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Abstract 
Memory for numbers improves with age and experience. One 
source of this improvement may be children’s learning linear 
representations of numeric magnitude, but previous evidence 
for this hypothesis may have confounded memory span with 
linear numerical magnitude representations. To obviate the 
influence of memory span on numerical memory, we 
examined children’s ability to recall a single number after a 
delay, and the relation between recall and performance on 
other numeric tasks. Linearity of numerical performance was 
consistent across numerical tasks and was highly correlated 
with numerical memory. In contrast, recall of numeric 
information was not correlated with recall of colors. Results 
suggest that linear representations of numeric magnitudes aid 
memory for even single numbers.  

Keywords: number representations; numerical estimation; 
memory 

Introduction 
Both in school and everyday life, children are presented 

with a potentially dazzling succession of numbers that they 
must remember. Some numbers must be remembered 
exactly, such as phone numbers and the answers to 
arithmetic problems (6 X 8 = 48). Others only need to be 
remembered approximately, such as the number of children 
in one’s class, the amount of money in one’s piggy bank, or 
the temperature forecast for tomorrow’s weather. When 
confronted with a series of numbers in either type of 
situation—e.g., a digit span task (Dempster, 1981) or a 
vignette (Brainerd & Gordon, 1994)—children’s memory 
for numbers is much poorer than adults’, and it improves 
greatly with age and experience. In this paper, we examine 
two theories attempting to explain this improvement in 
numerical memory—the working memory theory and the 
representational change theory—ancome d report on a 
novel memory task (memory for single numbers) that 
allowed us to test their predictions.  

Working Memory Account 
There are at least two potential explanations for age-

related improvements in children’s memory. The first 
proposal is that numerical information is better retained as 
children age because children’s working memory also 
improves, thereby leading to better verbatim memory for 
numerical information when more than one number is 
presented sequentially (Dempster, 1981). This idea has been 
highly influential, and it has led to the digit span task being 
used widely as a measure of working memory span. An 

important finding in this research is that the number of 
digits that can be accurately recalled at age 2 years is about 
2, at age 5 about 4, at age 10 about 5, and among adults 
about 7 (+/- 2).  

Representational Change Account 
Another proposal for the source of improvements in 

numerical memory came from a recent study by Thompson 
and Siegler (2010). They proposed that poor recall of 
numerical information could be partly traced to children’s 
developing representations of numerical magnitudes. 
Specifically, children’s representations of the magnitudes of 
symbolic numbers appear to develop iteratively, with 
parallel developmental changes occurring over many years 
and across many contexts (Opfer & Siegler, in press). Early 
in the learning process, numerical symbols are meaningless 
stimuli for young preschoolers. For example, 2- and 3-year-
olds who count flawlessly from 1-10 have no idea that 6 > 
4, nor do children of these ages know how many objects to 
give an adult who asks for 4 or more (Le Corre et al., 2006). 
As young children gain experience with the symbols in a 
given numerical range and associate them with non-verbal 
quantities in that range, they initially map them to a 
logarithmically-compressed mental number line (see Figure 
1). Over a period that typically lasts 1-3 years for a given 

 
Figure 1. Depiction of a logarithmically-compressed mental 
number line. Within this representation, differences among 
numeric values are represented as a function of the 
difference in the logarithms of the numbers to be 
represented. Thus, differences between 1 and 2 seem larger 
than between 5 and 6. 
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numerical range (0-10, 0-100, or 0-1,000), children’s 
mapping of symbolically expressed numbers to non-verbal 
representations changes from a logarithmically-compressed 
form to a linear form, where subjective and objective 
numerical values increase in a 1:1 fashion (Bertelletti et al., 
2010; Opfer, Thompson, & Furlong, 2010; Siegler & Opfer, 
2003; Siegler & Booth, 2004; Thompson & Opfer, 2010). 
Use of linear magnitude representations occurs earliest for 
the numerals that are most frequent in the environment (i.e., 
the smallest whole numbers) and is gradually extended to 
increasingly large numbers (Thompson & Opfer, 2010).  

Support for the representational change account came 
from a task adapted from Brainerd and Gordon (1994). 
Thompson and Siegler (2010; Experiment 2) presented 
preschoolers (M = 4.96 years) with a series of numbers in a 
vignette and asked them to recall the numbers after a brief 
distracter (color/shape/object naming). For example, 
children heard, “Mrs. Conway asked students in her school 
district about their favorite foods. N1 students liked 
spaghetti best, N2 students liked pizza best, and N3 students 
liked chicken nuggets best,” were asked to name four 
colors/shapes/objects, and then asked, “How many students 
liked spaghetti best? How many students liked pizza best? 
How many students liked chicken nuggets best?” (see 
supporting materials for Thompson & Siegler, 2010, 
Experiment 3).  

Thompson and Siegler (2010) made two observations 
supporting the idea that linear numerical-magnitude 
representations aid memory for numerical information. 
First, linearity of number line and number categorization 
were highly correlated with memory accuracy, whereas 
accuracy itself was not. Thus, a third variable (such as 
overall numeric proficiency) was unlikely to be a source of 
the correlation between numerical estimation and numerical 
memory. Further, memory accuracy was negatively 
correlated with the magnitude of the number given. This 
finding is important because if numeric symbols are mapped 
with a constant noisiness to a logarithmically-scaled mental 
number line (as in Figure 1), then signal overlap increases 
dramatically with numerical value, thereby leading to 
significant interference from adjacent values as the target 
number increases. Interference from highly similar 
exemplars is a well-known source of errors in recall 
(Schacter, Norman, & Koustaal, 1998), yet it would not be 
predicted if children’s memory for numbers depended solely 
on their memory span. 

  
The Current Study  

In this study, we investigated a potential source of 
concern in the evidence supporting the representational 
change account. That is, individual and developmental 
differences exist in memory span (Dempster, 1981), thereby 
leading to a potential confound existing between memory 
span (or memory strategies) and the development of 
numerical representations, thereby leading to a spurious 
correlation between linearity of numerical estimation and 

span-based numerical memory. This concern seems justified 
by two considerations. First, previous studies have shown a 
correlation between working memory and linear numerical 
estimation performance (e.g., Geary, Hoard, Byrd-Craven, 
Nugent, & Numtree, 2007). Thus, working memory 
differences cannot be ruled out as a source of individual 
differences in numerical memory that would also correlate 
with linear numerical estimation. Second, the sum of 
numbers to be recalled and the number of distractors in 
Thompson & Siegler’s (2010) study would have been at the 
edge of many children’s memory span, leading many 
children to fail to recall numeric information if memory 
span were a contributor to numerical memory.  

 To address these concerns, the current study tested 
children’s memory for a single number after a brief delay, 
thereby obviating any potential contribution of individual 
differences in working memory span to numerical memory. 
As in Thompson and Siegler (2010; Exp 2), we examined 
(1) the memory of preschoolers for numbers 0-20 because 
preschoolers vary in whether they represent these numbers 
as increasing linearly (Thompson & Siegler, 2010; Bertelleti 
et al., 2010), (2) the degree to which children’s estimates of 
the positions of numbers on number lines increased linearly 
with actual numeric value, and (3) children’s counting 
accuracy when asked to count numbers from 0-20. 
Additionally, we examined children’s performance on a 
“give-a-number” task (Wynn, 1990) because performance 
on this task has been reported to show a similar logarithmic-
to-linear shift (Opfer, Thompson, & Furlong, 2010) and no 
relation to counting accuracy (Le Corre et al., 2006), and to 
indicate children’s realization that their counts denote 
cardinal values (Sarnecka & Carey, 2008).  

Method 

Participants 
Thirty-two participants were recruited from 3 child-care 
centers in the Columbus metro area. Children were aged 3 
years (n = 10, M = 3.63), 4 years (n = 12, M = 4.51), and 5 
years (n = 10, M = 5.41).  

Tasks 
For all tasks, children were presented with 8 numbers in 
randomized order. We presented the same numbers used in 
Berteletti, Lucangeli, Piazza, Dehaene, and Zorzi (2010): 2, 
4, 6, 7, 13, 15, 16, and 18. 
 
Counting task. On the counting task, children were 
presented with a stack of 8 poster board strips, one at a time, 
with a different number of white, equally-spaced poker 
chips attached to the strips. Each subject was told, “This 
game is a secret number game. You have to find out how 
many chips there are on this card.” Children were neither 
encouraged nor discouraged to count, so that they would use 
their own strategies.  
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Number/color recall task. The numerical recall task 
immediately followed the counting task. After explaining 
the counting task to the subject, the experimenter continued, 
“Then, I’m going to tell you a password.” The experimenter 
pointed out a second experimenter, who was seated less than 
halfway across the room, and instructed the child that, in a 
quiet voice, he or she had to tell the second experimenter a 
“password” and then how many chips there were on the 
card. The “password” was one of eight colors of 
construction paper the experimenter kept in a stack to the 
right of the table, and meant as a distractor to prevent the 
child from simply rehearsing the number prior to confiding 
in the second experimenter.  
   Upon reaching the second experimenter, the child was 
asked to state the secret password (color), then how many 
chips there were (number). The second experimenter 
recorded the color the child reported, as well as the number 
of chips he or she remembered. 
 
Numerical estimation task. Our numerical estimation task 
was adopted from Siegler and Opfer (2003). Children were 
presented with 8 sheets of paper. On each sheet was a 25 cm 
line, flanked by two vertical hatch marks. The value “0” was 
written below the vertical hatch mark representing the left 
end of the line, and the value “20” was written below the 
mark representing the right end of the line. Above the 
middle of the line was one of the 8 task numerals, centered 
within a circle. The experimenter told subjects, “Today, 
we’re going to play a game with number lines. What I’m 
going to ask you to do is show me where on the number line 
some numbers are. When you decide where the number 
goes, I want you to make a mark through the number line 
like this,” and demonstrated the mark. Children were not 
corrected on their responses. However, one child opted to 
mark outside the boundaries of the line, and was reminded, 
“The number goes somewhere on the line.” 

 
Give-a-number task. The give-a-number task was adopted 
from Wynn (1990). Children were presented with a pile of 
20 blue poker chips and told that the experimenter would 
ask them for a number of chips. The child’s task was to 
place what he or she believed to be the correct number of 
chips before the experimenter. Whether the child presented 
the experimenter with a correct or incorrect number of 
chips, the experimenter gave only neutral feedback. 
Children who claimed they didn’t know how to give the 
experimenter a numerical value were prompted with, “Can 
you try your best?” Finally, the experimenter would ask, 
“And how many is that?” Both the number of chips the 
child gave and the child’s verbal response were recorded. 

Design and Procedure 
Prior to being given the tasks above, children played one of 
two games to orient them to the experimenters and tasks. 
Board games of identical size were used in each game and 
were labeled “The Number Game.” Twenty-two colored 
squares of identical size were ordered consecutively on each 

board. The first square was labeled “Start,” and the last 
square was labeled “Finish.” The squares between the first 
and last were consecutively numbered from 1 to 20. The 
sole difference between the two games was the arrangement 
of the numbers. In one game, the numbered squares were 
placed in a horizontal line across the board, arranged left-to-
right. In the other game, the numbered squares were 
arranged in a circle, with numbers increasing in value in a 
clockwise direction. No effect of game type was observed in 
the data.  
   After the orientation games, experimenters revisited 
schools to administer the battery of tasks. The order of 
presentation of the tasks was counterbalanced using a Latin 
square design, with the exception that the numerical recall 
task necessarily followed the counting task. The time lapse 
between orientation and tasks for all but one child was one 
day. No children were tested more than 4 days following 
orientation. Children were tested individually during one 
25-minute session occurring in a quiet room in their school. 

Results 
Our results are divided into two major sections. In the first 
section (“Description of Task Performance”), we describe 
changes in children’s performance in counting, numerical 
memory, numerical estimation, and give-a-number. In the 
next section (“Predictors of Numerical Memory”), we 
examine the relations among the tasks and the influence of 
numerical magnitude on memory. 

Description of Task Performance 
For each relevant task, we examined accuracy by calculating 
the Mean Absolute Percentage Error (MAPE) on the task, 
and we examined linearity by calculating the best-fitting 
linear function (R2

lin) relating the number given to children 
against the number provided in response. To assess the 
effect of age, subjects were divided according to a median 
split of ages (4.45 years old).  
 
Counting task.  
To calculate MAPE for the counting task, we took the 
average of the Percentage Absolute Error (PAE), or (|Chips 
Shown-Number Counted|)/20*100, across all trials for a 
subject. To calculate linearity (R2

lin), we regressed the 
number counted by a child on each trial against the number 
of chips that were actually shown. 

There was an effect of age group on counting accuracy, 
F(1,31) = 12.67, p<.01 and linearity, F(1,31) = 8.83, p<. 
01. The average MAPE for all subjects was 13.52 (SD = 
10.4), and average R2

lin for all subjects was .69 (SD = .30). 
The MAPE was 19.1 (SD = 11.0) for younger children and 
7.96 (SD = 5.9) for older. The average R2

lin for younger 
children was .55 (SD = .31) and .84 (SD = .22) for older.  

 
Number/color recall task.  

As expected, the percentage of numbers and colors that 
were accurately recalled improved with age (numbers, 
F[1,31]=7.6, p=.01; colors, F[1,31]=5.65, p=.02). 
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Figure 2.  Numerical estimates by age group. 
 

 

Improvements in number memory (younger, M = 52%; 
older, M = 74%) were nominally larger than improvements 
in color memory (younger, M = 73%; older, M = 88%), 
which was more accurate overall. 

MAPE for the numerical recall task was determined 
similarly for the counting task, except that PAE was 
determined by (|Number Provided by Child - Number 
Recalled|)/20*100. Thus, if a child (correctly or incorrectly) 
counted 12 chips and then recalled there being 13 chips, 
PAE would be 5. PAE was averaged across all trials for a 
subject to determine the MAPE.  

The average MAPE for all subjects was only 2.66 (SD = 
5.8), with error in the younger group’s recall (MAPE = 4.5) 
being marginally higher than the older group’s (MAPE = 
.83), F(1,31)=3.48 p=.07. Thus, recall for a single number 
was much higher than had been observed in Thompson & 
Siegler (2010).  

 
Numerical estimation We first examined development of 
numerical estimation by measuring age-related changes in 
accuracy of number line estimates. Accuracy of estimates 
was indexed by percent absolute error (PAE), defined as: 
([|to-be-estimated value – child’s estimate|]/numerical 
range) * 100. As expected, accuracy of number line 
estimates improved substantially with age, F(1, 31)=9.64, 
p<.01, with younger children’s PAE being 30.3 and older 
children’s being 18.1. 

Previous work explained age-related changes in accuracy 
of number line estimates as coming from a logarithmic to 
linear shift in representations of numerical magnitude (see 
Opfer & Siegler, in press, for review). Consistent with this 
idea, we found that linearity of estimates improved with age 
(see Figure 2).  Estimates of 3- and 4-year-olds increased 
logarithmically with actual value (3s:  R2

log = .39, R2
lin = 

.35; 4s R2
log = .92, R2

lin = .90), whereas estimates of 5-year-
olds increased linearly with actual value (R2

log = .91, R2
lin = 

.96).  
 

Give-a-number task. We next examined development of 
numerical recall by measuring age-related changes in 

accuracy on the give-a-number task. Accuracy of estimates 
was again indexed by MAPE, [(|number requested – number 
given by child|)/20] * 100. As expected, accuracy improved 
substantially with age, F(1, 31)=30.58, p<. 01, with younger 
children’s MAPE being 23.0 (SD=11.8), and older 
children’s being 4.65 (SD=6.1). 

Predictors of Memory Performance 
Might improvements in memory accuracy—like 
improvements in accuracy of counting, numerical estimates, 
and give-a-number—be caused by a shift to linear 
representations of numerical value? Several observations 
suggest this might be the case.  
 

Table 1. Relations among task performance. 
 

First,  as indicated in Table 1, accuracy of recall was 
negatively correlated with errors on all three number tasks: 
counting (r = -.43, p<.05), number line estimation (r = -.37, 
p<.05), and give-a-number (r = -.36, p<.05). In contrast, 
accuracy of recall for colors failed to correlate with 
accuracy of recall for numbers. Additionally, linearity on 
number tasks was a consistent predictor of numerical recall.  

These correlations indicate that linear representations of 
numerical magnitude—whether assessed by counting, by 
numerical estimation, or by give-a-number—are central in 
children’s ability to recall numeric information, as 
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suggested by the representational change hypothesis. 
Further, they show that these correlations are not simply 
driven by children’s overall memory ability. If they were, 
ability to recall color would be at least as good a predictor 
of numerical recall as numerical accuracy or linearity. 

Second, we observed that children who were most linear 
on one type of numeric task tended to be the most linear on  
another numerical task. Thus, linearity of counting 
correlated highly with linearity of numerical estimation (r = 
.42, p<. 05) and linearity of give-a-number (r = .79, p<. 01), 
and linearity of numerical estimation correlated with give-a-
number (r=.38, p<.05). Thus, linearity of numerical 
performance appears to be a coherent source of individual 
differences, one that we have seen to predict individual 
differences in numerical memory.  

Finally, we also examined whether there were differences 
in recall for large versus small numbers. This size effect is a 
straightforward prediction of recall depending on 
representations of numerical value. To test this, we 
examined memory for numbers that were below or above 
10, and we divided children into two groups relative to the 
median split of ages for subjects in the study (4.61 years 
old). As predicted, an ANOVA showed a main effect of 
numeric magnitude on recall accuracy, F (1,192) = 4.54, p<. 
05, especially among the younger children (see Figure 2).  

 

 
 
Figure 2. Relation between the magnitude of the number to 
be recalled and error in recall performance, for younger 
(white circles) and older (black circles) children. 

General Discussion 
 

Previous work has indicated that the development of 
linear representations of numerical magnitudes profoundly 
expands children’s quantitative thinking. It improves 
children’s ability to estimate the positions of numbers on 
number lines (Siegler & Opfer, 2003), to estimate the 
measurements of continuous and discrete quantities 
(Thompson & Siegler, 2010), to categorize numbers 
according to size (Opfer & Thompson, 2008), and to 
estimate and learn the answers to arithmetic problems 
(Booth & Siegler, 2008). Recent work has also indicated 
that the logarithmic-to-linear shift is associated with 
improved memory for numbers (Thompson & Siegler, 
2010).  

In this paper, we took a critical look at the 
representational change theory of development of numerical 
recall. We were particularly interested in whether it could 
account for changes in memory for single numbers. This 
issue is important because previous work could not rule out 
the influence of working memory span on numerical 
memory. In this way, we provided a particularly robust test 
of the theory. 

Consistent with the representational change account, we 
found that linearity of numerical performance—whether 
linearity in counting, in estimating the position of numbers 
on number lines, or (to a lesser extent) in providing numbers 
of chips to verbally requested numbers—was positively 
correlated with accuracy of numerical recall. This positive 
association could not be explained simply by children 
getting more accurate on numerical tasks: accuracy was 
typically a poor predictor of numerical recall. Nor could this 
association be explained by numerically proficient children 
simply getting better at remembering items generally: 
accuracy at remembering colors was also a poor predictor of 
accuracy at remembering numbers. Rather, the high 
correlations of linearity among the numerical tasks suggests 
that there are stable individual differences in linearity of 
numerical representations, and these individual differences 
in linearity improve recall for even single numerical values. 

Beyond demonstrating that linear spatial-numeric 
associations are associated with improved memory for 
numbers, the present results also help to explain the positive 
relation between linear numeric magnitude representations 
and arithmetic proficiency. That is, if learning linear spatial-
numeric associations improves memory for single numbers 
as well as multiple numbers presented in vignettes, it is 
highly likely it also improves memory for numbers in other 
contexts, such as memorizing arithmetic facts. In this way, 
the present results suggest a plausible explanation for the 
observed association between numerical estimation and 
mathematics course grades (Opfer & Siegler, in press), and 
it suggests that numerical memory may moderate this link. 
Although this account is admittedly speculative, we believe 
it is an important issue for future research.  
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