents our first efforts in
modeling sensorimotor dynamics in child-parent social
interaction. With more fine-grained data and advanced
computational modeling methods, we have the opportunity
to discover a more complete mechanistic explanation of
early word learning.
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