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Abstract

This study examines the impact of integrating worked
examples into a Cognitive Tutor for genetics problem solving,
and whether a genetics process modeling task can help
prepare students for explaining worked examples and solving
problems. Students participated in one of four conditions in
which they engaged in either: (1) process modeling followed
by interleaved worked examples and problem solving; (2)
process modeling followed by problem solving without
worked examples; (3) interleaved worked examples and
problems without process modeling; or (4) problem solving
alone. Tutor data analyses reveal that process modeling led to
faster reasoning and greater accuracy in explaining problem
solutions. Process modeling and worked examples together
led to faster reasoning in problem solving than did any of the
other three conditions. Students in all conditions achieved
equivalent problem-solving knowledge, as measured by
posttest accuracy, although the tutor results suggest reasoning
speed may be a more sensitive measure of learning.

Keywords: Education; Problem solving; Learning; Intelligent
Tutors; Worked Examples.

Introduction

It is well-documented that integrating worked examples
with problem solving, either by interleaving full problem
solutions with problems to be solved (Pashler, Bain, Bottge,
Graesser, Koedinger, McDaniel & Metcalfe, 2007; Sweller
& Cooper, 1985) or by gradually fading the number of
solved steps that are provided (Renkl & Atkinson, 2003),
serves to decrease total learning time and yields improved
learning outcomes. Recently, several studies have examined
the benefits of incorporating worked examples into
intelligent tutoring systems (ITSs) for problem solving in a
variety of domains: stoichiometry (Mclaren, Lim &
Koedinger, 2008) algebra (Anthony, 2008; Corbett, Reed,
Hoffman, MacLaren & Wagner, 2010b); geometry (Salden,
Aleven, Schwonke & Renkl, 2010; Schwonke, Renkl,

Krieg, Wittwer, Aleven & Salden, 2009; Schwonke, Renkl,
Salden & Aleven, 2011) and statistics (Weitz, Salden, Kim
& Heffernan, 2010).

In these ITS studies, the chief benefit of incorporating
worked examples has been to increase learning efficiency.
The studies that report learning time universally find that
interleaving worked examples (Corbett, et al, 2010b;
McLaren, et al, 2008; Weitz, et al, 2010) or fading solution
steps (Schwonke, et al, 2009) reduces learning time for a
fixed set of activities compared to pure problem solving,
primarily because students process worked solutions more
rapidly than they can solve corresponding problems.

But unlike the classic worked-example literature, these
ITS studies generally do not find that incorporating worked
examples leads to more accurate posttest problem-solving
than problem solving alone (Anthony, 2008; Corbett et al,
2010b; McLaren, et al, 2008; Schwonke, et al, 2009, 2011;
Weitz, et al, 2010). The exception is Salden, et al (2010),
who found that adaptively fading examples based on a
model of each student’s knowledge led to some relative
improvement on posttest problem solving. Similarly, the
evidence that students learn more deeply when worked
examples are integrated into ITSs is mixed at best, although
two papers report better retention of problem solving
knowledge (Anthony, 2008; Salden, et al, 2010) and
Schwonke, et al (2009) found evidence of greater
conceptual transfer in one of two studies.

The present study examines the hypothesis that

* integrating worked examples and problem solving in an
ITS will yield better learning outcomes when preceded
by ITS learning activities that focus on domain
knowledge relevant to the student explanations

This study examines worked examples and problem solving
in the domain of genetics. The study employs an existing
Cognitive Tutor for genetics problem solving, which has
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been piloted at 15 universities around the country (Corbett,
Kauffman, MacLaren, Wagner & Jones, 2010a). In this
project we are developing two types of Cognitive Tutor
(CT) activities to prepare students for deeper understanding
in genetics problem solving: self-explanation of worked
examples and genetic process modeling. In the worked
example CT activities, students are given solved genetics
problems and are asked to select menu-based explanations
of each solution step, as in several earlier ITS studies
(Salden, et al, 2010; Schwonke, et al, 2009, 2011; Weitz, et
al, 2010). In genetic process modeling CT activities students
reason directly about the underlying genetic processes that
are relevant to a problem-solving task. This latter CT
activity that focuses on developing domain knowledge prior
to worked examples and problem solving is novel to the
study presented here. In this study we examine student
performance during learning across two sessions of CT
activities, as well as on problem-solving posttests and
measures of robust learning. The following section
describes the problem-solving domain and CT activities.

The Domain: Three Factor Cross Gene Mapping

Genetics is a fundamental, unifying theme of biology and is
viewed as a challenging topic by students and instructors, in
part because it relies heavily on problem solving. This
problem solving is characterized by abductive reasoning, in
which students are given a set of observations and reason
backwards to infer properties of the underlying genetics
processes that produced the data. This study focuses on an
abductive reasoning task that employs a gene mapping
technique called a three-factor cross (3FC). In a 3FC
problem, two organisms, e.g., fruit flies are crossed and the
pattern of offspring phenotypes that result is analyzed to
infer (1) the order of three genes that liec on one
chromosome, and (2) the relative distances between gene
pairs. Students can solve these problems algorithmically
without reference to genetics, but the goal of this project is
to ground student reasoning in the underlying process
summarized in the following paragraph.

Figure la depicts the order of three genes on a
chromosome pair belonging to a parent who is heterozygous
for the genes. Ordinarily in reproduction, half this parent’s
offspring would inherit the three alleles on one chromosome
(B, 4, C), and half would inherit the other three alleles, (b,
a, ¢). However, during meiosis, the two chromosomes in a
homologous pair generally exchange genetic material. In
some cases such a “crossover” will occur between two of
the genes, 4 and B, as depicted in Figure 1b. As a result,
some offspring will inherit the allele combination B, a, ¢

b a c¢ Ba c b <A ¢
BIA C b (A C B) a
Fig. 1a Fig. 1b Fig. 1c

Figure 1: Three genes that appear on a chromosome pair
in a parent organism (1a), and the impact of a single
crossover (1b), or double crossover (1¢) in meiosis.

from this parent and others will inherit the alleles b, 4 and
C. A similar crossover can occur between the 4 and C
genes, and very rarely, crossovers will occur between each
gene pair as displayed in Figure 1c.

Figure 2 displays the Cognitive Tutor interface for a
three-factor cross problem that results from a test cross
involving the parent depicted in Figure 1. The table at the
left of the screen represents the offspring that result from the
cross. The letters represent observable traits, governed by
the corresponding underlying genes, and because of
crossovers in meiosis, all eight possible allele combinations
are observed. Since the probability that a crossover occurs
between two genes is proportional to the distance between
them, the student reasons about the relative frequencies of
the phenotypes to infer the middle gene and to calculate the
distances among genes. In Figure 2 the student has almost
finished the problem. To the right of the table, the student
has summed the offspring in each of four phenotype groups
and identified the type of each group (as parental, single
crossover, or double crossover). The student has inferred the
middle gene on the chromosome, and entered a gene
sequence below the table. Finally, in the lower right the
student has calculated the crossover frequency and distance
between the middle gene and each of the two outer genes
and will perform the last two steps for the two outer genes.

A test cross was carried out to map the order and distances
between three genes on the chromosome pair of the parent
The genes are designated A, B and C.

The 8 resulting offspring types are determined
by the one chromosome they inherit from this parent. The table
below shows the numbers of each type of offspring. Determine
the gene order and distance between each gene pair.

Give me a hint!

0. Frequency of offspring types 1. Classify offspring groups
Type Number  Group #in Group  Offspring Type
abC 38 1 q r - —
Y= [8 SXO -)
ABC 42 1 —
abc 369 L} } = Parental ™=
ABC 381 1 —
[aBc [ 85 w1, __ %6 =
AbC 75 n Y
Ab. 6 w
< y=> [1 DXO 53}
aBC 4 w

100 Total

3. Compute distances between genes

2. Order gemn Gene Pair  Freq. of Recom.

Map Units
Gene 1

Figure 2: The CT interface for a 3FC problem-solving task.

Cognitive Model. The cognitive model for this task
includes the following types of knowledge components
(KCs), some of which apply more than once in a problem:

- Summing offspring numbers (2 KCs)

*Identifying offspring group type (3 KCs)
(parental, single-crossover or double-crossover)

*Identifying the middle gene (1 KC)

*Calculating the frequency of crossovers (2 KCs)
(for single crossovers and double crossovers)

- Calculating map unit distances (1 KC)

Formative analyses in this paper focus on the three starred
types. The group-identification KCs hinge on offspring
group size and are relatively easy for students. Identifying
the middle gene requires the analysis of allele combinations
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across groups and is a very challenging skill for students.
The calculation KCs are also challenging, requiring students
to identify the offspring groups relevant to each gene pair
and to combine their respective frequencies arithmetically.

Worked examples. Figure 3 displays the interface for the
3FC worked-example activities. A complete 3FC problem
solution is presented at the left of the screen. Students
explain each step with the two menus to the right of the
step. In the first menu, students select an explanation of the
empirical evidence that led to the answer and in the second
menu students select the underlying genetic process that
explains the answer. As in all Cognitive Tutor activities,
students receive accuracy feedback on each menu selection
and can ask for help as needed for each menu.

3x. A test cross was carried out to map the order and distances between three genes on the chromosome pair

of the parent. The genes are designated TR, AX and PA. The 8 resulting offspring types are determined by the

one chromosome they inherit from this parent. The data have been used to

determine the order of the genes on the chromosome and the map distance between the genes. Help Done
Please use the menus on the right to explain each of the problem-solving steps.

Frequency of Offspring Types 1. Classify Offspring Groups
4#inGroup Offspring Type | 1. How are offspring group classifications determined?
Observed Explanation

Type  Number Group
wax + 141 Underlying Explanation
+ +pa 11 | ==>25 0C0 ) |(These crossover events are very rare
wes 6

\
i
Vau>

+axpa 89 i )~ 165 [sco

\
/
\
/

tr+pa 46 0
vaxt 59 0
traxpa 348 IV
e+ 37 W

==>10s [5C0

==> 705 Parental (%

Total 1000

2. Order genes on chromosome (identify the middle gene first): 2. When ordering the genes on the chromosome, how can the middle gene identified?
Genel Genez Genes bserved: (e e s + e ave mrchangedbementhe ]

| ) | Underying: (1n

3. When computing distance between 2 genes, how are the relevant offspring groups selected?
3. Compute Distance between each Gene Pair puting g pring groups

Gene Pair __ Frequency of Recor n  MapUnits  Relevant CO Groups
© b 65+25)/1000 - Grous 118 (The
pa ax  (105+25)/1000 -1

o ax (165425 +105425)/ 1000 _y 32

Underlying Explanation

ESJIES|IES]

Figure 3: The CT worked example Interface

Genetic Process Modeling. Figure 4 displays the new CT
process modeling activity in which students relate the
underlying genetics processes and corresponding empirical
data in a 3FC task. The table at the top of the screen has six
main columns. Two columns at the left of the screen depict
(unobservable) genetic crossovers in graphical and symbolic
form. The next two columns to the right represent properties
of the offspring that result from the crossovers. In each
activity, students reason about the relationship among these
observable and unobservable components of the process.
The values for one of the four columns are given in each
problem, and students generate the corresponding values for
the other three columns. At the bottom of the screen,
students select natural language summaries of the
relationships from menus.

Method

Participants. Sixty-seven CMU undergraduates enrolled in
either genetics or introductory biology courses were
recruited to participate in this study for pay. Students were
randomly assigned to one of four treatment groups.

Procedure. Students participated in two two-hour sessions
on consecutive days and completed a problem-solving
retention test one week later, as summarized in Table 1.

| 4-1G. Students have contributed the following class data from a test cross between a stock heterozygous for three genes and
a stock that is homozygous recessive for the three genes.

| The genes are: a (arista shortened); b (black body), and e (eyeless).
In each case, the wild type phenotype is capitalized.

| From the results below, determine the map distances and order of these genes.
| Given the "Interchanging Gene", identify the "Chromosomal Genotype® and "Crossover Positions”.

The Heterozygous Parent: | b a ¢
BIALE

Underlying Processes in Heterozygous Parent
during Meiosis

Observations: The Eight
Different Types of Offspring

Possible Chromosomal Crossover Offspring Interchanged ~ Group  Offspring
Gene Name  Numbers

Arrangements Phenotype

G pe Between:

ba e b a B ag ) z 0
BUATE BUAD ¢ -—

Bra e b €AV e - ry ry

\ B&A and ARE 5] A 3

1 b AVE By a (E -—

b_a ] b a e None (Parental) |8 None %) m

BWAD ¢ BEAVE .

b A e B a ¢ 4 ™ ™

B 4 || b GXE )

Total Offspring 1000

Help

Done

Summary:
| When a single gene crosses over, | the interchanging gene has crossed over. ®

| When two genes cross over, the interchanging gene i the middle gene - because the other two have crossed over =

Map Distance and Frequencies
Assume the |AE | map distance is 24.3 cM. With 1000 total offspring, the expected number of crossovers between A equals[243 |

To find the observed number of crossovers between A& E  add |t mbers of Groups

because [ each offspring in these two groups have one crossol

Assumethe € | map distance is 25.2 cM. With 1000 total offspring, the expected number of crossovers between B&E  equals

To find the observed number of crossovers between 8&E  add | the of

bers of Groups 1(241) and IV (7) and 2 * Gro!

]

because [ offspring in Groups | & IV have 1 BE crossover and offspring in Group Il have 2.

Figure 4: The CT interface for the process modeling task.

In Session 1, students completed conceptual knowledge and
problem solving pretests, then completed Cognitive Tutor
learning activities, followed by a conceptual knowledge
posttest. In Session 2, students completed Cognitive Tutor
problems, followed by a problem solving posttest, a
transfer test, and a preparation for future learning (PFL) test.

Table 1: Student activities in the three study sessions.

Session 1: Pretests: Conceptual Knowledge & Problem Solving
Cognitive Tutor Activities (Four Conditions)
Conceptual Knowledge Posttest

Cognitive Tutor Problem Solving

Posttests: Problem Solving, Transfer & PFL
One-week Retention test: Problem Solving

Session 2:

Session 3:

Design. There were four conditions in the study, defined by
CT learning activities in the first session:

* Process Modeling (MOD): Students completed process
modeling activities for up to 30 minutes, followed by
up to 30 minutes of problem solving. (N=16 students)

¢ Interleaved Worked Examples (IWE): Students
completed interleaved worked examples and problem
solving activities for up to 60 minutes. (N=20)

* Process Modeling and Interleaved Worked Examples
(ALL): Students completed process modeling activities
for up to 20 minutes, then interleaved worked examples
and problem solving for up to 40 minutes. (N=18)

* Problem Solving (PS): Students exclusively completed
problem solving activities. (N= 13)

In Session 2 all students completed problem-solving
activities for up to 60 minutes.

Tests. We developed four types of tests for the study:
* Problem Solving Tests: Three forms were developed.
Within each condition, each form served as a pretest for
1/3 of the students, a posttest for 1/3 of the students and

a one-week retention test for 1/3 of the students.
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e Conceptual Knowledge Tests: Two forms were
developed of this multiple choice test that tapped
students’ understanding of crossovers in meiosis. Each
form served as a session-1 pretest for half the students
and a session-1 posttest for the other half.

* Transfer Tests: A transfer test with two problems was
administered following all CT activities. The first was a
three-factor cross problem that required students to
improvise an alternative solution. The second problem
asked students to extend their reasoning to four genes.

¢ Preparation for Future Learning (PFL): This test
presented a 2.5-page description of the reasoning in a
four-factor cross experiment, then asked students to
solve a four-factor cross problem.

Results

Average scores on the CK pretest were quite high, 86%
correct, while average scores on the PS pretest were low,
34% correct. In two ANOVAs, there were no reliable
differences among the four groups on either pretest.

Session 1 Cognitive Tutor Activities

The average number of cognitive tutor activities completed
by students in the four conditions is displayed in Table 2. As
can be seen, students in the baseline problem-solving
condition completed an average of almost two more
abductive problems than students in the other conditions.
However, some students in this condition completed the full
set of problems in less than an hour, so total time on task in
session 1 was somewhat lower in this condition.

Table 2: Mean number of Day-1 Cognitive Tutor activities.

Table 3: Average accuracy (percent correct) and time
(seconds) to explain three categories of observed actions
and the underlying genetics in the CT worked examples.

ALL IWE | ALL IWE
Acc. Acc. | Time Time
9%C %C sec. sec.

Identify Offspring Classes

Describe Observation 92 93 10? 19°

Explain Genetic Process 84 87 12 17%
Identify Middle Gene

Describe Observation 56 62 33° 53

Explain Genetic Process 96 80 g 14
Calculate Crossover Frequency

Describe Observation ]2 72 18 22

Explain Genetic Process 75 63 10° 272

Condition Process Worked Problem Time
Modeling | Examples Solving (min.)
MOD 34 - 4.4 44 .6
IWE -—- 54 52 450
ALL 24 5.1 52 493
PS - - 6.8 403

Worked-Example Tasks To begin examining the impact of
process modeling on learning, we compared students’
performance on the worked example tasks for the ALL and
IWE conditions. Table 3 displays both average student
accuracy and average time to explain three types of solution
components in the 3FC worked example activities. For each
step, students both describe the relevant observable data and
explain the underlying genetic process.

As can be seen students in the ALL group who completed
process modeling activities before the worked examples are
40% faster in explaining solution steps than students in the
IWE group. In an ANOVA, this main effect of condition is
reliable, F(1,36)=21.16, p < .01. The main effect of
knowledge component (KC) type is reliable F(2,72)=26.75,
p < .01 as is the main effect of explaining the observable
data vs. underlying process, F(1,36)=82.87, p < .0l. In
pairwise t-tests, students in the ALL group are reliably

* t-test is reliable, p < .01

faster than the IWE students for 5 of the 6 types of
explanations, as shown in Table 3.

Students in the ALL group are only about 6% more
accurate than the IWE students. In an ANOVA, the main
effect of condition is not reliable, F(1,36)=0.90, while the
main effect of knowledge component (KC) type is reliable
F(2,72)=16.29, p < .01, as is the main effect of explaining
the observable data vs. underlying process, F(1,36)=4.19,
p <.05. One interaction, of explanation type and KC type, is
reliable, F(2,72)=25.00, p < .01. Students were more
accurate in explaining the observable data than the
underlying process for offspring class identification and
crossover frequency, but more accurate at explaining the
process than the data for finding the middle gene.

Problem Solving In session 1, the first three problems that
students in each group solved were identical. Table 4
displays the average accuracy of the four groups for the
three types of solution steps. As can be seen, students in the
two groups that completed a worked example prior to each
problem are more accurate in completing the problem steps:
they are about 11% more accurate in identifying offspring
classes, 11% more accurate in calculating distances between
gene pairs, and 20% more accurate in identifying the middle
gene. In the accuracy data, there is little evidence that
completing the process modeling activities improved
problem-solving accuracy; accuracy levels are similar in the
ALL and IWE conditions, and they are similar in the MOD
and PS conditions. In an ANOVA, the main effect of
condition is marginally reliable, F(3,63)=2.22, p < .10). The
main effect of knowledge component type is reliable,
F(2,126)=20.69, p < .01, but the interaction is not reliable.
Table 4 also displays the average time taken to complete
the three types of problem solving actions. Across the 3
types of activities, students in the ALL condition completed
the problem solving actions much faster than students in the
other conditions. Across the three types of steps, IWE
students took 26% more time, MOD students took 62%
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Table 4: Average accuracy (percent correct) and time
(seconds) to complete session-1 problem solving actions.

Table 5: Average accuracy (percent correct) and time
(seconds) to complete session-2 problem solving actions.

MOD IWE | ALL PS

MOD IWE | ALL PS

Acc.  Acc. | Acc. Acc.
%C %C %C %C
Identify Offspring Classes 80 86 87 76
Identify Middle Gene 58 72 72 62
Calculate Crossover Frequency 60 60 70 57

Acc.  Acc. | Acc. Acc.
%C %C %C %C
Identify Offspring Classes 91 96 96 95
Identify Middle Gene 61 72 82 80
Calculate Crossover Frequency 71 80 88 90

Time Time | Time Time

sec. sec. sec. sec.
Identify Offspring Classes 40 42 2.7 8.1
Identify Middle Gene 40.7 327 | 242 568

Calculate Crossover Frequency 69.1 515 | 432 86.5

Time Time | Time Time

sec. sec. sec. sec.
Identify Offspring Classes 22 2.1 19 29
Identify Middle Gene 263 236 154 233

Calculate Crossover Frequency 246 219 15.3 18.9

more time and baseline PS students took 116% more time.
In an ANOVA, the main effect of condition is reliable,
F(3,63)=9.51, p < .01. The main effect of knowledge
component type is also reliable, F(2,126)=123.23, p < .01,
and the interaction is reliable, F(6,126)=2.68, p <.05.

Session 2 Cognitive Tutor Problem Solving

Student performance in the second session, in which all
students worked on the same set of 3FC CT problems serves
as a measure of Session-1 learning outcomes. Figure 5
displays average time to solve the first five CT problems —
the problems finished by all the students. As can be seen,
students in the ALL group finished the problems more
quickly than students in the other three groups. In a two-
way ANOVA, the main effect of condition is marginally
significant F(3,63) = 2.62, p < .06. The main effect of
problem number is also significant, F(4,252)=21.40, p < .01,
while the interaction is non-significant.

Table 5 displays the average accuracy of the four groups
for the three types of solution KCs in these five problems.
By the second session, there is little difference in accuracy
among the ALL, IWE and PS groups, but the MOD group
who engaged in processing modeling without worked
examples lags behind the other groups. In an ANOVA, the
main effect of condition is reliable, F(3, 63)=4.48, p <.01.

300
250

200
m——NMOD

150 - =IWE

ALL
100
—==-ps

50

Figure 5: Average time to complete the first five 3FC CT
problems in Session 2.

In t-tests the differences are reliable between the MOD and
ALL groups and between the MOD and PS groups, and
marginally reliable (p < .06) between the MOD and IWE
groups. No pairwise differences among the ALL, IWE and
PS groups are reliable. In the ANOVA, the main effect of
KC type is also reliable, F(2,126)=29.03, p < .0l. The
difference between the MOD group and the other groups
appears larger for the harder KCs, but the interaction of KC
and condition is not reliable.

Table 5 also displays the average time taken to complete
the three types of problem solving actions. As can be seen,
students in the ALL condition appear to reason about the
problems more quickly than students in the other conditions.
Across the three component types, students in the PS
condition are 38% slower, students in the IWE condition are
46% slower and students in the MOD condition are 63%
slower. Surprisingly, in an ANOVA, neither the main effect
of condition nor the interaction of KC and condition is
statistically significant. Inspecting the data set reveals that
the variance in the ALL condition, 41.4, is much lower than
the variance of the other conditions (PS = 279, IWE = 431,
MOD = 977). While the values in the lower half of the four
distributions are very similar (i.e., the faster students look
similar in all four conditions), the PS, IWE and MOD
distributions have longer tails at the high end, hinting at
another interaction in these Day 2 KC times: The ALL
condition appears to be especially helpful for the less
prepared students, reducing their reasoning times.

Table 6 displays average accuracy for the conceptual
knowledge pretests and posttests administered before and
after the Day-1 CT activities. Average pretest scores across
the four groups are already quite high, about 86% correct,
and are almost unchanged on the posttest, averaging 87%
correct. In a two-way ANOVA, the main effects of test and
of condition, and the interaction are all non-significant.

Table 6 also displays the problem solving pretests given
before the Day-2 CT activities and problem solving
posttests given immediately following Day-2 CT activities.
There are large learning gains across the four groups, with
pretest accuracy averaging 34% correct and posttest scores
averaging 84% correct. In a two-way ANOVA, the main
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effect of test is reliable, F(1,63)=8.39, p < .01, but the main
effect of condition and the interaction are not significant.

Table 6: Average accuracy (percent correct) on the
conceptual knowledge and problem solving pretests and
posttests and the robust learning tests in the four conditions.

MOD IWE | ALL PS

Acc.  Acc. | Acc. Acc.
%C %C %C %C
Conceptual Knowledge Pretest 81 89 92 83
Conceptual Knowledge Posttest 84 85 92 87

Problem Solving Pretest 29 36 33 37
Problem Solving Posttest 79 86 87 85
Transfer Test 88 85 85 88
Preparation for Future Learning 91 89 90 92
Problem Solving Retention 73 85 76 91

Table 6 also displays average student accuracy on the
three measures of robust learning: the transfer test and PFL
test administered at the end of Session 2 and the problem
solving retention test administered a week later. As can be
seen, average performance on the transfer and PFL tests is
quite high across conditions and in two one-way ANOVAs,
the main effect of condition was non-significant for both
tests. On the delayed problem solving test, the PS baseline
condition shows some sign of better retention, but the main
effect of condition is not significant in an ANOVA.

Discussion and Conclusion

Several conclusions emerge from the results. Students in the
ALL condition, who actively reviewed the underlying
genetics processes before explaining interleaved worked
examples, demonstrated the greatest learning throughout the
first two days — as reflected in reasoning speed more
strongly than in accuracy. There is one caveat, that while
students in the baseline PS condition completed more
problem-solving activities than the other three groups, they
spent less total time on task the first day. Process modeling
alone tended to yield lower problem-solving accuracy across
both sessions, suggesting that reasoning about the
underlying genetics processes alone is not especially useful
for learning to solve problems, unless worked examples are
provided to scaffold the relationship between the genetics
processes and problem solving. As found in earlier studies
integrating worked examples with intelligent learning
environments, the IWE worked-example alone condition
yielded problem solving performance similar to the baseline
PS condition.

As in most of the prior ITS/worked-example studies, no
differences were found among the conditions in accuracy
gains on the problem-solving tests. Nor were differences
found on the tests of robust learning. However, the analysis
of CT performance implies that, while test performance
accuracy may be of greater practical relevance, posttest
performance time measures may be necessary to detect
genuine differences in learning outcomes.
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