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Abstract

Design history function (i.e., what an artifact was made for) is
a central aspect of artifact conceptualization. A generally
accepted explanation is that design history is central because
it is the root cause for many other artifact properties. In Exp.
1, an inference task allowed us to probe participants’ causal
models, and then to use them when making predictions for
Exp. 2. Design history was, in fact, part of what participants
viewed as conceptually relevant. Predictions for Exp. 2 were
derived using the currently most comprehensive theory about
how causal knowledge affects categorization. Our results
show that though participants used design history, functional
outcome and physical structure to conceptualize artifacts, the
effect of design history was independent from knowledge of
physical structure and functional outcome. This result is
inconsistent with a causal knowledge explanation of design
history’s conceptual centrality.

Keywords: categorization; causal reasoning; essentialism;
artifacts.

Introduction

Imagine you inherited an antique sewing machine. It comes
in a beautiful cabinet, so you decided to use it in your living
room as a table to display stuff. Imagine now that a guest
comments about the beautiful table. A good bet is that your
reaction would be to tell the visitor that the object is really a
sewing machine cabinet, but that you currently use it as a
table. The general phenomenon illustrated here is that there
is a preference to conceptualize artifacts according to what
they were designed for (their design history function) rather
than according to an alternative but current function. First
described by Lance Rips (1989), this is a robust
phenomenon, valid across different paradigms (e.g.,
Chaigneau, Castillo & Martinez, 2008; Gelman & Bloom,
2000; Defeyter, Avons, & German, 2007; Defeyter &
German, 2003; Jaswal, 2006; Matan & Carey, 2001), age
levels (Gutheil, Bloom, Valderrama, & Freedman, 2004)
and cultures (German & Barrett, 2005).

The favored explanation for this phenomenon is that it
occurs because people view design history as the essence of
artifacts (e.g., Bloom, 1996, 1998, 2007). Medin and
Ortony’s (1989) psychological essentialism, holds that when
someone categorizes objects, she focuses on what she
knows (cognitively or metacognitively) about the cause of
the object’s apparent properties, more than she focuses on
the apparent properties themselves. An essence, in this
view, is an often unobserved root cause that explains many

of an entity’s surface features (Ahn, Kalish, Gelman, Medin,
Luhman, Atran, Coley, & Shafto, 2001). Correspondingly,
because the design history function can be reasonably
viewed as the root cause of an artifact’s physical structure
and use, several authors have assumed that this is why
people use design history function (and not current function,
nor object appearance) for conceptualization (e.g., Matan, &
Carey, 2001; Kemler-Nelson, Frankenfield, Morris, & Blair,
2000; Asher & Kemler Nelson, 2008). Importantly, in this
view the relevance of the design history is a consequence of
people’s causal knowledge about artifacts.

In the experiments we report here, we tested if the
influence of the design history function is a case of causal-
based categorization. If the centrality of design history is a
consequence of people’s causal knowledge, then its
influence on category membership judgments should be
consistent with documented effects of causal knowledge on
categorization. Of particular concern for us is the causal
status effect phenomenon (Ahn, Gelman, Amsterlaw,
Hohenstein and Kalish, 2000; Ahn, Kim, Lassaline, &
Dennis, 2000; Meunier & Cordier, 2009; Rehder & Kim,
2010), in which causes are more important that their effects.
To make predictions about the design history’s causal
influence, we draw heavily on Rehder and collaborators’
work about the influence of causal knowledge on
categorization (i.e., the generative model; Rehder, 20033,
2003b, 2010; Rehder & Kim, 2006, 2010). Our aim is not
to test the generative model, but because this theory
accounts for many different phenomena on causal
categorization, our aim is to use it as a benchmark to assess
if the conceptual relevance of the design history function
can be explained as a causal-based categorization
phenomenon. If the conceptual centrality of design history
function is explained by causal knowledge, people that use
design history function to categorize should show telltale
signs of causal categorization.

Causal Influences on Category Judgments

Rehder’s research program identifies two routes for causal
knowledge’s influence on categorization (Rehder, 2010). In
the explicit route, people treat observed properties as
evidence of unobserved properties, and then use these
inferred properties for categorization judgments. These
inferences can be retrospective (e.g., knowing that A > B,
using the known presence of B to infer the presence of the
unobserved A, and then using this inferred A to categorize;
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Rehder & Kim, 2009) or prospective (e.g., using the known
A to infer the presence of B; Rehder, 2007; Chaigneau,
Barsalou, & Sloman, 2004). Our current Exp. 1 used a
prospective reasoning task, allowing us to determine which
information participants used to make their inferences.

In contrast, in the implicit route, people estimate whether
a configuration of known properties (i.e., an exemplar)
could be generated by the category’s implicit causal model.
For example, if a category’s implicit causal model is A > B
- C, and if links are probabilistic, each successive property
is generated with less certainty, and a causal status effect
obtains (i.e., A is conceptually more central than B, and B
than C). In contrast, if links are deterministic, then all
properties are equally certain and no causal status effect
obtains (i.e., A, B and C are equally central). In the implicit
route, not only individual properties matter for
categorization, but also combinations of properties. Simply
put, if two properties are causally linked, then they should
be correlated (i.e., if one is present/absent, so is the other).
For example, if people believe that having large wings
causes birds to fly, then an animal that has small wings an
flies is a poorer category member than an animal that has
small wings and does not fly. These interactions among
properties have been found to have larger effect sizes than
the effects of individual properties in categorization
judgments (reviewed in Rehder, 2010). Our current Exp. 2
used an implicit reasoning task, allowing us to assess if
causal reasoning could account for our data.

Experiments’ Overview

In the current experiments, participants were presented with
scenarios describing a novel artifact’s design history (H), its
physical structure (P), an agent’s goal when using the
artifact (G), and the agent’s action (A) (and the functional
outcome (O), but only in Exp. 2), and asked to rate its
category membership. Exp. 1 used an explicit causal
reasoning task. Participants were provided with information
about H, P, G and A (but not O), and we predicted that they
would use the observed properties to infer the state of the
unobserved property O, and then use that inferred property
to categorize. Results from this experiment allowed us to
determine which information participants used for their
inferences, and also to hone in on the implicit causal model
they used. In Exp. 2, we used an implicit causal reasoning
task. Participants were provided with information about H,
P, G, A and O, and asked to rate category membership.
Given our assessment of participants’ implicit causal
models in Exp. 1, the generative theory makes clear
predictions about the relative weights of properties for
category membership ratings. Comparing our obtained
pattern of results with theoretical predictions, allowed us to
appraise whether participants were doing causal reasoning
or not.

On both experiments, we analyzed ratings using Rehder’s
regression method (2003a, 2003b, 2010). In this method,
participants provide category membership ratings for all
possible property combinations, allowing the computation

of individualized regression equations. Participants in our
experiments were presented with a category with causal
knowledge regarding 5 binary valued properties. H could
describe the artifact being designed towards functionality x
or functionality y. P could be described as adequate to
achieve functionality x, or not adequate to achieve it. G
could be described as intentional and coherent with
functionality x, or accidental and not coherent with
functionality x. A could be described as coherent with
functionality x, or not coherent with functionality x. Finally
(but only on Exp. 2) O could be described as achieving or
not functionality X. In consequence, participants in Exp. 1
rated 2°=16 scenarios, and participants in Exp. 2 rated 2°=32
scenarios. The baseline scenario (i.e., all components
coherent with functionality x) was always rated first.
Because each participant provided 2" data points for each
variable, a regression equation for each participant was
computed, with H, P, G, and A (plus O in Exp. 2) as
predictors, and rating as criterion. Regression coefficients
for each participant were then used as individual data points
reflecting the contribution of each predictor variable to the
ratings.

Experiment 1

In this experiment, participants were provided with
information about H, G, A and P. No information was
provided about O. Because O is arguably the end node of
an artifact’s causal model, we predicted that participants
would engage in explicit causal reasoning to infer O given
the known information, and then use the inferred O to
categorize. From prior studies, we assumed that the causal
model participants would use was H > P 20 € A € G
(see Figure 1a). This is the causal model obtained for
scenarios similar to the present ones in Chaigneau, Barsalou
& Sloman (2004; hereafter referred to as CB&S).
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Figure 1: Panel (a) shows the predicted causal model for
scenarios in Exp. 1. Panels (b) and (c) show two possible
causal models used by our participants, based on results for
Exp. 1. The dotted line in panel (c), reflects a weak causal
link from H to O.
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Because bayesian models (of which the generative model
is one) predict that when P and A are specified (the
proximal causes), they determine the state of O
independently from the state of H and G (the distal causes),
we predicted that P and A would show high regression
coefficients, while H and G would show significantly lower
ones (this was also one of the main results in CB&S). In
other words, we expected participants to respect the Markov
condition in causal reasoning (Hausman & Woodward,
1999). Additionally, regression weights would inform us
which properties participants used for their judgments.

Method

Design and Participants Twenty-four Adolfo Ibafiez
undergraduates participated in this study (native Spanish-
speakers). Participants were randomly assigned to one of 3
artifacts and one of 4 pseudo-random order of scenarios.

Materials Three novel artifact categories were tested
(“peinador”, “cazador de peces” and “tatuador”;
respectively, “hair-brusher”, “fish-catcher” and “tattoo-
maker”) and 16 scenarios for each category. Each category
was designed to afford two plausible functions, one serving
as cue to name the artifact. For example, the fish-catcher
consisted of a net of vegetable fibers which could (in
principle) be used both to catch fish or to carry stones. The
cue function was fixed across all scenarios so the question
was always the same (e.g., Would you say that this object is
a fish-catcher?). Scenarios described one character that
created an object and a second character that used it. A
graphic depiction of the artifact’s physical structure was
included in all scenarios. As an example, Figure 2 shows
the fish-catcher scenario specifying all elements as adequate
(i.e., baseline). When H was compromised, the designer
created the object for one function, but the second character
used it for a different function (e.g., a net designed to carry
stones which is then used as a fish-catcher). When P was
compromised, the artifact’s physical structure was described
and depicted as not affording its cue function (e.g. a net
with several holes on it). When G was compromised, the
second character’s actions were described as accidental
(e.g., the second character performed the appropriate actions
but was playing and not intending to catch fish). When A
was compromised, the second character was described as
not performing the appropriate actions (e.g., shaking the net
just under the water’s surface instead of keeping is stretched
and still). Thus, the 16 scenarios for each category
presented participants with all combinations of adequate and
compromised H, G, A and P.

Procedure Initially, participants received the instructions
in writing but also heard them read aloud by the
experimenter.  Later, participants worked individually.
Participants received two training scenarios, which
described the creation and use of a hammer. One of these
scenarios was a baseline (i.e., all properties adequate), and
the second scenario presented the opposite extreme of the

scale (i.e., all components compromised). Ratings were
performed on a 7-point scale, with 1 always reflecting the
low-end (“no”) and 7 the high-end (“yes”) of the scale.

In an ancient culture, a settler called Kne-M{ wanted to
make an object to catch small fish living in large numbers in
certain streams. Because he didn’t have an object to do that,
he decided to make it. The object consisted of a series of
intertwined vegetable fibers. On each side, the object had
handles (as shown in the picture).

One day, another settler called Knat-kné wanted to catch
some small fish from a stream. He found the object Kne-M{
made and thought that it would be useful for catching fish.
Knat-kné grasped the object by both handles and kept it
stretched just below the stream’s surface.

Question: Would you say that this object is a fish-catcher?

Figure 2: Baseline fish-catcher scenario in Exp. 1. In Exp.
2, the scenario also provided information about the event’s
outcome, by adding: “As a result of the events described,
fish in the stream were trapped in the vegetable fibers.”)

Results To determine the importance of properties we
analyzed participants’ ratings by performing a multiple
regression for each participant. Four predictor variables
were coded as -1 if the feature was compromised and +1 if it
was adequate. The regression weight associated with each
predictor represents the influence that each element had on
ratings. Additionally 6 predictor variables represented the
two-way interactions between the four elements. Each of
these was coded as -1 if a pair of elements had distinct
values and +1 if they had the same value. Note that in this
method of analysis, participants provide category
membership ratings for all possible property combinations,
allowing the computation of individualized regression
coefficients, but statistical tests are performed considering
the coefficients’ variance across participants (i.e., not the
significance of the individual coefficients).

Preliminary analyses showed that regression weights for
the 6 interaction terms were not significant. Because of this,
the following analyses consider only the individual terms.
Averaged regression weights over participants for H, G, A,
and P are presented in Figure 3. There were no effects of
which object participants rated, or of which of the 4 pseudo-
random scenario orders participants received, and thus
results were collapsed over these factors. To test the
differences between the regression weights given to H, G, A
and P, an ANOVA with repeated measures was conducted
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with individual terms (4 levels: H, G, A, P) as the single
factor. A violation of the sphericity assumption was
handled by correcting degrees of freedom with Huynh-
Feldt’s epsilon. Sphericity was addressed likewise in Exp. 2.
For clarity of presentation, degrees of freedom are presented
without adjustment here and elsewhere. There was a main
effect of individual terms (F(3, 69) = 9.61, MSe = .471, p <
.001, R? = .30, power = 1).

Post hoc tests on the repeated measures factor (with
Bonferroni adjustment), revealed that the regression weight
associated with P was significantly greater than H, G and A
(all ps < .05) and that the regression weight associated to H
did not differ from those of G or A (both ps >.05). Finally,
t tests showed that only the regression weights for H and P
were significantly different from zero (t(23) = 2.78, p < .05;
t(23) = 4.98, p <.001, respectively).
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Figure 3: In Exp. 1, mean regression weights for history
(H), agent goal (G), agent action (A) and physical structure
(P). Only P and H coefficients were significantly greater
than zero. Bars are standard errors.

Discussion

Results suggest that participants did not use model 1a,
because G and A did not influence their ratings. Because
only P and H were significantly different from zero, taken as
a group, participants appear to have used a model similar to
1b or 1c. The causal Markov condition predicts that in a
chain model like 1b, the distal cause will exert less
influence on the outcome than the proximal cause.
Consistently with this prediction, results showed that the
coefficient for P was greater than the coefficient for H
(consistently with results in CB&S). However, model 1c
could also account for these results. Lombrozo (2010) has
proposed people can treat human intentions (e.g., the
designer’s intention) as metaphorical mechanisms of causal
transmission. Assuming that a metaphorical cause (H = O)
has lower strength than a mechanical one (P = O), model

1c could explain why P and H affected ratings, but H had a
weaker effect. Models 1b and 1c were used to generate
predictions for Exp. 2.

Experiment 2

Exp. 2 assessed the importance of H, G, A, P and O on
categorization judgments, now with an implicit causal
reasoning task. Because participants’ ratings in Exp. 1 were
not influenced by G nor A, we predicted that in Exp. 2 G
and A would not show significant regression coefficients.
Considering the model in Figure 1b, the generative model
theory predicts that if participants interpret causal links as
deterministic, the coefficients in the implicit reasoning task
will be H = P = O. On the other hand, if participants
interpret causal links as probabilistic, the theory predicts
regression weights H > P > O (i.e., a causal status effect).
Considering the model in Figure 1c, and given that it has a
weak causal link from H to O, the generative model theory
predicts that participants should weigh less deviations from
H’s baseline value than from P’s baseline value. This
prediction is derived because the weak causal link implies a
small correlation between H and O, and therefore deviations
from H’s baseline value should have a lesser impact on
ratings than deviations for P.

Method

Design and participants Thirty Adolfo Ibafez and
Tarapaca University undergraduates participated in this
study (native Spanish-speakers). Participants were
randomly assigned to one of 3 artifacts and one of 5 pseudo-
random order of scenarios.

Materials Materials were the same of Exp. 1, except that
information about the functional outcome was
systematically manipulated. When O was compromised, the
outcome related to the cue function was described as not
happening (e.g., for the fish-catcher artifact, fish were not
caught in the net). This meant that scenarios had 5 binary
properties (H, G, A, P and O), and that participants provided
2° = 32 ratings.

Procedure The procedure was identical to that of Exp. 1.

Results Regression weights for the 5 individual terms and
for the 10 two-way interaction terms were computed as
described for Exp. 1. Preliminary analyses revealed that
regression weights for the interaction terms were not
significant. Regression weights averaged over participants
for H, G, A, P and O are presented in Figure 4. Again, there
were no effects of neither which object participants rated or
of the 5 pseudo-random scenario orders, and thus results
were collapsed over these factors. An ANOVA with
repeated measures was conducted with individual terms (5
levels: H, G, A, P and O) as the single factor, which
revealed a main effect (F(4, 116) = 23.35, MSe = .30, p <
.001, R? = .45, power = 1).
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Post hoc tests were conducted on the repeated measures
factor (with Bonferroni adjustment). This analysis showed
that the regression weight associated with O was
significantly different from G, A and P (all ps < .05) but not
significantly different from H (p > .05). Additionally, P was
significantly different from G and A (both ps < .05), but not
from H (p > .05). The regression weight associated with H
only differed from those of G and A (both ps < .05).
Finally, t tests showed that only the regression weight of H,
P and O were significantly different from zero (t(29) = 5.91,
p < .001; t(29) = 3.53, p < .01; t(29) = 7.70, p < .001,
respectively).
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Figure 4: In Exp. 2, mean regression weights for history
(H), agent goal (G), agent action (A), physical structure (P)
and outcome (0). Only H, P and O were significantly
greater than zero. Bars are standard errors.

Finally, we wanted to test if the pattern in Figure 4
resulted from aggregating data from groups of participants
who adopted different strategies. It might be that a group of
participants decided based on H and did not pay attention to
O, while another group decided based on O and did not pay
attention to H. If this were true, we should find a negative
correlation between H and O coefficients and two distinct
groups of data points in the scatterplot (i.e., individuals with
high coefficients for H and close to zero for O and vice
versa). This was not what data showed. The correlation
between H and O turned out to be negative but small and
non-significant (r(28) = -.20, p = .29). Visual inspection of
the scatterplot revealed that 3 participants appeared to use
the abovementioned strategies, but that a great majority of
participants integrated H and O in their categorization
judgments and exhibited individual patterns of coefficients
similar to the aggregated pattern.

Discussion
As predicted, neither G nor A showed significant
coefficients. This lends support to our assumption that

participants used the same information to make their
judgments in both experiments. Coefficients for O were

greater than coefficients for P, with H somewhere in
between. The significant difference between O and P, rules
out the explanation that participants used model 1b with
deterministic links, because this should produce that
coefficients H = P = O. At first glance, the relatively high
coefficient for H could be interpreted as a causal status
effect. However, if participants used chain model 1b and
interpreted links as probabilistic (which is a condition that
could produce a causal status effect), the curve should show
a negative slope, with H > P > O. O’s high coefficients
speak against this account. Model 1c does not fare better.
This model predicts lower coefficients for H than for P,
while results showed that H was nominally higher than P.
For the sake of completeness, we considered one additional
model. Model 1c with two deterministic links could
account for our results. This model explains that O has a
higher coefficient because, as it has 2 causes, it has a high
probability of being generated, while P and H should have
about equal weights. However, recall that this last model is
not consistent with Exp. 1°s results, and so it is also unable
to account for the complete pattern of results.

Even further evidence for the absence of implicit causal
reasoning in Exp. 2 is that prior research (reviewed in
Rehder, 2010) finds that in the implicit causal reasoning
task, interactions among properties account for a greater
amount of variance than individual properties, while data in
Exp. 2 did not show such interactions.

In summary, we find very little evidence that our
participants in Exp. 2 did causal reasoning, and yet, H was
as conceptually central as O in their ratings. This, we think,
shows that design history function can have an important
influence on categorization without traces of causal
essentialist reasoning in particular, or causal reasoning in
general.

General Discussion

As in CB&S, in Exp. 1 participants were not provided with
descriptions of O, thus promoting prospective inferences.
Consistently with results in CB&S, in Exp. 1 H lost
relevance for categorization, presumably because it was
partially screened-off by P, which was O’s proximal cause.
In Exp. 2, when—in contrast to Exp. 1 and to CB&S—
information about O was provided, H became at least as
important as P for categorization. Contrary to causal
essentialism, this increased relevance of H does not
correspond with known effects of causal knowledge on
categorization.

Simple heuristic processes are unlikely explanations of
our results. One alternative is that participants in Exp. 2
categorized based on a simple property count. Our data
speaks against this alternative, given that participants
consistently used some properties to guide judgments and
disregarded others. Another alternative is that participants
in Exp. 2 categorized based on diagnostic properties. We
think this is not plausible. There is no a-priori reason to
think that some properties were more diagnostic than others.
Think of a hammer as an example. Using an object with a
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hammering motion (i.e., A) appears to be at least as
diagnostic of the hammer category as is achieving the goal
of inserting nails (i.e., O). Also, given that P was the most
informative property in Exp. 1, one would expect that it
would be at least as diagnostic as O, but this is not what our
results in Exp. 2 showed.

In conclusion, based on our participants’ response pattern,
the current work shows that the conceptual centrality of
design history function is not easily explained by causal-
based categorization in general, nor by causal essentialism
in particular.  Our results, especially those of Exp. 2,
suggest that design history’s contribution to artifact
category membership follows an independent mechanism,
and is not mediated by causal reasoning about the effect of
physical structure on functional outcome.
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