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Abstract

Memory for numbers improves with age and experience. We
tested the hypothesis that one source of this improvement is a
logarithmic-to-linear shift in children’s representations of
numeric magnitude. In Experiment 1, we found that linearity
of representations improved with age and that the more linear
children’s magnitude representations were, the more closely
their memory of the numbers approximated the numbers
presented. In Experiment 2, we trained children on a linear
spatial-numeric association, and we found that children who
learned to represent numbers as increasing linearly with
numeric magnitude also improved their memory for numbers.
These results suggest that linear spatial-numeric associations
are both correlated with and causally related to development
of numeric memory.
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Introduction

Remembering numeric information is an important part of
daily life. Sometimes it is necessary to remember numeric
information exactly (e.g., social security numbers, phone
numbers, flight numbers, street addresses), whereas other
times remembering the general gist of numeric information
will suffice (e.g., savings account balances, temperatures,
number of students in a lecture hall). Across both types of
memory, children’s memory for numbers improves greatly
with age and experience (Dempster, 1981; Brainerd &
Gordon, 1994). Here we tested the hypothesis that
children’s numerical memory improves with age due to
changes in how children represent numerical magnitudes.

Development of Numerical Representations. Children’s
representations of the magnitudes of symbolic numbers
appears to develop iteratively, with parallel developmental
changes occurring over many years and across many
contexts (Opfer & Siegler, in press). Early in the learning
process, numerical symbols are meaningless stimuli for
young preschoolers. For example, 2- and 3-year-olds who
count flawlessly from 1-10 have no idea that 6 > 4, nor do
children of these ages know how many objects to give an
adult who asks for 4 or more (Le Corre et al., 2006). As
young children gain experience with the symbols in a given
numerical range and associate them with non-verbal
quantities in that range, they initially map them to a
logarithmically-compressed mental number line. Over a
period that typically lasts 1-3 years for a given numerical

range (0-10, 0-100, or 0-1,000), children’s mapping of
symbolically = expressed numbers to  non-verbal
representations changes from a logarithmically-compressed
form to a linear form, where subjective and objective
numerical values increase in a 1:1 fashion (Bertelletti et al.,
2010; Opfer, Thompson, & Furlong, 2010; Siegler & Opfer,
2003; Siegler & Booth, 2004; Thompson & Opfer, 2010).
Use of linear magnitude representations occurs earliest for
the numerals that are most frequent in the environment, that
is the smallest whole numbers, and is gradually extended to
increasingly larger numbers (Thompson & Opfer, 2010).

Changes in numerical representations occur not only with
increasing age, but also with specific experiences designed
to train linear spatial-numeric associations. For instance,
Opfer and Siegler (2007) provided second graders with
corrective feedback on the location of numbers near 150, the
maximally discrepant point between a logarithmic and linear
function forced to pass through 0 and 1,000 (see Figure 1).
After receiving feedback, children adopted a linear
representation that spanned the entire 0-1,000 numeric
range.
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Figure 1: Logarithmic and linear functions. Distance
between representations is greatest at 150 (725 vs. 150); this
means that the logarithmic function increases more than the
linear representation between each successive pair of
numbers up to 150, but increases less than the linear
function above 150. Thus, numbers below 150 are more
discriminable in the logarithmic representation, and
numbers above 150 are more discriminable in the linear
representation.
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Whether occurring with age or with specific training
experiences, the logarithmic-to-linear shift in children’s
representations of symbolic quantities expands children’s
quantitative thinking profoundly. It improves children’s
ability to estimate the positions of numbers on number lines
(Siegler & Opfer, 2003), to estimate the measurements of
continuous and discrete quantities (Thompson & Siegler,
2010), to categorize numbers according to size (Opfer &
Thompson, 2008), and to estimate and learn the answers to
arithmetic problems (Booth & Siegler, 2008).

Relation  between Numerical Representations and
Numerical Memory. Recently, Thompson and Siegler
(2010) found that individual differences in the numerical
representation (logarithmic or linear) that children used to
estimate numbers on 0-1,000 number lines was associated
with their ability to recall large numbers (>150). Their
reasoning was that children who possessed a linear
representation of numbers were better able to differentiate
the large numbers (see Figure 1), and thus to remember
them after a delay.

If true, this account has important theoretical and practical
implications. Theoretically, it might explain the previously
observed association between age and ability to remember
numbers (e.g., Brainerd & Gordon, 1994). Practically, it
suggests that children’s memory for numbers could also be
improved by engendering the logarithmic-to-linear shift
observed in the training studies (e.g., Opfer & Siegler, 2007;
Opfer & Thompson, 2008). Testing this practical
implication is also theoretically interesting because it would
provide evidence for a causal link between numerical
representations and memory, as opposed to just a correlation
that might be equally well-explained by a third variable
(such as increasing mathematical proficiency).

The Current Study. The current series of experiments
were designed to test for a causal link between children’s
numerical representations and their numerical memory. In
Experiment 1, Kindergartners, second graders, and adults
estimated numbers in the 0-1,000 range and recalled
numbers presented in meaningful vignettes. The purpose of
Experiment 1 was to investigate the unique contributions of
both age and quality of numerical representations to
accuracy in numerical recall, as well as to identify children
who would benefit from training in Experiment 2.

In Experiment 2, Kindergartners and second graders
received training on the number-line estimation task,
following the procedure used in Opfer and Siegler (2007).
Our goal in Experiment 2 was to investigate whether
adoption of linear spatial-numeric associations on the
number line estimation task would improve recall of
numerical information. We were particularly interested in
memory for large numbers (>150) because they were much
larger than those for which children received training (150),
yet were predicted to elicit the greatest improvements by the
logarithmic-to-linear shift account.

Experiment 1: Age Differences in Numerical
Estimation and Numerical Recall

Participants

Participants were 14 Kindergartners (Mean age = 6.25
years, SD = 0.39 years; 50% girls), 63 second graders
(Mean age = 8.31 years, SD = 0.33 years; 45% girls), and 28
adults (Mean age = 20.07 years, SD = 2.3 years; 50%
women).

Tasks

Numerical estimation Participants were asked to estimate
the position of 22 sequentially presented numbers on a line,
where the left end was labeled “0,” the right end “1,000,”
and no other marks. The numbers to be estimated (from
Opfer & Siegler, 2007: 2, 5, 18, 34, 56, 78, 100, 122, 147,
150, 163, 179, 246, 366, 486, 606, 722, 725, 738, 754, 818,
and 938) were centered above the midpoint of each line.
After participants made each of their estimates, another
problem appeared on the computer screen.

Numerical recall Participants listened to six short vignettes
and were asked to recall the numbers in the vignette after a
brief distracter. For example, children heard, “Mrs. Conway
asked students in her school district about their favorite
foods. N; students liked spaghetti best, N, students liked
pizza best, and Nj students liked chicken nuggets best,”
were asked to name four colors/shapes/objects, and then
asked, “How many students liked spaghetti best? How many
students liked pizza best? How many students liked chicken
nuggets best?” (see supporting materials for Thompson &
Siegler, 2010, Experiment 3). Each story involved three
“small numbers” (5, 18, 53, 79, 164, 237), three “medium
numbers” (419, 487, 524, 548, 625, 632), or three “big
numbers” (725, 759, 817, 846, 938, 962). Numbers were
presented in random order within vignettes, and each
number was presented equally often with each vignette.

Procedure

Children were tested individually during one 25-minute
experimental session occurring in a quiet room in their
school; adults were tested individually during one 20-
minute experimental session in a laboratory on a college
campus. Participants always completed the number line
estimation task first, and no feedback was given on
participants’ performance.

Results and Discussion

Numerical estimation We first examined development of
numerical estimation by measuring age-related changes in
accuracy of number line estimates. Accuracy of estimates
was indexed by percent absolute error (PAE), defined as:
([Jto-be-estimated value — participant’s estimate|]/numerical
range) * 100. For instance, PAE = 45% if a child clicked at
the location for 600 when asked to estimate the number 150
on a 0-1,000 number line, ([|150-600]]/1,000) * 100. That is,
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the higher the PAE, the less accurate the estimates. As
expected, accuracy of number line estimates improved
substantially with age, F(2, 102) = 80.87, p < .0001, n* =
.61 with Kindergartners’ PAE being 31% (SD = 9%),
second graders’ 17% (SD = 8%), and adults’ 3% (SD =
0.9%).

Previous work explained age-related changes in accuracy
of number line estimates as stemming from a shift from
logarithmic to linear mappings between symbolic and
spatial values (see Opfer & Siegler, in press, for review). To
test this idea, we compared the fit of the logarithmic and
linear regression functions for the relation between the mean
estimates of each age group and actual numeric value.
Consistent with the logarithmic-to-linear shift hypothesis,
we found that Kindergartners’” mean estimates were best
described by a logarithmic function (log R* = .82, lin R* =
43), second graders’ about equally by each function (log R
= .91, lin R* = .88), and adults by the linear function (log R*
= .66, lin R* = 1.0). To ensure that these fits did not arise
from averaging over distinct cognitive profiles, we used the
same procedure to find the best-fitting function for each
individual’s estimates. Only 21% of Kindergartners
produced a series of estimates better fit by the linear than
logarithmic function, whereas 46% of second graders and
100% of adults produced a series of estimates better
characterized as linear than logarithmic. Thus, each analysis
provided a consistent picture of developing numerical
estimation, with Kindergartners most likely using a
logarithmic representation, second graders using logarithmic
and linear ones about equally often, and adults relying
largely on linear representations.

Numerical recall We next examined development of
numerical recall by measuring age-related changes in
accuracy of memory. Accuracy of memory was again
indexed by PAE, [(Jto-be-remembered value — number
participant remembered|)/1,000] * 100. Please note that the
higher the PAE the less accurate were the numbers recalled.
As expected, accuracy of memory improved substantially
with age, r = -0.63, F(1, 102) = 67.51, p < .0001, with
Kindergartners’” PAE being 35% (SD = 8%), second
graders’ 19% (SD = 9%), and adults’ 7% (SD = 3%).

Relation between numerical estimation and numerical
recall Might improvements in memory accuracy—like
improvements in accuracy of numerical estimates—be
caused by a logarithmic-to-linear shift in representations of
numerical value? Several observations suggest this might
be the case.

First, memory accuracy was highly correlated with
performance in numerical estimation (Figure 2). Overall,
number line estimation accuracy explained 61% of the
variance in recall accuracy; age explained only 2% more
variance in accuracy of numeric recall than did entering
number line estimation accuracy into the regression model
alone (Model 1 = 61% variance, F(1, 102) = 159.44, p <
.0001; Model 2 = 63% variance, F(2, 101) = 85.24, p <

.0001). When age was entered before number line
estimation accuracy, number line estimation accuracy
explained 16% more variance in accuracy of numeric recall
than did entering age into the regression model alone
(Model 1 = 63% variance, F(1, 102) = 67.56, p < .0001;
Model 2 = 79% variance, F(2, 101) = 85.24, p < .0001).
Thus, accuracy of number representations can explain most
individual differences in memory accuracy.
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Figure 2: Percent absolute error on the numerical estimation
task is strongly correlated with percent absolute error on the
numerical memory task for Kindergartners (black circles),
second graders (gray circles), and adults (white circles). The
inset figures illustrate a logarithmic-to-linear switch in
numerical estimation across the age range.

A second set of observations came from the predicted
effects of numerical magnitude on memory accuracy. That
is, if numeric symbols are mapped with a constant noisiness
to a logarithmically-scaled mental number line, then signal
overlap increases dramatically with numerical value,
thereby leading to significant interference from adjacent
values as the target number increases. In contrast, if numeric
symbols are mapped with constant noisiness on a linearly-
scaled mental number line, then signal overlap is greatest
for neighboring values but does not otherwise increase with
numeric value. On a 0-1,000 mental number line, for
example, the difference between the two representations
would be greatest around 150 (see Figure 1), leading to a
distinct pattern of predicted errors: for numbers greater than
150, use of a logarithmic representation would interfere
much more with memory than use of a linear representation,
whereas for numbers less than 150, accuracy would favor
the logarithmic representation or neither representation
(depending on overall noisiness).

To test this prediction, we conducted a 2 (numerical
range: below 150, above 150) x 2 (best fitting function on
the number line estimation task: logarithmic, linear)
ANOVA on PAE scores for the recall task. There was a
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main effect of numerical range, F(1, 103) = 155.63, p <
.0001, n’*= .52, and best fitting function, (1, 103) = 38.20,
p < .0001, n’= .27. There was also a significant numerical
range x best fitting function interaction, F(1, 103) =41.97, p
<.0001, n*= .14. For numbers below 150, memory accuracy
was high regardless of the numerical representation
employed on the number line estimation task, F(1, 103) <1,
p > .05. However, for numbers greater than 150, memory
accuracy was much lower among participants who produced
a logarithmic series of estimates on the number line
estimation task than among participants who produced a
linear series of estimates (PAE = 31% vs. 13% respectively,
F(1, 103) = 71.51, p < .0001, n’>= .41). Thus, memory
accuracy—mparticularly memory for large numbers—was
associated with use of linear representations.

If improvements in memory accuracy—particularly
memory for large numbers— can be explained by a
logarithmic-to-linear shift in representations of numerical
value, then the largest age differences in memory accuracy
would also come in memories for large numbers. To test
this prediction, we conducted a 2 (numerical range: below
150, above 150) x 3 (age group: Kindergartners, second
graders, adults) ANOVA on PAE scores for the recall task.
As expected, there was a main effect of numerical range,
F(1, 102) = 90.87, p < .0001, n’= .43, age group, F(2, 102)
= 73.07, p < .0001, n’>= .59, and a significant numerical
range X age group interaction, F(2, 102) = 9.87, p < .0001,
n® = .09. For numbers below 150, the effect of age on
memory  accuracy was relatively small (PAE
Kindergartners, 15% > second graders, 5% = adults, 2%),
F(2, 102) = 9.47, p < .0001, n* = .16. For numbers above
150, the effect of age was much larger (PAE Kindergartners,
41% > second graders, 23% > adults, 8%), F(2, 102) =
53.61, p <.0001,n*=.51.

In summary, a logarithmic-to-linear shift in
representations of numerical value accurately predicted (1)
improving accuracy of numerical estimation, (2) an age-
related change in pattern of numerical estimates, (3) a strong
correlation between numerical estimation performance and
memory accuracy, and (4) the finding that developmental
changes in numerical memory occurred much more for
numbers greater than 150 than less than 150.

In combination with previous findings (Thompson &
Siegler, 2010), the results of Experiment 1 provide
converging correlational evidence that linear spatial-
numeric  associations improve numerical —memory.
Additionally, the results show that age alone cannot account
for the association between quality of representation and
numerical memory, an issue that could not be explored in
Thompson and Siegler’s data. This is important because it
raises the possibility that manipulating the quality of
numeric representations would improve numeric memory.
In the next study, we sought evidence of a causal link
between linear spatial-numeric associations and numerical
memory.

Experiment 2: Effects of Training on
Numerical Estimation and Numerical Recall

Participants

Children from Experiment 1 who produced a logarithmic
series of estimates on the number-line estimation task were
included in Experiment 2 as were additional Kindergartners
and second graders who were recruited to participate in the
training procedure. Participants were 23 Kindergartners
(Mean age = 6.23 years, SD = 0.39 years; 61% girls; 48%
were later assigned to the treatment group) and 64 second
graders (Mean age = 8.31 years, SD = 0.34 years; 59% girls;
47% were later assigned to the treatment group).

Tasks
The numerical estimation and recall tasks were equivalent to
the tasks described in Experiment 1.

Procedure

Children were randomly assigned to a treatment group, who
received corrective feedback on their placement of 7
numbers (around 150) on the number line, or a control
group, who completed the same problems but without
feedback on their estimates (see Opfer & Siegler, 2007, for
a detailed description of the training procedure). During
training, children made a hatch mark for the to-be-estimated
number, and then the experimenter told the child whether
the estimate was near (within 10%) or far (beyond 10%)
from the correct location. After the experimenter indicated
the correct placement and labeled the number the child
mistakenly indicated, the child described why the corrected
mark showed the right location for the number. After this
training, both groups completed a 22-problem number-line
posttest, followed by the numerical recall task described in
Experiment 1.

Results and Discussion

Effect of feedback on numerical estimation To assess the
effectiveness of the training regime, we conducted a 2 (test
phase: pretest, posttest) x 2 (condition: control, treatment) x
2 (grade: Kindergarten, second grade) ANOVA on number
line PAE scores. As expected, accuracy increased
significantly from pretest to posttest, F(1, 83) = 41.69, p <
0001, n* = .30, with accuracy also being greater in the
treatment than control condition, F(1, 83) =7.08, p < .01, n2
= .08, and greater for older than younger children, F(1, 83)
=71.88, p <.0001, n* = .46. Against the idea that pretest to
posttest gains occurred through regression to the mean, we
also observed a significant test phase x condition
interaction, F(1, 83) = 6.30, p < .05, n2 = .05. Post-hoc
analysis indicated that these gains from pretest to posttest
were larger in the treatment group (M = 8%, SD = 7%) than
in the control group (M = 3%, SD = 6%), F(1, 85)=16.31,p
<.0001, * = .16. Finally, a test phase x condition x grade
interaction, F(1, 83) = 6.32, p < .05, n* = .05, indicated that
feedback reliably induced pretest-to-posttest gains among
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second graders (treatment: pretest, M = 21%, posttest, M =
11%; control: pretest, M = 22%, posttest, M = 20%) but not
Kindergartners (treatment: pretest, M = 31%, posttest, M =
27%; control: pretest, M = 34%, posttest, M = 30%).

Why might feedback have induced changes in accuracy,
and why might it have induced changes only in second
graders? Opfer and Siegler (2007) had suggested that
feedback on the placement of numbers like 150 on a 0-1,000
number line caused children to make analogies to the
placement of more familiar numbers (such as the location of
15 on a 0-100 number line). Previous research (e.g., Siegler
& Opfer, 2003; Siegler & Booth, 2004) has indicated that
second graders typically place numbers on a 0-100 number
line linearly, so such an analogy would be quite useful to
them, allowing them to map the structure of the 0-100 to the
0-1,000 number line. In contrast, Kindergartners typically
place numbers on a 0-100 number line logarithmically,
which would preclude such structure mapping and thus
reduce any benefit of receiving feedback on their estimates.
If this idea were correct in the present case, then we would
see evidence of a logarithmic-to-linear shift in second
graders, but not Kindergartners.

To assess whether a logarithmic-to-linear shift occurred in
one, both, or neither age group, we next regressed the
numbers to be estimated against the estimates provided by
children. As expected (given the design of the study),
estimates on pretest were fit better by the logarithmic than
by the linear functions regardless of age or condition
(Kindergartners, control: log R* = .74, lin R* = .30,
treatment: log R?> = .73, lin R* = .36; second graders,
control: log R’ = .97, lin R? = .70, treatment: log R? = .96,
lin R* = .72). By post-test, however, feedback sent
Kindergartners and second graders in quite different
directions. Without feedback, Kindergartners in the control
group continued generating logarithmic series of estimates
on posttest (Ks, control: log R* = .90, lin R? = .56); indeed,
the fit of the logarithmic regression function increased with
mere practice. In contrast, feedback dramatically decreased
the fit of the logarithmic and linear functions (treatment:
log R? = 37, lin R* = .21), which would not be expected if
feedback caused Kindergartners to map their 0-1,000
estimates to their 0-100 estimates. In contrast, among
second graders, feedback did induce a logarithmic-to-linear
shift: on post-test, second graders who did not receive
feedback continued to generate logarithmic series of
estimates (log R* = .96, lin R* = .77), whereas second
graders who did receive feedback generated estimates better
fit by the linear than by the logarithmic functions (log R* =
77, lin R* = .97).

Transfer of learning to numerical recall We next
examined whether the logarithmic-to-linear shift that we
induced in numerical estimation would also improve
accuracy of numerical recall. Similar to Experiment 1,
accuracy of numerical estimation and numerical recall were
highly correlated (Figure 3), but we were interested in
whether a causal connection existed. To examine this issue,
we separated Kindergartners and second graders into two

groups—Ilearners (N = 31), those children who learned to
produce a linear series of estimates on the number-line
posttest, and non-learners (N = 56), those children who
continued to produce a logarithmic series of estimates on the
number-line posttest. Our hypothesis was that the accuracy
of learners’ recall would be higher than that of non-learners,
and this difference would be especially strong for large
numbers. To test this hypothesis, we conducted a 2
(numerical range: below 150, above 150) x 2 (learner status:
non-learner, learner) ANOVA on PAE memory scores. As
expected, memory was more accurate for small than large
numbers, F(1, 85) = 188.01, p < .0001, n2 = .67, and more
accurate among learners than non-learners, F(1, 85) = 12.81,
p =.001, n* = .13. Additionally, we observed a significant
numerical range x learner status interaction, F(1,85) = 7.94,
p <.01,m”=.03. For numbers below 150, memory accuracy
was high regardless of whether children learned to produce
a linear series of estimates on the number line estimation
task (non-learners PAE = 6%, learners PAE = 5%), F(1, 85)
< 1, p > .05. For numbers greater than 150, however,
memory accuracy was much lower among non-learners than
learners (PAE = 35% vs. 24% respectively, F(1, 85) =
14.02, p < .0001, n* = .14). Thus, as in Experiment 1,

memory accuracy—particularly memory for large
numbers—was associated with acquisition of linear
representations.
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Figure 3: Percent absolute error on the numerical estimation
task is strongly correlated with percent absolute error on the
numerical memory task for non-learners (black circles) and
learners (white circles). The inset figures illustrate a
logarithmic-to-linear switch in numerical estimation across
non-learners and learners.

Could something other than learning linear
representations be responsible for learners having more
accurate recall than non-learners? We tested two alternative
explanations. The first idea was that age alone improved
recall. This idea seemed plausible because learners (M =
8.23, SD = .59) tended to be older than non-learners (M =
7.5, SD = 1.07), #85) = 3.49, p < .001, d = .84, possibly
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leading them to have better memory. To test this idea, we
examined second graders alone because roughly half of the
64 second graders (n = 29) qualified as learners, and their
ages were very close (learners, M = 8.35, SD = .35; non-
learners, M = 8.28, SD = .33, #(62) = .84, p > .05, ns). Here
too we found that memory was greater for learners than
non-learners (learners, PAE = 19%, SD = 7%; non-learners,
PAE = 24%, SD = 9%, #(62) = 2.01, p < .05, d = .62).
Another possibility was that feedback alone improved
memory, regardless of whether it actually led to learning
linear representations. Against this hypothesis, however, we
found no main effect of feedback on memory accuracy
(treatment, PAE = 18%, SD = 9%, control, PAE = 19%, SD
=12%; F < 1). Thus, actually learning linear representations
from the feedback appeared both necessary and sufficient
for the average child to improve memory accuracy.

General Discussion

Previous work has indicated that a logarithmic-to-linear
shift in children’s representations of symbolic quantities
profoundly expands children’s quantitative thinking. It
improves children’s ability to estimate the positions of
numbers on number lines (Siegler & Opfer, 2003), to
estimate the measurements of continuous and discrete
quantities (Thompson & Siegler, 2010), to categorize
numbers according to size (Opfer & Thompson, 2008), and
to estimate and learn the answers to arithmetic problems
(Booth & Siegler, 2008). Recent work has also indicated
that the logarithmic-to-linear shift is associated with
improved memory for numbers (Thompson & Siegler,
2010), but it was unclear whether there was a causal link
between the two.

We found evidence that a logarithmic-to-linear shift in
estimating the position of numbers on number lines was
both correlated with and causally related to improved
memory for numbers. In Experiment 1, linearity of
numerical estimates increased with age, and the more linear
children’s magnitude representations were, the more closely
their memory of the numbers approximated the numbers
presented. These results provided a replication of earlier
results, and they also revealed that the association between
accuracy of numerical estimates and numerical memory
could not be accounted for by age differences alone.

To test the idea that linear magnitude representations
were causally related to number memory, in Experiment 2
we trained children on a linear spatial-numeric association
on the number line task. Here, we found that children who
learned to represent numbers as increasing linearly with
numeric magnitude also improved their memory for
numbers. This improvement was particularly large for
numbers greater than 150, though children were not given
feedback on their estimates in this range. Theoretically, this
finding is interesting because it is a prediction that comes
uniquely from the logarithmic-to-linear shift account.

Beyond demonstrating that linear spatial-numeric
associations improve memory for numbers, we believe the
present results also help to explain the positive relation

between linear numeric magnitude representations and
arithmetic proficiency. That is, if learning linear spatial-
numeric associations improves memory for numbers in
vignettes, it is highly likely it also improves memory for
numbers in other contexts, such as memorizing arithmetic
facts. Thus, the present results suggest a plausible
explanation for the observed association between numerical
estimation and mathematics course grades (Opfer & Siegler,
in press), an important issue for future research.
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