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Abstract 

Memory for numbers improves with age and experience. We 
tested the hypothesis that one source of this improvement is a 
logarithmic-to-linear shift in children’s representations of 
numeric magnitude. In Experiment 1, we found that linearity 
of representations improved with age and that the more linear 
children’s magnitude representations were, the more closely 
their memory of the numbers approximated the numbers 
presented. In Experiment 2, we trained children on a linear 
spatial-numeric association, and we found that children who 
learned to represent numbers as increasing linearly with 
numeric magnitude also improved their memory for numbers. 
These results suggest that linear spatial-numeric associations 
are both correlated with and causally related to development 
of numeric memory.   

Keywords: spatial-numeric associations; number 
representations; numerical estimation; memory 

Introduction 
Remembering numeric information is an important part of 

daily life. Sometimes it is necessary to remember numeric 
information exactly (e.g., social security numbers, phone 
numbers, flight numbers, street addresses), whereas other 
times remembering the general gist of numeric information 
will suffice (e.g., savings account balances, temperatures, 
number of students in a lecture hall). Across both types of 
memory, children’s memory for numbers improves greatly 
with age and experience (Dempster, 1981; Brainerd & 
Gordon, 1994). Here we tested the hypothesis that 
children’s numerical memory improves with age due to 
changes in how children represent numerical magnitudes. 

Development of Numerical Representations. Children’s 
representations of the magnitudes of symbolic numbers 
appears to develop iteratively, with parallel developmental 
changes occurring over many years and across many 
contexts (Opfer & Siegler, in press). Early in the learning 
process, numerical symbols are meaningless stimuli for 
young preschoolers. For example, 2- and 3-year-olds who 
count flawlessly from 1-10 have no idea that 6 > 4, nor do 
children of these ages know how many objects to give an 
adult who asks for 4 or more (Le Corre et al., 2006). As 
young children gain experience with the symbols in a given 
numerical range and associate them with non-verbal 
quantities in that range, they initially map them to a 
logarithmically-compressed mental number line. Over a 
period that typically lasts 1-3 years for a given numerical 

range (0-10, 0-100, or 0-1,000), children’s mapping of 
symbolically expressed numbers to non-verbal 
representations changes from a logarithmically-compressed 
form to a linear form, where subjective and objective 
numerical values increase in a 1:1 fashion (Bertelletti et al., 
2010; Opfer, Thompson, & Furlong, 2010; Siegler & Opfer, 
2003; Siegler & Booth, 2004; Thompson & Opfer, 2010). 
Use of linear magnitude representations occurs earliest for 
the numerals that are most frequent in the environment, that 
is the smallest whole numbers, and is gradually extended to 
increasingly larger numbers (Thompson & Opfer, 2010).  

Changes in numerical representations occur not only with 
increasing age, but also with specific experiences designed 
to train linear spatial-numeric associations. For instance, 
Opfer and Siegler (2007) provided second graders with 
corrective feedback on the location of numbers near 150, the 
maximally discrepant point between a logarithmic and linear 
function forced to pass through 0 and 1,000 (see Figure 1). 
After receiving feedback, children adopted a linear 
representation that spanned the entire 0-1,000 numeric 
range.  

       
Figure 1: Logarithmic and linear functions. Distance 

between representations is greatest at 150 (725 vs. 150); this 
means that the logarithmic function increases more than the 
linear representation between each successive pair of 
numbers up to 150, but increases less than the linear 
function above 150. Thus, numbers below 150 are more 
discriminable in the logarithmic representation, and 
numbers above 150 are more discriminable in the linear 
representation. 
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Whether occurring with age or with specific training 
experiences, the logarithmic-to-linear shift in children’s 
representations of symbolic quantities expands children’s 
quantitative thinking profoundly. It improves children’s 
ability to estimate the positions of numbers on number lines 
(Siegler & Opfer, 2003), to estimate the measurements of 
continuous and discrete quantities (Thompson & Siegler, 
2010), to categorize numbers according to size (Opfer & 
Thompson, 2008), and to estimate and learn the answers to 
arithmetic problems (Booth & Siegler, 2008).  

 Relation between Numerical Representations and 
Numerical Memory. Recently, Thompson and Siegler 
(2010) found that individual differences in the numerical 
representation (logarithmic or linear) that children used to 
estimate numbers on 0-1,000 number lines was associated 
with their ability to recall large numbers (>150). Their 
reasoning was that children who possessed a linear 
representation of numbers were better able to differentiate 
the large numbers (see Figure 1), and thus to remember 
them after a delay.  

If true, this account has important theoretical and practical 
implications. Theoretically, it might explain the previously 
observed association between age and ability to remember 
numbers (e.g., Brainerd & Gordon, 1994).  Practically, it 
suggests that children’s memory for numbers could also be 
improved by engendering the logarithmic-to-linear shift 
observed in the training studies (e.g., Opfer & Siegler, 2007; 
Opfer & Thompson, 2008). Testing this practical 
implication is also theoretically interesting because it would 
provide evidence for a causal link between numerical 
representations and memory, as opposed to just a correlation 
that might be equally well-explained by a third variable 
(such as increasing mathematical proficiency). 

The Current Study.  The current series of experiments 
were designed to test for a causal link between children’s 
numerical representations and their numerical memory. In 
Experiment 1, Kindergartners, second graders, and adults 
estimated numbers in the 0-1,000 range and recalled 
numbers presented in meaningful vignettes. The purpose of 
Experiment 1 was to investigate the unique contributions of 
both age and quality of numerical representations to 
accuracy in numerical recall, as well as to identify children 
who would benefit from training in Experiment 2.  

In Experiment 2, Kindergartners and second graders 
received training on the number-line estimation task, 
following the procedure used in Opfer and Siegler (2007). 
Our goal in Experiment 2 was to investigate whether 
adoption of linear spatial-numeric associations on the 
number line estimation task would improve recall of 
numerical information. We were particularly interested in 
memory for large numbers (>150) because they were much 
larger than those for which children received training (150), 
yet were predicted to elicit the greatest improvements by the 
logarithmic-to-linear shift account.  

Experiment 1: Age Differences in Numerical 
Estimation and Numerical Recall 

Participants 
Participants were 14 Kindergartners (Mean age = 6.25 
years, SD = 0.39 years; 50% girls), 63 second graders 
(Mean age = 8.31 years, SD = 0.33 years; 45% girls), and 28 
adults (Mean age = 20.07 years, SD = 2.3 years; 50% 
women). 

Tasks 
Numerical estimation Participants were asked to estimate 
the position of 22 sequentially presented numbers on a line, 
where the left end was labeled “0,” the right end “1,000,” 
and no other marks. The numbers to be estimated (from 
Opfer & Siegler, 2007:  2, 5, 18, 34, 56, 78, 100, 122, 147, 
150, 163, 179, 246, 366, 486, 606, 722, 725, 738, 754, 818, 
and 938) were centered above the midpoint of each line. 
After participants made each of their estimates, another 
problem appeared on the computer screen. 

 
Numerical recall Participants listened to six short vignettes 
and were asked to recall the numbers in the vignette after a 
brief distracter. For example, children heard, “Mrs. Conway 
asked students in her school district about their favorite 
foods. N1 students liked spaghetti best, N2 students liked 
pizza best, and N3 students liked chicken nuggets best,” 
were asked to name four colors/shapes/objects, and then 
asked, “How many students liked spaghetti best? How many 
students liked pizza best? How many students liked chicken 
nuggets best?” (see supporting materials for Thompson & 
Siegler, 2010, Experiment 3). Each story involved three 
“small numbers” (5, 18, 53, 79, 164, 237), three “medium 
numbers” (419, 487, 524, 548, 625, 632), or three “big 
numbers” (725, 759, 817, 846, 938, 962). Numbers were 
presented in random order within vignettes, and each 
number was presented equally often with each vignette. 

Procedure 
Children were tested individually during one 25-minute 
experimental session occurring in a quiet room in their 
school; adults were tested individually during one 20-
minute experimental session in a laboratory on a college 
campus. Participants always completed the number line 
estimation task first, and no feedback was given on 
participants’ performance. 

Results and Discussion 
Numerical estimation We first examined development of 
numerical estimation by measuring age-related changes in 
accuracy of number line estimates. Accuracy of estimates 
was indexed by percent absolute error (PAE), defined as: 
([|to-be-estimated value – participant’s estimate|]/numerical 
range) * 100. For instance, PAE = 45% if a child clicked at 
the location for 600 when asked to estimate the number 150 
on a 0-1,000 number line, ([|150-600|]/1,000) * 100. That is, 
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the higher the PAE, the less accurate the estimates. As 
expected, accuracy of number line estimates improved 
substantially with age, F(2, 102) = 80.87, p < .0001, η2 = 
.61 with Kindergartners’ PAE being 31% (SD = 9%), 
second graders’ 17% (SD = 8%), and adults’ 3% (SD = 
0.9%). 

Previous work explained age-related changes in accuracy 
of number line estimates as stemming from a shift from 
logarithmic to linear mappings between symbolic and 
spatial values (see Opfer & Siegler, in press, for review). To 
test this idea, we compared the fit of the logarithmic and 
linear regression functions for the relation between the mean 
estimates of each age group and actual numeric value. 
Consistent with the logarithmic-to-linear shift hypothesis, 
we found that Kindergartners’ mean estimates were best 
described by a logarithmic function (log R2 = .82, lin R2 = 
.43), second graders’ about equally by each function (log R2 
= .91, lin R2 = .88), and adults by the linear function (log R2 
= .66, lin R2 = 1.0). To ensure that these fits did not arise 
from averaging over distinct cognitive profiles, we used the 
same procedure to find the best-fitting function for each 
individual’s estimates. Only 21% of Kindergartners 
produced a series of estimates better fit by the linear than 
logarithmic function, whereas 46% of second graders and 
100% of adults produced a series of estimates better 
characterized as linear than logarithmic. Thus, each analysis 
provided a consistent picture of developing numerical 
estimation, with Kindergartners most likely using a 
logarithmic representation, second graders using logarithmic 
and linear ones about equally often, and adults relying 
largely on linear representations. 

 
Numerical recall We next examined development of 
numerical recall by measuring age-related changes in 
accuracy of memory. Accuracy of memory was again 
indexed by PAE, [(|to-be-remembered value – number 
participant remembered|)/1,000] * 100. Please note that the 
higher the PAE the less accurate were the numbers recalled. 
As expected, accuracy of memory improved substantially 
with age, r = -0.63, F(1, 102) = 67.51, p < .0001, with 
Kindergartners’ PAE being 35% (SD = 8%), second 
graders’ 19% (SD = 9%), and adults’ 7% (SD = 3%). 
 
Relation between numerical estimation and numerical 
recall Might improvements in memory accuracy—like 
improvements in accuracy of numerical estimates—be 
caused by a logarithmic-to-linear shift in representations of 
numerical value?  Several observations suggest this might 
be the case.  

First, memory accuracy was highly correlated with 
performance in numerical estimation (Figure 2). Overall, 
number line estimation accuracy explained 61% of the 
variance in recall accuracy; age explained only 2% more 
variance in accuracy of numeric recall than did entering 
number line estimation accuracy into the regression model 
alone (Model 1 = 61% variance, F(1, 102) = 159.44, p < 
.0001; Model 2 = 63% variance, F(2, 101) = 85.24, p < 

.0001). When age was entered before number line 
estimation accuracy, number line estimation accuracy 
explained 16% more variance in accuracy of numeric recall 
than did entering age into the regression model alone 
(Model 1 = 63% variance, F(1, 102) = 67.56, p < .0001; 
Model 2 = 79% variance, F(2, 101) = 85.24, p < .0001). 
Thus, accuracy of number representations can explain most 
individual differences in memory accuracy.  

 

      
Figure 2: Percent absolute error on the numerical estimation 
task is strongly correlated with percent absolute error on the 
numerical memory task for Kindergartners (black circles), 

second graders (gray circles), and adults (white circles). The 
inset figures illustrate a logarithmic-to-linear switch in 

numerical estimation across the age range. 
 

A second set of observations came from the predicted 
effects of numerical magnitude on memory accuracy. That 
is, if numeric symbols are mapped with a constant noisiness 
to a logarithmically-scaled mental number line, then signal 
overlap increases dramatically with numerical value, 
thereby leading to significant interference from adjacent 
values as the target number increases. In contrast, if numeric 
symbols are mapped with constant noisiness on a linearly-
scaled mental number line, then signal overlap is greatest 
for neighboring values but does not otherwise increase with 
numeric value. On a 0-1,000 mental number line, for 
example, the difference between the two representations 
would be greatest around 150 (see Figure 1), leading to a 
distinct pattern of predicted errors: for numbers greater than 
150, use of a logarithmic representation would interfere 
much more with memory than use of a linear representation, 
whereas for numbers less than 150, accuracy would favor 
the logarithmic representation or neither representation 
(depending on overall noisiness).   

To test this prediction, we conducted a 2 (numerical 
range: below 150, above 150) x 2 (best fitting function on 
the number line estimation task: logarithmic, linear) 
ANOVA on PAE scores for the recall task. There was a 
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main effect of numerical range, F(1, 103) = 155.63, p < 
.0001, η2= .52, and best fitting function, F(1, 103) = 38.20, 
p < .0001, η2= .27. There was also a significant numerical 
range x best fitting function interaction, F(1, 103) = 41.97, p 
< .0001, η2= .14. For numbers below 150, memory accuracy 
was high regardless of the numerical representation 
employed on the number line estimation task, F(1, 103) < 1, 
p > .05. However, for numbers greater than 150, memory 
accuracy was much lower among participants who produced 
a logarithmic series of estimates on the number line 
estimation task than among participants who produced a 
linear series of estimates (PAE = 31% vs. 13% respectively, 
F(1, 103) = 71.51, p < .0001, η2= .41). Thus, memory 
accuracy—particularly memory for large numbers—was 
associated with use of linear representations.  

If improvements in memory accuracy—particularly 
memory for large numbers— can be explained by a 
logarithmic-to-linear shift in representations of numerical 
value, then the largest age differences in memory accuracy 
would also come in memories for large numbers. To test 
this prediction, we conducted a 2 (numerical range: below 
150, above 150) x 3 (age group: Kindergartners, second 
graders, adults) ANOVA on PAE scores for the recall task. 
As expected, there was a main effect of numerical range, 
F(1, 102) = 90.87, p < .0001, η2= .43, age group, F(2, 102) 
= 73.07, p < .0001, η2= .59, and a significant numerical 
range x age group interaction, F(2, 102) = 9.87, p < .0001, 
η2 = .09. For numbers below 150, the effect of age on 
memory accuracy was relatively small (PAE 
Kindergartners, 15% > second graders, 5% = adults, 2%), 
F(2, 102) = 9.47, p < .0001, η2 = .16.  For numbers above 
150, the effect of age was much larger (PAE Kindergartners, 
41% > second graders, 23% > adults, 8%), F(2, 102) = 
53.61, p < .0001, η2 = .51. 

 In summary, a logarithmic-to-linear shift in 
representations of numerical value accurately predicted (1) 
improving accuracy of numerical estimation, (2) an age-
related change in pattern of numerical estimates, (3) a strong 
correlation between numerical estimation performance and 
memory accuracy, and (4) the finding that developmental 
changes in numerical memory occurred much more for 
numbers greater than 150 than less than 150.  

In combination with previous findings (Thompson & 
Siegler, 2010), the results of Experiment 1 provide 
converging correlational evidence that linear spatial-
numeric associations improve numerical memory. 
Additionally, the results show that age alone cannot account 
for the association between quality of representation and 
numerical memory, an issue that could not be explored in 
Thompson and Siegler’s data. This is important because it 
raises the possibility that manipulating the quality of 
numeric representations would improve numeric memory. 
In the next study, we sought evidence of a causal link 
between linear spatial-numeric associations and numerical 
memory.  

Experiment 2: Effects of Training on 
Numerical Estimation and Numerical Recall 

Participants 
Children from Experiment 1 who produced a logarithmic 
series of estimates on the number-line estimation task were 
included in Experiment 2 as were additional Kindergartners 
and second graders who were recruited to participate in the 
training procedure. Participants were 23 Kindergartners 
(Mean age = 6.23 years, SD = 0.39 years; 61% girls; 48% 
were later assigned to the treatment group) and 64 second 
graders (Mean age = 8.31 years, SD = 0.34 years; 59% girls; 
47% were later assigned to the treatment group). 
 
Tasks 
The numerical estimation and recall tasks were equivalent to 
the tasks described in Experiment 1. 

Procedure 
Children were randomly assigned to a treatment group, who 
received corrective feedback on their placement of 7 
numbers (around 150) on the number line, or a control 
group, who completed the same problems but without 
feedback on their estimates (see Opfer & Siegler, 2007, for 
a detailed description of the training procedure). During 
training, children made a hatch mark for the to-be-estimated 
number, and then the experimenter told the child whether 
the estimate was near (within 10%) or far (beyond 10%) 
from the correct location. After the experimenter indicated 
the correct placement and labeled the number the child 
mistakenly indicated, the child described why the corrected 
mark showed the right location for the number. After this 
training, both groups completed a 22-problem number-line 
posttest, followed by the numerical recall task described in 
Experiment 1. 

Results and Discussion 
Effect of feedback on numerical estimation To assess the 
effectiveness of the training regime, we conducted a 2 (test 
phase: pretest, posttest) x 2 (condition: control, treatment) x 
2 (grade: Kindergarten, second grade) ANOVA on number 
line PAE scores. As expected, accuracy increased 
significantly from pretest to posttest, F(1, 83) = 41.69, p < 
.0001, η2 = .30, with accuracy also being greater in the 
treatment than control condition, F(1, 83) = 7.08, p < .01, η2 
= .08, and greater for older than younger children, F(1, 83) 
= 71.88, p < .0001, η2 = .46. Against the idea that pretest to 
posttest gains occurred through regression to the mean, we 
also observed a significant test phase x condition 
interaction, F(1, 83) = 6.30, p < .05, η2 = .05. Post-hoc 
analysis indicated that these gains from pretest to posttest 
were larger in the treatment group (M = 8%, SD = 7%) than 
in the control group (M = 3%, SD = 6%), F(1, 85) = 16.31, p 
< .0001, η2 = .16. Finally, a test phase x condition x grade 
interaction, F(1, 83) = 6.32, p < .05, η2 = .05, indicated that 
feedback reliably induced pretest-to-posttest gains among 
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second graders (treatment:  pretest, M = 21%, posttest, M = 
11%; control: pretest, M = 22%, posttest, M = 20%) but not 
Kindergartners (treatment:  pretest, M = 31%, posttest, M = 
27%; control: pretest, M = 34%, posttest, M = 30%). 

Why might feedback have induced changes in accuracy, 
and why might it have induced changes only in second 
graders? Opfer and Siegler (2007) had suggested that 
feedback on the placement of numbers like 150 on a 0-1,000 
number line caused children to make analogies to the 
placement of more familiar numbers (such as the location of 
15 on a 0-100 number line). Previous research (e.g., Siegler 
& Opfer, 2003; Siegler & Booth, 2004) has indicated that 
second graders typically place numbers on a 0-100 number 
line linearly, so such an analogy would be quite useful to 
them, allowing them to map the structure of the 0-100 to the 
0-1,000 number line. In contrast, Kindergartners typically 
place numbers on a 0-100 number line logarithmically, 
which would preclude such structure mapping and thus 
reduce any benefit of receiving feedback on their estimates. 
If this idea were correct in the present case, then we would 
see evidence of a logarithmic-to-linear shift in second 
graders, but not Kindergartners. 

To assess whether a logarithmic-to-linear shift occurred in 
one, both, or neither age group, we next regressed the 
numbers to be estimated against the estimates provided by 
children. As expected (given the design of the study), 
estimates on pretest were fit better by the logarithmic than 
by the linear functions regardless of age or condition 
(Kindergartners, control: log R2 = .74, lin R2 = .30, 
treatment: log R2 = .73, lin R2 = .36; second graders, 
control: log R2 = .97, lin R2 = .70, treatment: log R2 = .96, 
lin R2 = .72). By post-test, however, feedback sent 
Kindergartners and second graders in quite different 
directions. Without feedback, Kindergartners in the control 
group continued generating logarithmic series of estimates 
on posttest (Ks, control: log R2 = .90, lin R2 = .56); indeed, 
the fit of the logarithmic regression function increased with 
mere practice. In contrast, feedback dramatically decreased 
the fit of the logarithmic and linear functions (treatment: 
log R2 = .37, lin R2 = .21), which would not be expected if 
feedback caused Kindergartners to map their 0-1,000 
estimates to their 0-100 estimates. In contrast, among 
second graders, feedback did induce a logarithmic-to-linear 
shift: on post-test, second graders who did not receive 
feedback continued to generate logarithmic series of 
estimates (log R2 = .96, lin R2 = .77), whereas second 
graders who did receive feedback generated estimates better 
fit by the linear than by the logarithmic functions (log R2 = 
.77, lin R2 = .97). 
Transfer of learning to numerical recall We next 
examined whether the logarithmic-to-linear shift that we 
induced in numerical estimation would also improve 
accuracy of numerical recall. Similar to Experiment 1, 
accuracy of numerical estimation and numerical recall were 
highly correlated (Figure 3), but we were interested in 
whether a causal connection existed. To examine this issue, 
we separated Kindergartners and second graders into two 

groups—learners (N = 31), those children who learned to 
produce a linear series of estimates on the number-line 
posttest, and non-learners (N = 56), those children who 
continued to produce a logarithmic series of estimates on the 
number-line posttest. Our hypothesis was that the accuracy 
of learners’ recall would be higher than that of non-learners, 
and this difference would be especially strong for large 
numbers. To test this hypothesis, we conducted a 2 
(numerical range: below 150, above 150) x 2 (learner status: 
non-learner, learner) ANOVA on PAE memory scores. As 
expected, memory was more accurate for small than large 
numbers, F(1, 85) = 188.01, p < .0001, η2 = .67, and more 
accurate among learners than non-learners, F(1, 85) = 12.81, 
p = .001, η2 = .13. Additionally, we observed a significant 
numerical range x learner status interaction, F(1,85) = 7.94, 
p < .01, η2 = .03. For numbers below 150, memory accuracy 
was high regardless of whether children learned to produce 
a linear series of estimates on the number line estimation 
task (non-learners PAE = 6%, learners PAE = 5%), F(1, 85) 
< 1, p > .05. For numbers greater than 150, however, 
memory accuracy was much lower among non-learners than 
learners (PAE = 35% vs. 24% respectively, F(1, 85) = 
14.02, p < .0001, η2 = .14). Thus, as in Experiment 1, 
memory accuracy—particularly memory for large 
numbers—was associated with acquisition of linear 
representations.  

       
Figure 3: Percent absolute error on the numerical estimation 
task is strongly correlated with percent absolute error on the 
numerical memory task for non-learners (black circles) and 

learners (white circles). The inset figures illustrate a 
logarithmic-to-linear switch in numerical estimation across 

non-learners and learners. 
 

Could something other than learning linear 
representations be responsible for learners having more 
accurate recall than non-learners? We tested two alternative 
explanations. The first idea was that age alone improved 
recall. This idea seemed plausible because learners (M = 
8.23, SD = .59) tended to be older than non-learners (M = 
7.5, SD = 1.07), t(85) = 3.49, p < .001, d = .84, possibly 
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leading them to have better memory. To test this idea, we 
examined second graders alone because roughly half of the 
64 second graders (n = 29) qualified as learners, and their 
ages were very close (learners, M = 8.35, SD = .35; non-
learners, M = 8.28, SD = .33, t(62) = .84, p > .05, ns). Here 
too we found that memory was greater for learners than 
non-learners (learners, PAE = 19%, SD = 7%; non-learners, 
PAE = 24%, SD = 9%, t(62) = 2.01, p < .05, d = .62). 
Another possibility was that feedback alone improved 
memory, regardless of whether it actually led to learning 
linear representations. Against this hypothesis, however, we 
found no main effect of feedback on memory accuracy 
(treatment, PAE = 18%, SD = 9%; control, PAE = 19%, SD 
= 12%; F < 1). Thus, actually learning linear representations 
from the feedback appeared both necessary and sufficient 
for the average child to improve memory accuracy.  
 

General Discussion 
Previous work has indicated that a logarithmic-to-linear 

shift in children’s representations of symbolic quantities 
profoundly expands children’s quantitative thinking. It 
improves children’s ability to estimate the positions of 
numbers on number lines (Siegler & Opfer, 2003), to 
estimate the measurements of continuous and discrete 
quantities (Thompson & Siegler, 2010), to categorize 
numbers according to size (Opfer & Thompson, 2008), and 
to estimate and learn the answers to arithmetic problems 
(Booth & Siegler, 2008). Recent work has also indicated 
that the logarithmic-to-linear shift is associated with 
improved memory for numbers (Thompson & Siegler, 
2010), but it was unclear whether there was a causal link 
between the two. 

We found evidence that a logarithmic-to-linear shift in 
estimating the position of numbers on number lines was 
both correlated with and causally related to improved 
memory for numbers. In Experiment 1, linearity of 
numerical estimates increased with age, and the more linear 
children’s magnitude representations were, the more closely 
their memory of the numbers approximated the numbers 
presented. These results provided a replication of earlier 
results, and they also revealed that the association between 
accuracy of numerical estimates and numerical memory 
could not be accounted for by age differences alone.   

To test the idea that linear magnitude representations 
were causally related to number memory, in Experiment 2 
we trained children on a linear spatial-numeric association 
on the number line task.  Here, we found that children who 
learned to represent numbers as increasing linearly with 
numeric magnitude also improved their memory for 
numbers. This improvement was particularly large for 
numbers greater than 150, though children were not given 
feedback on their estimates in this range. Theoretically, this 
finding is interesting because it is a prediction that comes 
uniquely from the logarithmic-to-linear shift account.   

Beyond demonstrating that linear spatial-numeric 
associations improve memory for numbers, we believe the 
present results also help to explain the positive relation 

between linear numeric magnitude representations and 
arithmetic proficiency. That is, if learning linear spatial-
numeric associations improves memory for numbers in 
vignettes, it is highly likely it also improves memory for 
numbers in other contexts, such as memorizing arithmetic 
facts. Thus, the present results suggest a plausible 
explanation for the observed association between numerical 
estimation and mathematics course grades (Opfer & Siegler, 
in press), an important issue for future research.  
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