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Abstract

In elicitation tasks, people are asked to make estimates under
conditions of uncertainty but elicitors then interpret these
estimates as if the estimator were certain of them. An analysis
of people’s patterns of responding during the elicitation of
uncertainty, indicates that there are markers of confidence
incorporated into these estimates that can be used to predict
the person’s true level of confidence. One such marker is the
precision (number of significant figures) of the estimate.
Analyses of elicited data show the expected positive
relationships between accuracy, precision and explicit
confidence and, further, that precision offers information
beyond that of explicit confidence ratings. We then
demonstrate the importance of incorporating this information
on an overconfidence task, showing that it can account for a
9% difference in calibration.
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Introduction

Studies of human judgment typically make use of estimates
of some quantity given by participants, with a view to
assessing the "quality" of these estimates. However, exactly
how to make this assessment is not always straightforward
as people’s estimates can contain more information than just
a numerical value. For example, imagine that you have
asked two individuals how high Mt Everest is. The first
answers “9km”; while the second responds “8925 metres”.
Later you have the opportunity to check the true answer and
find that Mt Everest is 8844.43m high (PRCSBSM, 2005).
Which of the two is a better estimate?

One answer, of course, is that the second estimate
(8925m) is better as it missed the precisely measured value
by only 80.57m whereas the first estimate missed by
155.57m. In terms of human interactions, however, the
answer is less clear. While the second answer is closer to the
true value than the first, it is also far more precise —stating
the height to the nearest metre. The first estimate, by
comparison, it is stated only to the nearest kilometre.

The inference a listener might draw from these different
levels of precision is that the first speaker is giving an
approximate height while the second is giving an exact
height — an distinction referred to by Yaniv and Foster
(1995) as “graininess”. Generally, the less precise an
estimate is, then, the less confidence we expect the estimator
to have in their estimate being precisely right. This
conversational rule mimics the rules of measurement used in
the physical sciences where values are given with an error
range of *+ half the smallest calibration of the measurement
device. Thus, a ruler marked in millimetres yields

measurements that are presumed to be accurate to +0.5mm.

Thinking in these, pragmatic terms (Sperber & Wilson,
1986), one could conclude, therefore, that the second
estimate is, in fact, worse. This is because it is precise to the
nearest metre but the true value lies more than 80 metres
beyond the 8924.5 to 8925.5m interval resulting from the
addition of an appropriate error. The first estimate, by
comparison, implies a range of 8.5 to 9.5km and the true
value falls well within this.

The conclusion to be drawn from the above is that the
consideration of precision can alter our perceptions of
accuracy. Although seemingly unremarkable, this has
important implications for the way in which we should
interpret estimates given by participants during elicitation
procedures, as discussed below.

Elicitation of Uncertainty

The elicitation of uncertainty describes the process of
converting a person’s subjective beliefs regarding uncertain
events into a numerical form to allow easier analysis
(Wolfson, 2001). Various techniques designed to do this are
used where probabilistic forecasting is required in fields
such as Petroleum Exploration (Attanasi & Schuenemeyer,
2002), Hydrology (Krzysztofowicz, 2001) and Meteorology
(Morgan & Keith, 1995).

The technique most commonly used in the oil and gas
industry, for example, is the elicitation of 80% confidence
ranges (see, e.g., Hawkins, Coopersmith, & Cunningham,
2002). Here the elicitee is asked to give a range of values
such that they are 80% certain that the true value of
whatever parameter they are estimating will fall within it.

Overconfidence

The common observation of people using elicitation
techniques, however, is that people are overconfident
(Lichtenstein, Fischhoff, & Phillips, 1982) — that is, they
give ranges that are too narrow, such that values fall outside
their 80% ranges more than the expected 20% of times.

Given this tendency of people to be overconfident in
their estimates, it is not surprising that much of the literature
on uncertainty elicitation relates directly to mechanisms for
overcoming uncertainty or “debiasing” participants. Various
techniques from simple advice to widen ranges
(Lichtenstein, et al., 1982) through repeated feedback
(Murphy & Winkler, 1977) to the use of probabilistic games
(Hawkins, et al., 2002) are recommended. The common
observation, however, is that such techniques reduce but do
not eliminate overconfidence (Morgan & Henrion, 1990).
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A particularly interesting observation from the
overconfidence literature is that the strength of the effect is
greatly impacted by format dependence (Juslin,
Wennerholm, & Olsson, 1999). For example, the same
participant will give a different answer when asked to
generate a confidence interval than when asked to evaluate
that same interval (Winman, Hansson, & Juslin, 2004).
Thus, a person who has set ten 80% confidence ranges,
when asked how many times the true value will fall within
their specified ranges, may answer only “65%".

This discrepancy is generally taken to indicate a problem
with the participant’s understanding of the statistical
underpinnings of the processes. If they were accurately
setting their 80% confidence intervals, they should expect
approximately 80% of values to fall within those ranges but,
instead they predict that fewer than this will.

Winman et al (2004) provide a possible explanation for
this, where they argue that it results from the statistical
naivety of participants, relying on biased estimators of
dispersion (Fiedler, 2000). A simulation of the effect, on
overconfidence, of using sample variances to estimate
population variance can be seen in Welsh, Begg, Bratvold
and Lee (2004) where it is shown that sample sizes in the
range of human short-term memory limitations do appear to
lead to overconfident estimates of population dispersion.

While this approach has the advantage of
mathematically corresponding to people’s observed
behavior, it also requires that people think in peculiarly
statistical ways. Specifically, for overconfidence to be the
result of sampling from memory, assumptions must be made
about the nature of memory and recall that do not
necessarily accord with mnemonic theory and experimental
results (for a discussion of this, see, e.g., Bruza, Welsh, &
Navarro, 2008).

Precision in Elicited Values

The difference between interval estimation and interval
evaluation can also be considered in another way, invoking
the concept of precision described above. To understand
why this is, first it must be understood that people, when
asked to estimate values, answer in a restricted fashion.
Specifically, they show number preference (Baird, Lewis, &
Romer, 1970; Plug, 1977), preferring to give answers that
are integers and also multiples of 5 or 10.

These number preferences are sometimes interpreted as
resulting from their ease of use in the decimal system or
other psychological preferences (Albers, 1999) and this does
seem likely to account for part of the effect, at least, but it is
also feasible that people use rounded, imprecise numbers
because they are, implicitly, giving imprecise estimates.

Consider a case where a participant gives a range of
possible values for the parameter of interest of 100-500.
Exactly how reasonable is it to believe that the end-points of
this elicited range, which could theoretically take any value,
both fell on multiples of 100 by chance? Rather, where
participants repeatedly give these rounded numbers,
interpreting these estimates as also reflecting an implicit

measure of confidence makes it possible to give an
alternative explanation of format dependence, as described
in our case study below.

Research Aims

The initial aim of this research is to confirm our expectation
that people will display number preferences due, in part at
least, to a desire (implicit or explicit) to reflect their
uncertainty about the magnitude of the value they are
estimating. If people are, in fact, using imprecise numbers in
this manner, it should lead to a number of observable
tendencies. For example, assuming that confidence and
accuracy are related, more accurate people should also be
more precise in their estimates.

Secondly, and perhaps more importantly, we aim to show
why people who use elicited values need to take this
additional information into account when examining
people’s elicited responses.

Thus, analyses undertaken here tested whether a person’s
tendency to use rounded numbers (i.e., multiples of 10, 100,
etc) correlated with both the accuracy of, and their stated
degree of confidence in, their estimate — the expectation
being that people would be more accurate and confident
when giving more precise answers. Then we examined a
pre-existing data-set to demonstrate how including this
effect alters our conclusions about the magnitude of one of
the most studied cognitive biases, overconfidence.

Pilot Work

Prior to the current experiment, we ran two pilot studies
looking at this effect. The first asked 36 University of
Adelaide students (4 male, mean age = 22.7, SD = 4.8) to
estimate answers to 20 general knowledge questions. The
first 10 of these had no explicit confidence rating while the
second 10 did. All questions had 4-digit answers.

This study established that asking for an explicit
confidence rating did not alter people’s use of precision but
struck significant problems with the levels of confidence
observed. People found the questions very difficult and their
confidence ratings averaged less than 2 (on a 0 to 10 scale).
As a result, while precision correlated with the accuracy of
estimates at 0.51, the relationship between confidence and
the other measures were very weak at 0.15 and 0.12 for
precision and accuracy, respectively.

To avoid this restricted range of confidence, a second
analysis examined a small, pre-existing dataset, to test
whether number preferences (precision) were observed in a
memory task. The data-set was from an unpublished
anchoring experiment in which 15 university graduates (5
male, mean age = 31.5, SD = 7.4) had responded to 54
questions (all with numerical answers but of varying
magnitudes). This indicated that, when people had previous
experience of the facts about which they were later asked,
their confidence in their estimates was much higher, but
that they still used precision as a marker of accuracy
(correlation of 0.34). Precision was also observed to have
separate predictive power to the confidence ratings, with the
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partial correlation between precision and
remaining at 0.25 after controlling for confidence.

accuracy

Method
Participants

Participants were 40 university students and members of the
general public, recruited in and around the University of
Adelaide, 27 male, with a mean age of 25.4 (SD = 9.3).
Participants were given a $10 book voucher for their
participation, with an additional $20 voucher offered as a
reward for the most accurate participant.

Materials and Procedure

Materials. 40 almanac-style questions of fact were selected
from across a range of topics. All questions had numerical
answers that were 4 digits in length (i.e., between 1000 and
9999) and none ended in a zero.

Procedure. Testing was divided into a learning and a
testing phase — both computerized and presented via
graphical user interfaces (GUIs) designed in Matlab.

During the learning phase, participants were presented
with all forty questions, rewritten as statements of fact. They
were allowed to look at each of these for as long as they
chose before continuing to the next but could not, thereafter,
return to look at the same fact again. There was then a two
minute break while the experimenter closed the learning
GUI and opened the testing GUI.

The testing GUI then presented 20 of the 40 questions
(the same 20 for all participants), one at a time, asking
participants to enter their answer to the question directly
into the GUI and then to indicate how confident they were
in that answer using a slider that took values from O to 10.

The questions in the learning and testing phases were in
the same order for all participants but the two phases had
different question orders. Participants were tested
individually and most completed the task within 30 minutes.

Results
Measures

Participant performance was measured in three ways. First,
their accuracy on the questions was measured — as the
absolute percentage error in their estimates. This was
assigned a negative value so that higher values correspond
to higher accuracy.

Second, their confidence in each estimate was recorded —
this being simply their explicit confidence rating from 0
(low confidence) to 10 (high confidence).

Finally, the degree of precision at which they had
answered the question was recorded. This measure was
simply the number of zeros that their estimate ended in.
Thus a fully precise answer, ending in a non-zero digit, was
scored ‘0’, whereas an answer that was a multiple of ten
scored ‘1’, and a multiple of one hundred ‘2’. Precision
scores within the sample ranged from O to 3. These values
were then inverted such that high values correspond to high

precision and vice versa.

Analyses

Given that we had 40 participants all complete the same
twenty questions, we aggregate data at the participant level
and report, for example, the distribution of participants’
average accuracy across the 20 questions. Similarly,
correlations between our measures of interest are calculated
for each participant and the distributions of these discussed.

Number Preferences

The first question we asked of the data was: are people
showing number preferences? That is, even in this
experiment where none of the true answers that the
participants saw ended in a zero, would people still report
answers ending in zeros or would they, instead, always
given fully precise responses?

Figure 1 shows how often participants gave fully
specified (to the last digit) responses to the 20 questions.
Looking here, one can see that, despite the fact that all
questions had answers specified to the last digit, there are
strong preferences toward estimates ending in zeros. While
there are seven participants in Figure 1 who always gave
answers that were precise to the last digit (the peak at the far
right), one can see that the majority of people gave some or
even all of their answers rounded to the nearest ten (or
hundred or thousand).The average number of fully precise
answers per participant was 9.75 — slightly less than half.

Figure 1. Histogram showing to how many of the twenty
questions participants gave fully precise responses (i.e., no
final zeros).

MNurnber of Ppts
o ra s [a2] =x)

a 5 10 15 20
Mumber of Fully Precise Answers

This is, of course, far fewer than one would expect by
chance — assuming a 1 in 10 chance of an estimate ending in
a zero, the probability of seeing 410/800 estimates ending in

zeros is vanishingly small, p = 2.3x10™ — so it seems
uncontroversial to conclude that number preferences are
observed in the sample.

Accuracy, Confidence and Precision

As an initial test of the relationships between accuracy,
confidence and precision, we calculated rank-order
correlations between the three variables for each participant.
These are summarized in Figure 2.

Looking at Figure 2, one sees relationships that are,
generally, in the expected directions in all three subplots.
Participants whose estimates were more accurate tended to
be more confident in those answers (34 of 40 correlations
being positive, mean p = .27). Similarly, people who gave
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more precise answers tended to be more accurate (29 of 40
correlations being positive, mean p = .22). Finally,
confidence and precision are related in a straightforward
manner — with high confidence tending to be partnered with
high precision (31 of 40 correlations, mean p = .42).

Figure 2. Histograms of rank order correlation strengths
between each of Accuracy, Precision and Confidence for 40
participants.
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In all cases, a sign test indicates that the probability of
seeing so many positive correlations in the absence of a
genuine effect is very low, p = 6.9x107, .001 and 9.1x10’5,
respectively.

There are, however, discrepancies in Figure 2 that need
further explanation; specifically, the peaks at zero in
subplots b) and c). These are caused, primarily, by the
minority of people who always gave precise responses and
who, therefore, have a zero correlation between their
precision scores and both accuracy and confidence.

An important question to ask here, however, is whether
these peaks represent those people who remembered the true
answers and were, therefore, able to give highly accurate
and precise answers or whether they reflect an alternative
estimation strategy that avoids the rounded numbers
preferred by most people.

To establish this, we examined the accuracy and
confidence of the participants within this subset of
participants. While statistical analyses on so small a group
(7 participants) are extremely unlikely to demonstrate a
convincing difference, we noted that the mean error of the
‘always precise’ subgroup was actually higher than that of
the remainder of the sample (23.3% vs 12.6% error) and
their confidence was lower (4.7 vs 5.1). That is, the
members of the ‘always precise’ group were both less
accurate and less confident. These effects are very large and
very small, respectively, A = 0.95 and 0.52 (this is a non-
parametric, probability-based effect size measure which
indicates the likelihood of a randomly chosen person from
one group outperforming a randomly chosen person from
the other group; see Ruscio, 2008, for a full explanation).

Thus, it seems reasonable to conclude that these ‘always
precise’ people are not actually the most accurate but rather
seem to have a different estimation strategy from the
remainder of the sample. Rather than using rounding to
represent their uncertainty, these people engage in what
might be thought of as random number entry — entering
seemingly precise but actually meaningless final digits when
they aren’t sure of what the final digit should be.

Of course, an alternative explanation might be that these

people simply recognized that there were no values ending
in zero in the learning phase. This is argued against by the
pilot data, however, where a similar group was seen in
experiments where some answers did end in zero. That is,
even where zero was a possible value, some people seemed
to indicate uncertainty by entering random strings of digits
(such as runs across the keyboard — 123, etc).

Confidence versus Precision

A secondary question that needs to be asked is whether
confidence and precision are, in fact, just two measures of
the same thing — the person’s underlying confidence in their
answer. Even if this were the case, of course, an
understanding of how people use precision to flag their
underlying confidence in an estimate is useful for those
situations where an explicit confidence rating has not been
gathered. Of greater interest, though, is whether, even with
confidence ratings, examination of people’s use of precision
adds further information.

The observation above regarding the subgroup who do not
use precision at all argues for this conclusion as, within that
group, people’s confidence scores still varied despite their
precision scores all being the same. That is, for at least some
people, precision and explicit confidence are different.

To test for any separate relationship between accuracy
and precision, partial correlations were calculated, for each
participant, between these variables, controlling for the
effect of confidence. Figure 3 shows the distribution of
partial correlations from our sample of 40 participants.

Figure 3. Histogram showing 40 participants’ partial
correlations between accuracy and precision, controlling for
confidence.
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Looking at Figure 3, one sees that, even controlling for
confidence, the correlations between accuracy and precision
remain mostly positive (27 of 40), which a sign test signals
as unlikely in the absence of a positive relationship, p =
.008. Excluding those people who never change their
precision (the spike at zero in Figure 3), the average partial
correlation between accuracy and precision is 0.18. That is,
the results suggest a weak but consistent effect. By
comparison, the average partial correlation between
confidence and accuracy, controlling for precision, is only
0.12 — with or without the ‘always precise’ subset of
participants.

Discussion

The results of this experiment reconfirm those from the pilot
work described above. Number preferences, in the form of
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the precision at which people choose to answer a question,
have clear implications for how accurate we should expect
that answer to be and how confident a person is in it.

While the strength of the correlations in our results are
quite weak, we note that our experiment was an artificial
situation where none of the true answers that the participants
saw prior to testing ended in zero, creating a situation where
the effects of precision would be weakest - as this provided
the strongest test of the effect’s existence.

We therefore expect that, in other experimental designs
and, in particular, where uncertainty is greater, the effect
will be magnified — as was observed in our first pilot study.

Case Study: Overconfidence

If, as the above results suggest, the majority of people use
round numbers in a pragmatic manner to indicate the degree
of confidence that they place in an estimate, then this has
clear implications for decision making research where
people give estimates under uncertainty.

For example, following up on the example given in the
introduction, if a person in an overconfidence task has given
end points for an estimated range of 100 and 500, exactly
how confident should we be that they intend for these values
to be interpreted as precise? That is, when they say they are
80% sure that the true value falls between 100 and 500, do
they mean precisely that or something closer to “I am 80%
sure that the true value falls within a range from something
like 100 to something like 500”.

Interpreting such responses in line with the second
meaning requires a reconsideration of results from previous
overconfidence experiments. For example, assuming the
pragmatic rule from the natural science — that is, an estimate
is good to one-half the smallest specified unit - we would
have to acknowledge that a 100-500 range might, in the
mind of its generator, include values as low as 50 or as high
as 550. Therefore, if we fail to take into account the
precision at which responses are given, we may
inadvertently inflate overconfidence.

By way of example, we applied this simple rule to a prior
dataset (Welsh, Bratvold, & Begg, 2005) looking at
overconfidence effects in 80% confidence intervals elicited
from 123 petroleum industry professionals. This study
initially concluded that the participants were overconfident,
with only 42% of estimated 80% confidence ranges
including the true value.

Due to the high degree of uncertainty in the participants’
estimates, however, more than 95% of estimated ranges in
this sample were bounded by imprecise estimates (multiples
of 10, 100, 100, etc) and, as a result, when we applied the
pragmatic rule of including one-half of the smallest
specified unit to each end of the range, most ranges were
widened. As a result, calibration increased by 9% (to 51%).

The point of this is not that calibration increased — as it
was almost certain to — but rather demonstrating how large
an effect this can have in decision making under uncertainty
and, thus, that experimenters need to consider this as a
source of apparent overconfidence. Of particular interest is

the fact that this difference is of similar magnitude to that
observed by Winman et al (2004) when comparing people’s
evaluation and generation of confidence intervals in
calibration tasks. It, therefore, seems possible, given the
above demonstration, that this effect is largely the result of
researchers misinterpreting people’s responses. That is, if
people interpret numbers given to them in an evaluation task
as precise (as one might expect given the nature of the task)
but naturally generate imprecise end-points for their own
ranges, then this might account for the majority of the
difference in ‘overconfidence’ between generated and
evaluated ranges.

While a 9% change in calibration seems modest, it should
be kept in mind that this can equate to tens of millions of
dollars in industrial decision making. Welsh, Begg and
Bratvold (2007), for example, discuss the economic
significance of overconfidence on an offshore oil and gas
development project, noting that even a 5% change in
calibration can change cost/profit estimates by more than
$22 million.

General Discussion

The data from the experiment described herein (and both
pilot studies) offer support for the idea that number
preferences, in the form of the precision with which a
person answers a question, may reflect that person’s
underlying confidence in their estimates. More specifically,
it seems that the majority of people use the precision of their
estimates to convey some sense of how accurate they
believe their estimates to be.

Interestingly, the effect of precision, while clearly
overlapping the information provided by explicit
confidence, also carried additional information in the main
study and both of our pilots. That is, even when an explicit
confidence rating has been obtained, it remains beneficial to
examine peoples’ precision if one wishes to understand how
good an estimate they believe they have provided.

This is affirmed by the results of our case study, which
shows the marked difference that the inclusion of this
information makes to the interpretation of data gathered in a
typical overconfidence experiment.

Future Research

Given these findings, there are a number of directions that
seem worthwhile pursuing. The first of these involves an
area that we have skirted here — people’s meta-knowledge
regarding confidence and their use of precision. That is, are
people aware of the way in which they use precision as a
marker? At this point, we would predict that the answer is:
no; because if people were aware of their use of imprecise
numbers then one would expect precision and explicit
confidence to be measuring exactly the same thing, which
appears not to be the case. Thus, consideration of number
preferences seems to offer a method for gaining insight into
metacognitive processing in future research.

A secondary question revolves around the use of
multiples of 5, which are also known to be

1525



disproportionately used in estimation tasks. While we did
not include these — as several of our answers ended in “5” -
this additional number preference should be taken into
account in future to truly nail down the effect.

We also need to look at the opposite face of the pragmatic
conversation informed by peoples’ use of precision. That is,
having established that people use precision as a marker of
confidence, we need to confirm whether other people
accurately interpret these numbers.

More generally, our results point to a need for
consideration of individual differences in decision making.
Cognitive biases like overconfidence are often reported as
group effects but a reconsideration of what is happening at
the individual level can shed light on the processes giving
rise to these biases (see, e.g., Welsh & Navarro, 2007).

Conclusion

People use the precision of their estimates as a marker of
how accurate they believe they are. Given this, researchers
relying on elicited values need to take this effect into
account if we are to understand the responses we are given.

In particular, it seems likely that the degree of
overconfidence in elicited ranges may have been over-
estimated as a result of researchers not paying enough
attention to the pragmatic aspects of the communication
between researchers and participants.

To paraphrase Inigo Montoya (from The Princess Bride):
“That number, I do not think it means what you think it
means.”
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