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Abstract

Memory for numbers improves with age and experience. One
source of this improvement may be children’s learning linear
representations of numeric magnitude, but previous evidence
for this hypothesis may have confounded memory span with
linear numerical magnitude representations. To obviate the
influence of memory span on numerical memory, we
examined children’s ability to recall a single number after a
delay, and the relation between recall and performance on
other numeric tasks. Linearity of numerical performance was
consistent across numerical tasks and was highly correlated
with numerical memory. In contrast, recall of numeric
information was not correlated with recall of colors. Results
suggest that linear representations of numeric magnitudes aid
memory for even single numbers.
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Introduction

Both in school and everyday life, children are presented
with a potentially dazzling succession of numbers that they
must remember. Some numbers must be remembered
exactly, such as phone numbers and the answers to
arithmetic problems (6 X 8 = 48). Others only need to be
remembered approximately, such as the number of children
in one’s class, the amount of money in one’s piggy bank, or
the temperature forecast for tomorrow’s weather. When
confronted with a series of numbers in either type of
situation—e.g., a digit span task (Dempster, 1981) or a
vignette (Brainerd & Gordon, 1994)—children’s memory
for numbers is much poorer than adults’, and it improves
greatly with age and experience. In this paper, we examine
two theories attempting to explain this improvement in
numerical memory—the working memory theory and the
representational change theory—ancome d report on a
novel memory task (memory for single numbers) that
allowed us to test their predictions.

Working Memory Account

There are at least two potential explanations for age-
related improvements in children’s memory. The first
proposal is that numerical information is better retained as
children age because children’s working memory also
improves, thereby leading to better verbatim memory for
numerical information when more than one number is
presented sequentially (Dempster, 1981). This idea has been
highly influential, and it has led to the digit span task being
used widely as a measure of working memory span. An

important finding in this research is that the number of
digits that can be accurately recalled at age 2 years is about
2, at age 5 about 4, at age 10 about 5, and among adults
about 7 (+/- 2).

Representational Change Account

Another proposal for the source of improvements in
numerical memory came from a recent study by Thompson
and Siegler (2010). They proposed that poor recall of
numerical information could be partly traced to children’s
developing representations of numerical magnitudes.
Specifically, children’s representations of the magnitudes of
symbolic numbers appear to develop iteratively, with
parallel developmental changes occurring over many years
and across many contexts (Opfer & Siegler, in press). Early
in the learning process, numerical symbols are meaningless
stimuli for young preschoolers. For example, 2- and 3-year-
olds who count flawlessly from 1-10 have no idea that 6 >
4, nor do children of these ages know how many objects to
give an adult who asks for 4 or more (Le Corre et al., 2006).
As young children gain experience with the symbols in a
given numerical range and associate them with non-verbal
quantities in that range, they initially map them to a
logarithmically-compressed mental number line (see Figure
1). Over a period that typically lasts 1-3 years for a given
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Figure 1. Depiction of a logarithmically-compressed mental
number line. Within this representation, differences among
numeric values are represented as a function of the
difference in the logarithms of the numbers to be
represented. Thus, differences between 1 and 2 seem larger
than between 5 and 6.
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numerical range (0-10, 0-100, or 0-1,000), children’s
mapping of symbolically expressed numbers to non-verbal
representations changes from a logarithmically-compressed
form to a linear form, where subjective and objective
numerical values increase in a 1:1 fashion (Bertelletti et al.,
2010; Opfer, Thompson, & Furlong, 2010; Siegler & Opfer,
2003; Siegler & Booth, 2004; Thompson & Opfer, 2010).
Use of linear magnitude representations occurs earliest for
the numerals that are most frequent in the environment (i.e.,
the smallest whole numbers) and is gradually extended to
increasingly large numbers (Thompson & Opfer, 2010).

Support for the representational change account came
from a task adapted from Brainerd and Gordon (1994).
Thompson and Siegler (2010; Experiment 2) presented
preschoolers (M = 4.96 years) with a series of numbers in a
vignette and asked them to recall the numbers after a brief
distracter (color/shape/object naming). For example,
children heard, “Mrs. Conway asked students in her school
district about their favorite foods. N; students liked
spaghetti best, N, students liked pizza best, and N3 students
liked chicken nuggets best,” were asked to name four
colors/shapes/objects, and then asked, “How many students
liked spaghetti best? How many students liked pizza best?
How many students liked chicken nuggets best?” (see
supporting materials for Thompson & Siegler, 2010,
Experiment 3).

Thompson and Siegler (2010) made two observations
supporting the idea that linear numerical-magnitude
representations aid memory for numerical information.
First, linearity of number line and number categorization
were highly correlated with memory accuracy, whereas
accuracy itself was not. Thus, a third variable (such as
overall numeric proficiency) was unlikely to be a source of
the correlation between numerical estimation and numerical
memory. Further, memory accuracy was negatively
correlated with the magnitude of the number given. This
finding is important because if numeric symbols are mapped
with a constant noisiness to a logarithmically-scaled mental
number line (as in Figure 1), then signal overlap increases
dramatically with numerical value, thereby leading to
significant interference from adjacent values as the target
number increases. Interference from highly similar
exemplars is a well-known source of errors in recall
(Schacter, Norman, & Koustaal, 1998), yet it would not be
predicted if children’s memory for numbers depended solely
on their memory span.

The Current Study

In this study, we investigated a potential source of
concern in the evidence supporting the representational
change account. That is, individual and developmental
differences exist in memory span (Dempster, 1981), thereby
leading to a potential confound existing between memory
span (or memory strategies) and the development of
numerical representations, thereby leading to a spurious
correlation between linearity of numerical estimation and

span-based numerical memory. This concern seems justified
by two considerations. First, previous studies have shown a
correlation between working memory and linear numerical
estimation performance (e.g., Geary, Hoard, Byrd-Craven,
Nugent, & Numtree, 2007). Thus, working memory
differences cannot be ruled out as a source of individual
differences in numerical memory that would also correlate
with linear numerical estimation. Second, the sum of
numbers to be recalled and the number of distractors in
Thompson & Siegler’s (2010) study would have been at the
edge of many children’s memory span, leading many
children to fail to recall numeric information if memory
span were a contributor to numerical memory.

To address these concerns, the current study tested
children’s memory for a single number after a brief delay,
thereby obviating any potential contribution of individual
differences in working memory span to numerical memory.
As in Thompson and Siegler (2010; Exp 2), we examined
(1) the memory of preschoolers for numbers 0-20 because
preschoolers vary in whether they represent these numbers
as increasing linearly (Thompson & Siegler, 2010; Bertelleti
et al., 2010), (2) the degree to which children’s estimates of
the positions of numbers on number lines increased linearly
with actual numeric value, and (3) children’s counting
accuracy when asked to count numbers from 0-20.
Additionally, we examined children’s performance on a
“give-a-number” task (Wynn, 1990) because performance
on this task has been reported to show a similar logarithmic-
to-linear shift (Opfer, Thompson, & Furlong, 2010) and no
relation to counting accuracy (Le Corre et al., 2006), and to
indicate children’s realization that their counts denote
cardinal values (Sarnecka & Carey, 2008).

Method

Participants

Thirty-two participants were recruited from 3 child-care
centers in the Columbus metro area. Children were aged 3
years (n = 10, M = 3.63), 4 years (n = 12, M = 4.51), and 5
years (n =10, M =5.41).

Tasks

For all tasks, children were presented with 8 numbers in
randomized order. We presented the same numbers used in
Berteletti, Lucangeli, Piazza, Dehaene, and Zorzi (2010): 2,
4,6,7,13,15, 16, and 18.

Counting task. On the counting task, children were
presented with a stack of 8 poster board strips, one at a time,
with a different number of white, equally-spaced poker
chips attached to the strips. Each subject was told, “This
game is a secret number game. You have to find out how
many chips there are on this card.” Children were neither
encouraged nor discouraged to count, so that they would use
their own strategies.
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Number/color recall task. The numerical recall task
immediately followed the counting task. After explaining
the counting task to the subject, the experimenter continued,
“Then, I’'m going to tell you a password.” The experimenter
pointed out a second experimenter, who was seated less than
halfway across the room, and instructed the child that, in a
quiet voice, he or she had to tell the second experimenter a
“password” and then how many chips there were on the
card. The “password” was one of eight colors of
construction paper the experimenter kept in a stack to the
right of the table, and meant as a distractor to prevent the
child from simply rehearsing the number prior to confiding
in the second experimenter.

Upon reaching the second experimenter, the child was
asked to state the secret password (color), then how many
chips there were (number). The second experimenter
recorded the color the child reported, as well as the number
of chips he or she remembered.

Numerical estimation task. Our numerical estimation task
was adopted from Siegler and Opfer (2003). Children were
presented with 8 sheets of paper. On each sheet was a 25 cm
line, flanked by two vertical hatch marks. The value “0” was
written below the vertical hatch mark representing the left
end of the line, and the value “20” was written below the
mark representing the right end of the line. Above the
middle of the line was one of the 8 task numerals, centered
within a circle. The experimenter told subjects, “Today,
we’re going to play a game with number lines. What I’'m
going to ask you to do is show me where on the number line
some numbers are. When you decide where the number
goes, I want you to make a mark through the number line
like this,” and demonstrated the mark. Children were not
corrected on their responses. However, one child opted to
mark outside the boundaries of the line, and was reminded,
“The number goes somewhere on the line.”

Give-a-number task. The give-a-number task was adopted
from Wynn (1990). Children were presented with a pile of
20 blue poker chips and told that the experimenter would
ask them for a number of chips. The child’s task was to
place what he or she believed to be the correct number of
chips before the experimenter. Whether the child presented
the experimenter with a correct or incorrect number of
chips, the experimenter gave only neutral feedback.
Children who claimed they didn’t know how to give the
experimenter a numerical value were prompted with, “Can
you try your best?” Finally, the experimenter would ask,
“And how many is that?” Both the number of chips the
child gave and the child’s verbal response were recorded.

Design and Procedure

Prior to being given the tasks above, children played one of
two games to orient them to the experimenters and tasks.
Board games of identical size were used in each game and
were labeled “The Number Game.” Twenty-two colored
squares of identical size were ordered consecutively on each

board. The first square was labeled “Start,” and the last
square was labeled “Finish.” The squares between the first
and last were consecutively numbered from 1 to 20. The
sole difference between the two games was the arrangement
of the numbers. In one game, the numbered squares were
placed in a horizontal line across the board, arranged left-to-
right. In the other game, the numbered squares were
arranged in a circle, with numbers increasing in value in a
clockwise direction. No effect of game type was observed in
the data.

After the orientation games, experimenters revisited
schools to administer the battery of tasks. The order of
presentation of the tasks was counterbalanced using a Latin
square design, with the exception that the numerical recall
task necessarily followed the counting task. The time lapse
between orientation and tasks for all but one child was one
day. No children were tested more than 4 days following
orientation. Children were tested individually during one
25-minute session occurring in a quiet room in their school.

Results

Our results are divided into two major sections. In the first
section (“Description of Task Performance”), we describe
changes in children’s performance in counting, numerical
memory, numerical estimation, and give-a-number. In the
next section (“Predictors of Numerical Memory”), we
examine the relations among the tasks and the influence of
numerical magnitude on memory.

Description of Task Performance

For each relevant task, we examined accuracy by calculating
the Mean Absolute Percentage Error (MAPE) on the task,
and we examined linearity by calculating the best-fitting
linear function (thn) relating the number given to children
against the number provided in response. To assess the
effect of age, subjects were divided according to a median
split of ages (4.45 years old).

Counting task.

To calculate MAPE for the counting task, we took the
average of the Percentage Absolute Error (PAE), or (|Chips
Shown-Number Counted|)/20¥100, across all trials for a
subject. To calculate linearity (Rznn), we regressed the
number counted by a child on each trial against the number
of chips that were actually shown.

There was an effect of age group on counting accuracy,
F(1,31) = 12.67, p<.01 and linearity, F(1,31) = 8.83, p<.
01. The average MAPE for all subjects was 13.52 (SD =
10.4), and average R?j, for all subjects was .69 (SD = .30).
The MAPE was 19.1 (SD = 11.0) for younger children and
7.96 (SD = 5.9) for older. The average R*;, for younger
children was .55 (SD =.31) and .84 (SD = .22) for older.

Number/color recall task.

As expected, the percentage of numbers and colors that
were accurately recalled improved with age (numbers,
F[1,31]=7.6, p=01; colors, F[1,31]=5.65, p=.02).
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Figure 2. Numerical estimates by age group.

Improvements in number memory (younger, M = 52%;
older, M = 74%) were nominally larger than improvements
in color memory (younger, M = 73%; older, M = 88%),
which was more accurate overall.

MAPE for the numerical recall task was determined
similarly for the counting task, except that PAE was
determined by ([Number Provided by Child - Number
Recalled|)/20*100. Thus, if a child (correctly or incorrectly)
counted 12 chips and then recalled there being 13 chips,
PAE would be 5. PAE was averaged across all trials for a
subject to determine the MAPE.

The average MAPE for all subjects was only 2.66 (SD =
5.8), with error in the younger group’s recall (MAPE = 4.5)
being marginally higher than the older group’s (MAPE =
.83), F(1,31)=3.48 p=.07. Thus, recall for a single number
was much higher than had been observed in Thompson &
Siegler (2010).

Numerical estimation We first examined development of
numerical estimation by measuring age-related changes in
accuracy of number line estimates. Accuracy of estimates
was indexed by percent absolute error (PAE), defined as:
([Jto-be-estimated value — child’s estimate|]/numerical
range) * 100. As expected, accuracy of number line
estimates improved substantially with age, F(1, 31)=9.64,
p<.01, with younger children’s PAE being 30.3 and older
children’s being 18.1.

Previous work explained age-related changes in accuracy
of number line estimates as coming from a logarithmic to
linear shift in representations of numerical magnitude (see
Opfer & Siegler, in press, for review). Consistent with this
idea, we found that linearity of estimates improved with age
(see Figure 2). Estimates of 3- and 4-year-olds increased
logarithmically with actual value (3s: Rzk,g = .39, Rzlin =
.35; 4s Rzlog = .92, RY;, = .90), whereas estimates of 5-year-
olds increased linearly with actual value (R21og =91, R}, =
.96).

Give-a-number task. We next examined development of
numerical recall by measuring age-related changes in
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accuracy on the give-a-number task. Accuracy of estimates
was again indexed by MAPE, [(jnumber requested — number
given by child|)/20] * 100. As expected, accuracy improved
substantially with age, F(1, 31)=30.58, p<. 01, with younger
children’s MAPE being 23.0 (SD=11.8), and older
children’s being 4.65 (SD=6.1).

Predictors of Memory Performance

Might improvements in memory accuracy—like
improvements in accuracy of counting, numerical estimates,
and give-a-number—be caused by a shift to linear
representations of numerical value? Several observations
suggest this might be the case.

Memory: Counting: Number Line:  gje.A-
Number:
Task/Measure % recall _Linearity MAPE Linearity MAPE _Linearity
Counting:
Linearity  .51**
MAPE  -43* -.88**
Number Line:
Linearity — -.28 42" -41*
MAPE -39 =57 49%  -84*
Give-A-Number:
Linearity 51" g9 767 38 -52%
MAPE _ -36* =59 61 -35f 44 -T76%

1<.10. *p<.05. *p<.01
Table 1. Relations among task performance.

First, as indicated in Table 1, accuracy of recall was
negatively correlated with errors on all three number tasks:
counting (r = -.43, p<.05), number line estimation (r = -.37,
p<.05), and give-a-number (r = -.36, p<.05). In contrast,
accuracy of recall for colors failed to correlate with
accuracy of recall for numbers. Additionally, linearity on
number tasks was a consistent predictor of numerical recall.

These correlations indicate that linear representations of
numerical magnitude—whether assessed by counting, by
numerical estimation, or by give-a-number—are central in
children’s ability to recall numeric information, as
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suggested by the representational change hypothesis.
Further, they show that these correlations are not simply
driven by children’s overall memory ability. If they were,
ability to recall color would be at least as good a predictor
of numerical recall as numerical accuracy or linearity.

Second, we observed that children who were most linear
on one type of numeric task tended to be the most linear on
another numerical task. Thus, linearity of counting
correlated highly with linearity of numerical estimation (» =
42, p<. 05) and linearity of give-a-number (» = .79, p<. 01),
and linearity of numerical estimation correlated with give-a-
number (r=.38, p<.05). Thus, linearity of numerical
performance appears to be a coherent source of individual
differences, one that we have seen to predict individual
differences in numerical memory.

Finally, we also examined whether there were differences
in recall for large versus small numbers. This size effect is a
straightforward prediction of recall depending on
representations of numerical value. To test this, we
examined memory for numbers that were below or above
10, and we divided children into two groups relative to the
median split of ages for subjects in the study (4.61 years
old). As predicted, an ANOVA showed a main effect of
numeric magnitude on recall accuracy, F (1,192) = 4.54, p<.
05, especially among the younger children (see Figure 2).

Effect of Age & Count Range
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Figure 2. Relation between the magnitude of the number to
be recalled and error in recall performance, for younger
(white circles) and older (black circles) children.

General Discussion

Previous work has indicated that the development of
linear representations of numerical magnitudes profoundly
expands children’s quantitative thinking. It improves
children’s ability to estimate the positions of numbers on
number lines (Siegler & Opfer, 2003), to estimate the
measurements of continuous and discrete quantities
(Thompson & Siegler, 2010), to categorize numbers
according to size (Opfer & Thompson, 2008), and to
estimate and learn the answers to arithmetic problems
(Booth & Siegler, 2008). Recent work has also indicated
that the logarithmic-to-linear shift is associated with
improved memory for numbers (Thompson & Siegler,
2010).

In this paper, we took a critical look at the
representational change theory of development of numerical
recall. We were particularly interested in whether it could
account for changes in memory for single numbers. This
issue is important because previous work could not rule out
the influence of working memory span on numerical
memory. In this way, we provided a particularly robust test
of the theory.

Consistent with the representational change account, we
found that linearity of numerical performance—whether
linearity in counting, in estimating the position of numbers
on number lines, or (to a lesser extent) in providing numbers
of chips to verbally requested numbers—was positively
correlated with accuracy of numerical recall. This positive
association could not be explained simply by children
getting more accurate on numerical tasks: accuracy was
typically a poor predictor of numerical recall. Nor could this
association be explained by numerically proficient children
simply getting better at remembering items generally:
accuracy at remembering colors was also a poor predictor of
accuracy at remembering numbers. Rather, the high
correlations of linearity among the numerical tasks suggests
that there are stable individual differences in linearity of
numerical representations, and these individual differences
in linearity improve recall for even single numerical values.

Beyond demonstrating that linear spatial-numeric
associations are associated with improved memory for
numbers, the present results also help to explain the positive
relation between linear numeric magnitude representations
and arithmetic proficiency. That is, if learning linear spatial-
numeric associations improves memory for single numbers
as well as multiple numbers presented in vignettes, it is
highly likely it also improves memory for numbers in other
contexts, such as memorizing arithmetic facts. In this way,
the present results suggest a plausible explanation for the
observed association between numerical estimation and
mathematics course grades (Opfer & Siegler, in press), and
it suggests that numerical memory may moderate this link.
Although this account is admittedly speculative, we believe
it is an important issue for future research.
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