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Abstract 

This paper presents a computational model of word learning 
with the goal to understand the mechanisms through which 
word learning is grounded in multimodal social interactions 
between young children and their parents. We designed and 
implemented a novel multimodal sensing environment 
consisting of two head-mounted mini cameras that are placed 
on both the child’s and the parent’s foreheads, motion 
tracking of head and hand movements and recording of 
caregiver’s speech. Using this new sensing technology, we 
captured the dynamic visual information from both the 
learner’s perspective and the parent’s viewpoint while they 
were engaged in a free-play toy-naming interaction. We next 
implemented various data processing programs that 
automatically extracted visual, motion and speech features 
from raw sensory data. A probabilistic model was developed 
that can predict the child’s learning results based on 
sensorimotor features extracted from child-parent interaction. 
More importantly, through the trained regression coefficients 
in the model, we discovered a set of perceptual and motor 
patterns that are informatively time-locked to words and their 
intended referents and predictive of word learning. Those 
patterns provide quantitative measures of the roles of various 
sensorimotor cues that may facilitate word learning, which 
sheds lights on understanding the underlying real-time 
learning mechanisms in child-parent social interactions.  
Keywords: computational modeling, word learning, 
embodied cognition, perception and action. 

Introduction 
Just as in many other cognitive learning tasks, a critical 
problem in word learning is the uncertainty and ambiguity 
in the learning environment – young word learners need to 
discover correct word-referent mappings among many 
possible candidate words and many possible candidate 
referents from potentially many objects that are 
simultaneously available. At the macro level, we know a 
great deal about object name learning and how it seems to 
be characterized by attentional biases to attend to the shape 
of the whole object (Landau, Smith & Jones, 1998), by 
conceptual biases that make some kinds of word-meaning 
mappings more likely than others (Markman, 1989), and by 
all sorts of linguistic bootstraps whereby children use the 
words they already know to help figure out new meanings 
(Gleitman, 2005). But we know very little about how any of 
this works in real time and in the cluttered context of the 
real world interactions of toddlers and parents, contexts 
typically characterized by many interesting objects, many 
shifts in attention by each participant, and many goals 
(beyond teaching and learning words).  

 Previous studies have examined early word learning in 
constrained experimental tasks with only one or two objects 
in view. The adult partner (usually the experimenter) 
focuses on the child and on effective teaching, and provides 
clear and repeated signals of her attention to the object 
being named (E.g. Baldwin, 1993; Tomasello & Akhtar, 
1995). In this way, the attentional task is simple, and easily 
described in discrete and categorical terms (the attended 
object vs. the distractor). These contexts are not at all like 
the real world in which word learning is embedded in a 
stream of activity -- in which parents both react to and 
attempt to control toddler behaviors and in which toddlers 
react to, direct, and sometimes ignore parents as they pursue 
their own goals.  

To truly understand the mechanisms of word learning, we 
need to focus on more micro-level behaviors  as they unfold 
in real time in the richly varying and dynamically complex 
interactions of children and their mature partners in more 
naturalistic tasks (such as toy play). Further, whereas the 
studies at the macro-level clearly demonstrate many 
intelligent behaviors in infant word learning, they have not 
yet led to a formal account of the underlying mechanisms. 
Thus, we want to know not only that learners use various 
cues in social interaction to facilitate learning (see a good 
example of macro-level modeling by Frank, Goodman & 
Tenenbaum, 2009), but also exactly how they do so in terms 
of the real-time processes in the naturalistic tasks wherein 
everyday language learning must take place.  
     To this end, we developed a novel paradigm with two 
critical components. First, we developed a multisensory 
experimental environment to capture multimodal data with 
the goal to study the dynamics of child-parent social 
interactions, that ultimately lead to word learning, at the 
sensorimotor levels – in the bodily gestures and as well as 
momentary visual and auditory perception of the 
participants.  We developed various signal processing tools 
to automatically annotate such rich dataset. Second, we 
proposed and implemented a new probabilistic model based 
on state-of-the-art machine learning techniques to discover 
the perceptual and motor patterns that are informatively 
time-locked to words and their intended referents and 
predictive of word learning. In the following sections, we 
first describe our experimental setup and data.  We then 
introduce our model of word learning. After that, we present 
the results from a set of simulation studies.  Finally, we 
offer some general discussions and conclude our work.  

Experiment 
As shown in Figure 1, the naturalistic interaction of parents 
and toddlers in the task of table-top toy play was recorded 
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by three cameras from different perspectives: 1) A 
lightweight mini camera mounted on a sports-headband and 
placed low on the forehead of the child provided 
information about the scene from the child learner’s point of 
view.  This is a particularly important and novel component 
of our set-up.  The angle of the camera is adjustable, and has 
a visual field of approximately 90o.    2) A ceiling camera 
provided a top-down third-person view, allowing a clear 
observation of exactly what was on the table at any given 
moment (mostly the participants’ hands and the objects 
being played with). 3) Another head-mounted camera 
provided the parent’s viewpoint. In addition, our 
multimodal system recorded participants’ body movements 
through a motion tracking system as well as the parent’s 
speech through a headset.  
Participants. The target age period for this study was 18 to 
20 months. We invited parents in the Bloomington, Indiana 
area to participate in the experiment. 13 dyads of parent and 
child were part of the study (5 male and 7 female). 7 
additional children were not included because of failure to 
keep the head camera on. For the child participants 
included, the mean age was 19.6, ranging from 17 to 20 
months. All participants were white and middle-class. 
Stimuli. Parents were given two sets, with three toys in each 
set, in this free-play task. The toys were rigid plastic objects 
of simple shapes and were painted with one primary color. 
Each set had a red, a green and a blue object.  
Procedure. The task was a common one in the everyday 
lives of children and parents – to take turns in jointly acting 
on, attending to, and naming objects. This is a common 
context in which children learn names for things. The toys 
used in this experiment were novel items. The child and 

parent sat opposite each other at a small table and the parent 
was instructed to interact naturally with the child, engaging 
their attention with the toys while teaching the words for 
them.   
Parent-child free play session. The instructions given to the 
parent were to take all three objects from one set, place 
them on the table, play with the child and after hearing a 
command from the experimenters, remove the objects in this 
trial and move to the next set to start the next trial. Parents 
were given the names of the objects that they were to use 
and were instructed to teach the children those object 
names. However, there was no special instruction as to what 
the parents had to say or what they had to perform, just that 
they were to engage their child. All the names were artificial 
words. There were a total of four trials with each object set 
repeated twice, each about 1 minute long. The interaction 
between parent and child lasted between 4 and 7 minutes 
and was free-flowing in form. 
Name-comprehension test. After the period of free 
interaction, the experimenter tested the child’s 
comprehension of the object name for each of the 6 objects. 
This was done by placing three objects out of reach of the 
child about 30 inches apart, one to the left of the child, one 
in the middle, and one to the right. The experimenter then 
looked directly into the child’s eyes, said the name of one of 
the objects and asked for it. For this portion of the 
experiment, a camera was focused on the child’s eyes. 
Direction of eye gaze – looking to the named object when 
named – was scored as indicating comprehension. These 
recorded eye movements were coded (with the sound off) by 
a scorer naïve to the purpose of the experiment. Each word 
was tested twice with a score ranging from 0, 1 to 2: A word 
was given a score 2 if the child selected the correct target in 
both testing trials of that word, score 1 if the child 
successfully selected the correct one only once and score 0 
if the child failed to select the correct one twice. 
  

Multimodal Data and Data Processing  
Given the multimodal data from child-parent interactions, 
we have developed various image and sensory processing 
tools to automatically annotate the data. This section briefly 
reviews our solutions to these problems. Technical details 
can be found in (Yu, Smith, Shen, Pereira, and Smith,2009).  
Video Processing The recording rate for each of the three 
cameras was 30 frames per second. In the preliminary 
studies, there were 3 toy-play trials (with different sets of 
toys), each lasting about 60 seconds. Thus we collected 
approximately 24,300 (30 × 90 × 3 × 3) image frames from 
each interaction. The resolution of each image frame is 
720*480.  We analyzed the image data in two ways: (1) At 
the pixel level, we used the saliency map model developed 
by Itti, Koch, & Niebur (1998) to measure which areas in an 
image are most salient based on motion, intensity, 
orientation and color cues. Itti et al.’s saliency map model 
applies bottom-up attention mechanisms to encode for 
conspicuity (or ``saliency'') at every location in the visual 
input. (2) At the object level, the goal was to automatically 

Figure 1. Our multimodal sensing system. The child and the 
mother played with a set of toys at a table. Two mini cameras 
were mounted on the child’s and the parent’s forehead, 
respectively to collect visual information from two first-person 
views. A third camera mounted on the top of the table recorded 
the bird’s eye view of the whole interaction. They also wore 
motion sensors to track their head movements. A headset was 
used to record the parent’s speech.  
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extract visual information, such as the locations and sizes of 
objects, hands, and faces, from sensory data in each of three 
cameras. These are based on computer vision techniques, 
and include three major steps. The combination of using 
pre-defined simple visual objects and utilizing start-of-the-
art computer vision techniques resulted in high accuracy in 
visual data processing. The technical details can be found in 
(Yu, et al., 2009).  
Motion data processing Six motion tracking sensors on 
participants’ head and hands (3 sensors on each participant) 
recorded 6 DOF of their head and hand movements at the 
frequency of 240 Hz.  Given the raw motion data from each 
sensor, the primary interest in the current work was the 
overall dynamics of body movements. We grouped the 6 
DOF data vector into position {x, y, z} and orientation {h, 
p, r}.  We then developed a motion detection program that 
computes the magnitudes of both position movements and 
orientation movements. In addition, we manually annotated 
which objects were in the child’s or the parent’s hands.  
Speech processing We first segmented the continuous 
speech stream into multiple spoken utterances based on 
speech silence. Next, we asked human coders to listen to the 
recording and transcribe the speech segments. From the 
transcriptions, we calculated the statistics of linguistic 
information, such as the size of vocabulary and the average 
number of words per spoken utterance. Moreover, we 
extracted the onset and offset timestamps wherein an object 
name occurred in transcription and used them to define a 
naming event. In the next section, we will use these naming 
events to determine the learning patterns in visual and 
motion data streams.   

As a result of our data processing, multiple heterogeneous 
time series were derived from multimodal raw data. In the 
present study, a set of 28 temporal sequences were selected 
which covered a wide range of sensorimotor dynamics in 
child-parent interaction, from the child’s visual perception, 
to the child’s hand and head actions, to the parent’s hand 
and head actions. Figure 2 illustrates the meanings of some 
temporal variables.  

The Model 
We correlated the number of naming events for each object 
name with the score (0, 1 or 2) at test.  We did not find  a 
strong correlation between these two (r=0.1; p=0.28). The 
average number of naming events is 9 for a learned object 
name and 11 for an unlearned object name.  Some object 
names that were provided just once or twice were actually 
learned, while others labeled by parents 5 or 6 times were 
not learned. This suggests that what matters were the 
specific contexts where those object names were named, 
what both parents and children visually attended to at those 
moments, and what they were doing at that time.  

To discover those important sensorimotor features that led 
to successful learning through social interaction, we 
developed a formal model that predicts word learning 
results from multimodal features. Through the estimated  

Figure 2. Derived temporal variables from multimodal data. Left: 
the child’s view image and saliency map. Right: the parent’s view 
image and saliency map. The naming of variables follows this 
standard: C(hild)/P(arent)_A(ction)/V(ision)_meaning. Eg. 
C_V_target_size means the size of the target object in the child’s 
view. 
regression coefficients, our main goal was to infer which 
features contribute to the learning outcome. 

For notational simplicity, we begin by introducing our 
model in the case of a single parent-child interaction 
session, and only a single word was taught in that session. 
This will be generalized later. During the session the child is 
given #𝐸𝑣𝑒𝑛𝑡𝑠 training naming events to learn the target 
word.  These are encoded by some d-dimensional feature 
vectors 𝐱1 … 𝐱#𝐸𝑣𝑒𝑛𝑡𝑠 ∈ ℝ𝑑. As customary in machine 
learning, we assume that each feature vector is augmented 
by an extra dimension with constant value 1 for bias. We 
define the “gain” (from the child's perspective) from the 𝑘-
th training naming event as 

𝐰⊤𝐱𝑘 
where 𝐰 is a learning weight vector to be estimated. The 
total gain for the word is the sum over training naming 
events: 

∑ 𝐰⊤𝐱𝑘 = 𝐰⊤#𝐸𝑣𝑒𝑛𝑡𝑠
𝑘=1 ∑ 𝐱𝑘#𝐸𝑣𝑒𝑛𝑡𝑠

𝑘=1 ≡ 𝐰⊤𝐗  

where 𝐗 ≡ ∑ 𝐱𝑘#𝐸𝑣𝑒𝑛𝑡𝑠
𝑘=1 . Let 𝑧 ∈ {0, 1} be the hidden binary 

variable indicating whether the child actually learns the 
word. We model 𝑧 with a logistic function: 

𝑃(𝑧 = 1 ∣ 𝐰,𝐗) =
1

1 + exp (−𝐰⊤𝐗)
  

such that a larger total gain leads to a higher probability of 
learning. We cannot observe 𝑧 directly. Instead, #𝑇𝑒𝑠𝑡 test 
events are conducted after training. In each test event, the 
child had to choose the target object out of 𝑚 different 
objects (m=3 in our case). Let 𝑦𝑙 ∈ {0, 1}  be the observed 
variable on whether the child succeeded on the 𝑙-th test 
event, for 𝑙 = 1 … #𝑇𝑒𝑠𝑡. We assume that if the child has 
learned the word (𝑧 = 1), she would most likely pick the 
correct object (but there is a still probability that she may 
not pick the correct answer even when z = 1). This 
variability is captured by:  
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𝑃(𝑦𝑙 ∣∣ 𝑧 = 1 ) = � 𝛾, 𝑦𝑙 = 1
1 − 𝛾, 𝑦𝑙 = 0

� 

where 𝛾 is a parameter less than 1. If the child does not 
learn the word (𝑧 = 0), we assume that she will randomly 
pick a test object with equal probability, resulting in 

𝑃(𝑦𝑙 ∣∣ 𝑧 = 0 ) =  � 1/𝑚, 𝑦𝑙 = 1
(𝑚 − 1)/𝑚, 𝑦𝑙 = 0

� 

These assumptions therefore model the likely noise in 
testing data.  
 

To make a Bayesian probabilistic model, we introduce a 
prior distribution on 𝐰. Sparse 𝐰 (i.e., only a small number 
of features are relevant to learning) is preferred for 
interpreting the model, but we are also interested in 
including all related variables even they are pairwise 
correlated. Therefore, we employ the elastic net (Zou & 
Hastie, 2005), which corresponds to the prior, 

𝑃(𝐰) = ℎ(𝛽1,𝛽2)� exp (−𝛽1 |𝑤𝑓| − 𝛽2𝑤𝑓2)
d

f=1
  

where 𝛽1 and 𝛽2 are non-negative parameters which control 
the tradeoff between prior and likelihood. The complete 
graphical model is given below. 
 

 
 

We are now ready to state the modeling problem: Given 
training naming events 𝐱1 … 𝐱#Events (𝐗 = ∑ 𝐱𝑘#𝐸𝑣𝑒𝑛𝑡𝑠

𝑘=1 ) and 
test outcomes 𝐲 = (𝑦1 …𝑦#𝑇𝑒𝑠𝑡)⊤ (and hyper-parameters 𝛽1 
and 𝛽2), what is the most likely weight coefficients 𝐰?  The 
non-zero (and large magnitude) elements can then be 
interpreted as the subset of features contributing to learning.  
The hidden variable 𝑧 is of less interest, and is integrated 
out. Formally, we solve the maximum a posteriori (MAP) 
problem 
arg max

𝐰∈ℝ𝑑
log𝑃(𝐰 ∣∣ 𝐗,𝐲 ) = arg max

𝐰∈ℝ𝑑
log𝑃(𝐰)𝐩(𝐲 ∣∣ 𝐰,𝐗 )  

The objective function can be equivalently written as  
          min𝐰∈ℝ𝑑 𝛽1||𝐰| �|1 + 𝛽2||𝐰||22  
                             + log�∑ 𝑃(𝑧 ∣ 𝐰,𝐗)𝑧=0,1 𝑃(𝐲 ∣ 𝑧)� 

where 𝑃(𝑧 ∣ 𝐰,𝐗) and 𝑃(𝐲 ∣ 𝑧) have been defined earlier.  
 

Now, we are ready to extend the model to the multiple 
parent-child pairs and multiple words case. Let 𝑖 =
1 … #𝑃𝑎𝑖𝑟𝑠 be the index for parent-child pairs. The 𝑖-th pair 
studied 𝑗 = 1 … #𝑤𝑜𝑟𝑑𝑠(𝑖) different words. Note the 𝑖-th 
pair's first word may be different than 𝑖 + 1-th pair's first 
word and so on. For the 𝑖-th pair's 𝑗-th word, there were 
𝑘 = 1 … #𝐸𝑣𝑒𝑛𝑡𝑠(𝑖𝑗) training naming events. These 
naming events need not happen consecutively in time. We 
use 𝐱𝑖𝑗𝑘 ∈  ℝ𝑑   to denote the feature vector for the 𝑘-th 
naming event. Similarly, for the 𝑖-th pair's 𝑗-th word, there 
were 𝑙 = 1 … #𝑇𝑒𝑠𝑡(𝑖𝑗) test events 𝑦𝑖𝑗𝑙. In each test event, 

the child has to pick out the object corresponding to the 
word from 𝑚 different objects. 
We assume that all parent-child pairs share the same weight 
vector 𝐰 ∈  ℝ𝑑. For parent-child pair 𝑖 on word 𝑗, the gain 
from learning experience 𝑘 is 

𝐰⊤𝐱𝑖𝑗𝑘 
For parent-child pair 𝑖 on word 𝑗 the total gain from learning 
experiences is 

∑ 𝐰⊤𝐱𝑖𝑗𝑘
#𝐸𝑣𝑒𝑛𝑡𝑠(𝑖𝑗)
𝑘=1   

In the same way, we can define 𝑧𝑖𝑗 and 𝑃(𝑦𝑖𝑗𝑙 ∣ 𝑧𝑖𝑗). The 
different pairs are independent to each other, so the MAP 
problem becomes 
     min

𝐰∈ℝ𝑑
𝛽1||𝐰| �|1 + 𝛽2||𝐰||22 + 

∑ ∑ log �∑ 𝑃�𝑧𝑖𝑗 ∣ 𝐰,𝐗𝑖𝑗�𝑃� 𝐲𝐢𝐣 ∣∣ 𝑧𝑖𝑗 �zij=0,1 �#Events(i)
j=1

#Pairs
i=1   

This optimization problem is non-convex and we optimize it 
with the Constrained Concave Convex Procedure (CCCP) 
(Yuille & Rangarajan, 2003).  

Simulations and Results 
Several parameters have to be set before we can identify 
interesting features with our model. First, in our model, we 
assume that the child may choose an incorrect object in the 
test events even when 𝒛 = 𝟏 and denote the probability as 
𝜸. However, there is no well-studied 𝜸 we can use. 𝜷𝟏 and 
𝜷𝟐 are the weights of regularizers, which control the 
tradeoff between fitness to data and model complexity. To 
set them appropriately, we first chose several candidate 
parameters and use cross-validation to choose the best 
settings based on log-likelihood on the training set. 
Intuitively, 𝜸 should be greater than 0.5 and therefore the 
candidate set of {𝟎.𝟔,𝟎.𝟕, … ,𝟏.𝟎} was chosen. We tested 
several different 𝜷𝟏 values {𝟏𝟎−𝟒,𝟏𝟎−𝟑, … ,𝟏𝟎𝟐} to produce 
different solutions with different levels of sparsity  and 
meanwhile the candidates of 𝜷𝟐 were evaluated with a 
larger but sparser grid {𝟏𝟎−𝟔,𝟏𝟎−𝟒, … ,𝟏𝟎𝟒}. The thirteen 
parent-child pairs were randomly split into seven folds. 
Each time, one fold was left out as a tuning set and a model 
was trained on the remaining folds with each combination of 
three candidate parameters. The parameter setting with the 
highest average tuning set log-likelihood was selected, 
which is {𝜸 = 𝟎.𝟕,𝜷𝟏 = 𝟎.𝟎𝟎𝟏,𝜷𝟐 = 𝟎.𝟎𝟏} . We fixed 
this setting in the following experiments. 

Through applying the model to sensorimotor features and 
showing that the model can predict word learning results 
(y=0, 1 or 2) based on cross-validation, our main goal of the 
present study here was to gather and analyze the weights 
𝐰 of sensorimotor features 𝐱 from training, and interpret 
those weight results to better understand what sensorimotor 
features may be predictive to learning results and therefore 
contribute to successful learning. To this end, our first study 
examined sensorimotor dynamics around object naming 
events with the assumption that what happened at those 
moments was more relevant to learning than other moments. 
In practice, we decomposed the whole training dataset into 
three groups based on when object naming events happened: 
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1) “during” moments defined by the onset and offset of a 
naming event; 2) “before” moments defined by 5 seconds 
prior to the onset of a naming event to that onset; 3) “after” 
moments defined by the offset of a naming event to 5 
seconds after that offset. For each group based on the above 
timing definition, we extracted 28 features from the 
continuous time series (  a subset of them were illustrated in 
Figure 2) and fed the data into the model as feature vector 
𝐱 to predict 𝐲.  This is done separately for before, during 
and after moments.   

 
Figure 3. Normalized log-likelihood values from three temporal 
groups compared with the baseline (the dotted line).   

 

First, the log-likelihood results shown in Figure 3 indicate 
the fitness of data from those three moments compared with 
a baseline calculation. Sensorimotor features from “during” 
and “after” moments are more predictive to word learning 
than those features from “before”, while all three features 
sets are predictive as compared with chance (the dotted line 
in Figure 3). Next, we asked exactly what features in each 
moment are predictive to learning. This information can be 
inferred from the trained regression coefficients 𝐰. In 
practice, we selected top 5 features that have gained largest 
absolute weights based on training (note weights can be 
positive or negative). As shown in Figure 4, some 
sensorimotor features consistently played a role in all of the 
three temporal moments. For example, the child’s holding 
of the target object (C_A_target_holding) appeared to be a 
predictive cue in all of the three moments, suggesting that 
the target object held by the learner is more likely to be 
learned. Manually holding the named object around the 
moments of hearing that object name indicates the learner’s 
sustained attention and interest on the named object. In 
addition, in both “during” and “after” moments, the size of 
the target object in the child’s view (C_V_target_size) and 
the parent’s holding of the target object 
(P_V_target_holding) are good for learning but probably for 
different reasons. The size of target object in the child’s   
view is a direct measure of visual saliency of that object – 
an indicator of the learner’s attention. On the other hand, 
holding the target object by parents may facilitate learning if 
and only if this action can attract the child’s attention – an 
open question worth more studies. Moreover, the stability of 
the child’s head (C_A_head_rotSpeed) before and during 
naming also predicts good learning as compared with other 
cues.  That is, the learner not only paid attention to the right 
object, manually held the object, but also stabilized their 

attention for a certain period of time. All these led to better 
learning.    

Since there were different types of sensorimotor features 
in training data, our next study focused on discovering 
which types of features are more important. To do so, we 
divided 28 features into four semantic subsets: child’s 
perception, parent’s perception, hand action and head 
movement. We then fed the features in each subset into the 
model and asked the model to predict word learning only 
based on those features within each subset. Figure 5 shows 
the results of log-likelihood values, suggesting the child’s 
visual perception is more directly predictive than both the 
child’s and the parent’s actions. One plausible explanation is 
that the ultimate role of actions in learning is to select visual 
information for the internal learning processes. 
Interestingly, just head movements of the child and the 
parent can also somehow predict learning (not perfectly but 
far above chance). The stability and dynamics of head 
movements are good indicators of sustained attention of the 
learner and the teacher if they jointly attend to the same 
object. Lastly, the parent’s perception is less relevant to 
learning, suggesting that the parent’s perception may 
determine what action the parent may generate next and this 
next action can indirectly influence the child’s action and 
the child’s perception, but the parent’s perception may not 
be directly relevant to learning.  
 

We next closely examined each group and analyzed what 
features in each group contribute more toward predicting 
word learning results. Due the page limit, we selected only 
two most influential groups (child’s perception and hand 
actions) and within each group, we selected only two most 
influential features to show in Figure 6. The child’s holding 
of the target object didn’t matter before/after naming 
moments but played a critical role exactly during naming 
moments. In contrary, the parent’s holding of the target 
object had a negative weight before naming, no influence 
during naming, and became critical after naming. There are 
two plausible interpretations of those patterns. One is that 
the child held the target object while the parent named it and 
then passed that object to the parent’s hands. The other 
possibility is that those patterns were mixed from two 
different interaction modes, both of which can lead to 

Figure 4. The top 5 features within before/during/after naming 
events that are critical for predicting word learning results.  
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successful learning. In one mode, the child led the 
interaction by holding the named object during naming. In 
the other mode, the parent named the object first and 
manually held the object to attract the child’s attention after 
naming it. We need further studies to understand this better. 
Also shown in Figure 6 (right), the sizes of objects (both the 
target and other objects) seem to be a more direct measure 
of what the child visually attended to compared with other 
visual features (e.g. distance to the center or visual 
saliency). In particular, the size of the target object in the 
child’s view is weakly relevant before and after naming, but 
right at the naming moment, this visual property seems to be 
critical. In contrast, the size of other objects played a 
negative role after naming. It is an open question why the 
size of other objects has a positive impact during naming.  

  
Figure 6. Left: the weights of the child’s holding and the parent’s 
holding of the target object. Right: the weights of the target object 
size and the size of other objects. 

 

General Discussions and Conclusion 
Most of children’s word learning takes place in messy 
contexts – like the tabletop play task used here.  There are 
multiple objects, multiple shifts in attention and multiple 
bodily cues by both partners, and many object names 
simultaneously available.  In this paper, we used advanced 
sensing equipment and state-of-the-art experimental 
paradigms to collect multiple streams of real-time sensory 
data in parent-child interactions. Given such fine-grained 
data, we developed a formal model to analyze these 
multisensory data and to extract statistical regularities in the 
physical and social learning environment.  We conducted 
two simulation studies to address questions such as which 
types of sensorimotor features are more important for 
learning, what moments are the right moment for the teacher 

to name objects and for the learner to build a mapping 
between names and objects, and how those feature may 
work together to facilitate learning.  Those results derived 
from our modeling efforts (e.g. the regression coefficients of 
features) provided quantitative measures of how various 
bodily cues and sensory features may be relevant to learning 
at different moments and through different ways. Some 
results confirmed our original hypotheses and others were 
rather surprising, opening up new research questions with 
the potential to lead to new findings that we do not know 
yet. The present paper represents our first efforts in 
modeling sensorimotor dynamics in child-parent social 
interaction. With more fine-grained data and advanced 
computational modeling methods, we have the opportunity 
to discover a more complete mechanistic explanation of 
early word learning.  
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Figure 5. Normalized log-likelihood values of the four semantic 
feature groups.  
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