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Abstract 

When inferring causal relationships, people are often faced 
with ambiguous evidence. Models of causal inference have 
taken different approaches to explain reasoning about such 
evidence. One approach – epitomized by Bayesian models of 
causal inference – defers judgment by representing 
uncertainty across multiple explanations. Another approach – 
usually adopted by associative models – approximates 
uncertainty by positing within-compound associations, a 
special type of association that forms between simultaneously 
presented cues. Although these approaches explain many of 
the same experimental findings, we note some limitations of 
the latter approach. Within-compound associations form 
whenever two cues are presented simultaneously – even when 
the causal influences of the cues are already known. Since 
associative models use within-compound associations to 
modify beliefs about one potential cause when learning about 
another, associative models therefore predict that cues with 
known causal influences can have their influence revised as a 
result of being presented with other cues. In two experiments, 
we tested the predictions of the two approaches. The results 
were consistent with models that represent uncertainty across 
multiple explanations and inconsistent with models that use 
within-compound associations. 
 
Keywords: causal reasoning; causal inference; uncertainty; 
associative models; Bayesian models 

Introduction 

Everyday causal inference often requires reasoning about 

ambiguous evidence. Consider a reasoner who is trying to 

explain events such as a recent illness, a lapse in a 

friendship, or a car accident. Each of these events has many 

possible explanations, and, in many cases, the reasoner will 

not be able to identify the correct explanation with certainty. 

While there are different ways to respond to ambiguous 

evidence, the most reasonable response involves deferring 

judgment by representing the uncertainty associated with the 

evidence. That is, rather than committing to a single 

explanation prematurely, a reasoner presented with 

ambiguous evidence should distribute his or her belief 

across the possible explanations in accordance with the 

plausibility of each explanation. It has commonly been 

observed that while Bayesian models exemplify this sort of 

approach, associative models adopt another approach (e.g., 

Courville, Daw, Gordon, & Touretzky, 2003; Kruschke, 

2008; Lu, Rojas, Beckers, & Yuille, 2008; Sobel, 

Tenenbaum, & Gopnik, 2004). 

Most of the research that investigates reasoning about 

ambiguous evidence focuses on situations where there is an 

inferential dependency such that learning about whether one 

cue causes the effect provides information about whether 

other cues cause the effect. Consider, for example, a 

situation where the effect occurs in the presence of two 

possible causes (we write this as AB+, letting letters 

represent the potential causes and +/– represent the 

presence/absence of the effect). This ambiguous evidence 

establishes an inferential dependency between cues A and B 

because subsequent learning about cue A can provide 

information about cue B and vice versa (e.g., if shown A– 

trials, a reasoner would probably conclude that cue B 

definitely causes the effect). As we will see later, Bayesian 

models can explain this inferential dependency – as well as 

other inferential dependencies – by distributing belief across 

multiple explanations. 

The evidence for the superiority of this approach, 

however, is less strong than one might expect: some 

associative models – which do not seem to defer judgment 

or represent uncertainty – explain the same experimental 

findings. At the very least, associative models are able to 

approximate a genuine representation of uncertainty and 

handle some types of ambiguous evidence. In the present 

paper, we present (1) an analysis of the weakness of the 

associative approximation of uncertainty and (2) an 

empirical test based on the analysis that clearly 

differentiates the two approaches. 

Associative models 

The Rescorla-Wagner (RW) model (Rescorla & Wagner, 

1972) is the most well-known associative model. The RW 

model adopts the following learning rule, which modifies 

the associations between a cue (potential cause) and the 

effect in order to reduce prediction error: 
 

Δ𝑉𝑖 = 𝑠𝑖𝑠𝑒(𝑇 −  ∑ 𝑉𝑖𝑖 )                         (1) 
 

In this learning rule, si represents the salience or learning 

rate for cue i when it is present (si = α) or absent (si = 0), se 

represents the salience of the effect (se = β), T represents the 

presence (T = 1) or absence (T = 0) of the effect, and Vi 

represents the prior association between cue i and the effect. 

The summation, which occurs over all cues present on a 

given trial, represents the predicted strength of the effect. 

The difference between T and the summation therefore 
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represents the prediction error (observed – expected), and 

the model modifies the association between the cue and the 

effect in order to reduce this error on future trials. 

The RW model accounts for notable experimental 

findings such as forward blocking (A+ AB+). Compared to 

a control condition without the initial A+ trials (i.e., AB+ 

alone), blocking produces a weaker association between cue 

B and the effect. The RW model explains this finding 

because it learns a strong association between A and the 

effect during the A+ trials. Consequently, the prediction 

error on the AB+ trials will be small, leaving little room for 

learning an association between cue B and the effect. 

When presented with ambiguous evidence, however, the 

RW model fails to predict the existence of inferential 

dependencies. Consider the model predictions for backward 

blocking (AB+ A+) and recovery from overshadowing 

(AB+ A–), the most commonly demonstrated dependencies. 

Since the RW model does not modify the associations of 

absent cues (si = 0 for absent cues), it does not predict any 

learning about cue B during the A+ or A– trials. 

Associative models have been proposed that can explain 

these findings, including the Van Hamme and Wasserman 

(1994) model, the comparator hypothesis (Denniston, 

Savastano, & Miller, 2001; Miller & Matzel, 1988; Stout & 

Miller, 2007), and the modified SOP model (Dickinson & 

Burke, 1996). These models explain inferential 

dependencies by positing within-compound associations, 

associations formed between cues that are presented on the 

same trial. These associations are used to support learning 

about absent cues. Since problems with the modified SOP 

model have been considered previously (Carroll, Cheng, & 

Lu, 2010), we focus on the Van Hamme and Wasserman 

model and the comparator hypothesis in this paper. 

The Van Hamme and Wasserman model 

The Van Hamme and Wasserman (1994) model modifies the 

RW model by (1) imposing within-compound associations 

between the cues and (2) positing a negative learning rate 

for expected but absent cues. In short, while the Van 

Hamme and Wasserman model also uses Equation 1 to 

update the associations, it assigns different saliences to the 

cue depending on whether it is present (si = α1), absent but 

expected (si = α2 where α2 is negative), or absent and 

unexpected (si = 0.0). The salience of the effect also varies 

as a function of its presence (se = β1) and absence (se = β2). 

 
Figure 1: The asymptotic associations of the Van Hamme 

and Wasserman model on AB+ trials. The dashed line 

represents a within-compound association. 

 

Figure 1 shows the asymptotic associations of the Van 

Hamme and Wasserman model during the AB+ phase of 

backward blocking or recovery from overshadowing. The 

modifications create a dependency between cues A and B. If 

shown an A+ trial after the AB+ trials, for example, the A-

effect association will increase and the B-effect association 

will decrease. 

To derive the quantitative predictions of the Van Hamme 

and Wasserman model, we follow Wasserman and Castro 

(2005) by letting α1 = .7, α2 = –.4, β1 = .5 and β2 = .4. 

The comparator hypothesis 

According to the comparator hypothesis (Denniston, 

Savastano, & Miller, 2001; Miller & Matzel, 1988; Stout & 

Miller, 2007), the direct activation of the effect from a cue 

(its association) is compared to the indirect activation of the 

effect from the cue (which is approximately equal to the 

product of the associations along an indirect path to the 

effect).
1
 Figure 2 shows the asymptotic associations of  the 

comparator hypothesis for AB+ trials. Since the direct and 

indirect activations of the effect by cue B are both large 

following the AB+ trials, the comparator hypothesis predicts 

that responding to cue B alone should be limited after these 

trials. Subsequent learning could influence this prediction, 

however. On A– trials, for example, the A-effect association 

would decrease, attenuating cue B’s indirect activation of 

the effect. The comparator hypothesis predicts that cue B 

will be viewed as a stronger predictor of the effect after the 

A– trials, thereby explaining recovery from overshadowing. 
 

 
Figure 2: The asymptotic associations of the comparator 

hypothesis following AB+ trials. 
 

The comparator hypothesis updates its associations using 

an equation more similar to Hull’s (1952) than to the RW 

and Van Hamme and Wasserman equations:  
  

Δ𝑉𝑖,𝑗 = 𝑠𝑖𝑠𝑗(𝑇 − 𝑉𝑖,𝑗)                           (2) 
 

Because Equation 2 calculates the error relative to the 

prediction of a single association (Vi,j) rather than relative to 

a sum of associations, the AB+ trials of backward blocking 

and recovery from overshadowing lead to associations that 

                                                 
1
 When there are two or more comparison cues, the 

comparison mechanism is more complicated. Because none 

of the present experiments involve higher-order 

comparisons, we can ignore these complications. 
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asymptotically approach 1.0 (see Figure 2). The salience of 

cue i depends on whether the cue is present (sj = α) or absent 

(si = 0.0), and the salience of cue j (which could be the 

effect) also depends on whether the cue is present (sj = α) or 

absent (sj = k1). 

A final
2
 parameter k2 controls the strength of the 

competition from the indirect activation of the effect. 

Following Stout and Miller (2007), we set α = .7071, k1 = 

.1768, k2 = .9 as the default parameters of the model. In all 

of our simulations, we assume that context is ignored.  

Bayesian models of causal inference 

Many Bayesian models of causal inference have been 

proposed. These models often represent possible 

explanations of the data as causal graphs. In these models, 

inferential dependencies arise from the ability of the model 

to distribute belief across multiple explanations. Consider 

Figure 3, which shows what a Bayesian model that assumes 

deterministic causation might infer from AB+ trials. The 

AB+ trials will concentrate belief on the explanations where 

at least one of the cues causes the effect. This belief 

distribution sets up an inferential dependency. To see why, 

observe that the probability that cue B causes the effect 

given that cue A causes the effect is 0.33/(0.33+0.33) = 0.5, 

whereas the probability that cue B causes the effect given 

that cue A does not cause the effect is 0.33/(0.33+.00) = 1.0. 

This suggests a dependency where learning whether or not 

cue A causes the effect will influence the model’s beliefs 

about cue B. 

 

 
 

Figure 3: The predictions of a simple Bayesian model when 

given AB+ evidence. The numbers are the posterior 

probabilities of the explanations given the data, P(G|D). 
 

We adopt a Bayesian model of causal inference that 

extends Griffiths and Tenenbaum’s (2005) model. Provided 

with a set of cues, the model considers all of the causal 

graphs where each cue is either a cause of the effect or does 

not influence the effect. Given some data D, the model uses 

Bayes theorem to calculate the posterior probability of each 

graph G: 

𝑃(𝐺|𝐷) =
𝑃(𝐷|𝐺)𝑃(𝐺)

𝑃(𝐷)
                           (3) 

 

The likelihood function, P(D|G), can be specified by 

assuming that causes produce their effects in accordance 

with causal power theory (Cheng, 1997). We assume 

uniform priors across both the causal graphs and the causal 

                                                 
2
 The model’s fourth parameter k3 does not influence on the 

predictions of the model in any of the present experiments. 

weights that the likelihood function uses to represent the 

strengths of the causal relationships. For a more detailed 

description of the model, see Carroll, Cheng, and Lu (2010). 

Distinguishing the models 

Due to the assumption that within-compound associations 

form whenever two cues are paired together, the associative 

models predict inferential dependencies in some 

counterintuitive situations. Consider what these models will 

predict when A+ trials are followed by AB+ trials. The 

models will establish within-compound associations during 

the AB+ trials, suggesting that subsequent learning about 

cue B might lead people to make an inference about cue A. 

According to the Bayesian model, on the other hand, the 

unambiguous A+ trials will concentrate all or almost all of 

the posterior probability on explanations where cue A is a 

cause of the effect. Subsequent evidence about other cues 

may change how belief is distributed between these 

explanations, but it is not likely to shift belief to other 

explanations. Two experiments tested whether, as the 

associative models predict, the simultaneous presentation of 

two cues might lead people make inferences about cues for 

which causal influence was unambiguously established on 

previous trials. 

Experiment 1 

The comparator hypothesis predicts that cues will become 

competitive as soon as there is a within-compound 

association between them. Consider a situation where a 

reasoner learns that two cues predict the effect separately 

(A+ B+) before learning that the cues predict the effect as a 

compound (AB+). The comparator hypothesis predicts that 

the initial A+ and B+ trials will establish strong cue-effect 

associations and that the subsequent AB+ trials will put the 

cues in competition by establishing a within-compound 

association between them. Therefore, participants should 

become less certain that either cue A or cue B causes the 

effect after observing AB+ trials. 

Experiment 1 contrasted these predictions with the 

predictions of the Bayesian model through the experiment 

design shown in  Table 1. The two causes and one cause 

conditions present situations that may be problematic for the 

comparator hypothesis. The causal influences of the cues in 

these conditions are unambiguous after phase 1, but within-

compound associations will form during phase 2. These 

within-compound associations have the potential to decrease 

responding to the cues. Two control conditions were also 

included in the experiment. The competition control was 

included to confirm that the experiment was adequate to 

establish competition between cues in at least some 

circumstances. Without this control, the comparator 

hypothesis could account for a lack of competition in the 

experimental conditions by setting the parameter that 

controls the amount of competition to zero. A second control 

was included in order to control for forgetting. 
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Table 1: The data presented in Experiment 1. 

 

condition phase 1 phase 2 

two causes A+ B+ AB+ 

one cause C– D+ CD+ 

competition control  EF+ 

forgetting control G+ H–  

Method 

Participants 

Eighteen undergraduates at the University of California, Los 

Angeles participated for course credit. 

Materials and Procedure 

The experimental instructions informed the participants that 

they would be attempting to diagnose the fruit allergies of a 

patient at the hospital. Participants were told that the 

diagnoses would be made by reviewing the patient’s “fruit 

journal.” The fruit journal provided a daily log of the fruits 

that the patient ate and of his allergic reactions.  

Table 1 summarizes the content of the fruit journal. Since 

we wanted to assess how the participant’s causal beliefs 

changed over the course of the experiment, we presented the 

fruit journal in two separate learning phases. Participants 

reported their causal beliefs after each learning phase. 

Within a learning phase, there were five trials for each 

trial-type (i.e., in the first phase, there were five A+ trials, 

five B+ trials, and so on), and the trials were presented in 

random order. Each trial began by displaying the icons and 

labels of whichever fruits the patient ate on that day. The 

icons and labels of the fruits were displayed alone for 1.5 

seconds, at which point an cartoon face appeared. The 

cartoon face signified  whether the patient had an allergic 

reaction on that day: a smiley face with the text “ok” 

indicated that the patient did not have an allergic reaction 

and a frowning face with the text “allergic reaction” 

indicated that the patient had an allergic reaction. The trial 

concluded after the fruit or fruits and cartoon face were 

displayed together for 2.0 seconds. 

After each learning phase, participants reported their 

causal beliefs by answering questions such as: 

 

Suppose that on a given day, coconuts are the only 

fruit that the patient eats. Do you think that the 

patient will have an allergic reaction on that day? 

 

The participants responded on a slider with seven tick 

marks. The leftmost tick was labeled “definitely not,” the 

middle mark was labeled “maybe,” and the rightmost tick 

was labeled “definitely.” Responses were coded as integers 

ranging from 1 (“definitely not”) to 7 (“definitely”). 

Results and Discussion 

Figure 4 shows the participant’s causal ratings and the 

predictions of the Bayesian model and comparator 

hypothesis. The most informative comparisons are between 

the final ratings for the cues in the experimental conditions 

(i.e., cues A, B, C, and D) to the final ratings for the relevant 

forgetting control cue (i.e., cue G for the causal cues; cue H 

for the noncausal cues). Because the comparator hypothesis 

predicts that competition will develop between the 

experimental cues during phase 2, it predicts that the final 

causal ratings for the experimental cues will be lower. This 

was not the case. No significant differences were found 

between the final causal ratings for cue G and the final 

causal ratings for cue A, t(17) = 0.79, p = .44, cue B, t(17) = 

0.11, p = .91, or cue C, t(17) = 0.77, p = .45. Similarly, the 

difference between the causal ratings for cue H and cue D 

was also non-significant, t(17) = 1.49, p = .15.
3
 The failure 

to find differences between these cues is not due to a simple 

lack of statistical power: the participants clearly 

distinguished between different cues in phase 1, F(5, 85) = 

126.01, p < .001, and phase 2, F(7, 119) = 30.51, p < .001. 

The Bayesian model correctly predicts the relative stability 

of the experimental cues. 

As one might expect, therefore, the Bayesian model 

provided a better fit to the data (r = .98) than the comparator 

hypothesis (r = .59). To investigate whether the comparator 

hypothesis could explain the results when other parameter 

settings were adopted, we searched for the parameters that 

maximized the correlation between the model predictions 

and the causal ratings across both phases. With the best-

fitting parameters, the model offered a much better fit (r = 

0.99 with α = .30, k1 = .08; k2 did not influence the model 

predictions). The better fit was achieved by slowing down 

the learning rate (α). With a slower learning rate, the 

associations between the cues and the effect did not 

approach asymptote on the trials in phase 1. Consequently, 

the associations continued to increase in phase 2. The best-

fitting parameters adjusted the magnitude of this increase so 

that it exactly offset the increased competition that arises 

through the formation of the within-compound association. 

Although post-hoc better-fitting parameters made the 

comparator hypothesis’s predictions correlate well with the 

results, there are reasons to be suspicious of this adjustment. 

First, in the better fitting model, the predicted cue-effect 

associations in phase 1 (.37) are far from asymptote, making 

it awkward to explain why participants viewed the causal 

cues (cues A, B, D, and G) as “definite” causes of the effect. 

Furthermore, the model only predicts a stable cue A-effect 

association under very specific parameter settings. The 

causal influence of cue A will only be stable during the AB+ 

trials when the increase in the direct activation of the effect 

from cue A is exactly offset by the increase in the indirect 

activation via cue B. This delicate balance would be difficult 

to maintain across many situations. 

                                                 
3
 Rather than comparing the final ratings for the 

experimental and control cues, one could compare the initial 

and final ratings for the experimental cues. However, the 

small differences between these ratings were not statistically 

significant and could be attributed to forgetting in any case. 
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Experiment 2 

Experiment 2 sought to find a clearer refutation of the 

comparator hypothesis and to modify the experimental 

procedure so that the Van Hamme and Wasserman model 

also predicts inferential dependencies. Because the Van 

Hamme and Wasserman model predicts that within-

compound associations are only utilized when there is an 

expected but absent cue, testing the predictions of the model 

involves presenting one of the cues in isolation after a 

within-compound association has been formed. 

Method 

Participants 

Eleven undergraduates at the University of California, Los 

Angeles participated for course credit. 

Materials and Procedure 

Except where noted, the materials and procedure were 

identical to those in Experiment 1. The data were presented 

in three phases rather than two, and Table 2 shows the 

presented data. We also altered the experimental procedure 

in an attempt to limit the influence of forgetting across the 

phases. Rather than presenting data about the allergic 

reactions of a single patient to many fruits, we presented 

data about the allergic reactions of three different patients 

(one for each experimental condition). Participants viewed 

all of the data for one patient before moving on to the next 

patient. As was the case in the previous experiment, 

participants reported their causal beliefs after each phase. 

 

Table 2: The presented data. The bold trials involved cues 

whose associations with the effect were analyzed. The other 

cues were only included as controls. 

 

condition phase 1 phase 2 phase 3 

two causes A+ G– AB+ B+ 

one cause C– H+ CD+ D+ 

recovery from 

overshadowing 

I+ J– EF+ F– 

Results and Discussion 

Figure 5 shows the causal ratings for the cues across the 

phases, as well as the predictions of the Bayesian model and 

the associative models with the best-fitting parameters. The 

model predictions differ most informatively for cues A, C, 

and E. Across the learning phases, the causal ratings for 

cues A and C were much more stable than the causal ratings 

 
Figure 4: The data from Experiment 1 and the predictions of the models. 

 

Figure 5: Results and predictions for Experiment 2. 
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for cue E. The Bayesian model predicts the relative stability 

of these ratings. The associative models do not, even when 

the parameters of the associative models were selected to 

maximize the correlation with the causal ratings. 

Consequently, the parameter-free Bayesian model (r = .98) 

provides a better fit to the data than the Van Hamme and 

Wasserman model (r = .81 with α1β1 = .06, α2 / α1 = -.60, β2 

/ β1 = 5.53) and the comparator hypothesis (r = .81 with α = 

.37, k1 = .41, and k2 = .84). 

Planned comparisons confirmed that the ratings for cues A 

and C were stable across phases 2 and 3 (in fact, none of the 

participants gave these cues different causal ratings in the 

two phases) and that there was a clear change in the ratings 

for cue E across these phases, t(10) = 5.04, p < .001. Since 

the Van Hamme and Wasserman model predicts (1) that a 

within-compound association will form on the AB+ trials 

and (2) that the B+ trial will be very surprising, it 

incorrectly predicts that beliefs about cue A will change 

dramatically during phase 2. The comparator hypothesis can 

only predict stable ratings for cue A on the AB+ trials if the 

learning rate is slow, but a slower learning rate insures that 

the B-effect association will still be increasing during the 

B+ trials. It is impossible for the comparator hypothesis to 

predict the stability of the causal ratings for cue A on both 

the AB+ and the B+ trials.  

General Discussion 

Associative models predict that inferential dependencies can 

arise whenever two cues are simultaneously presented. In 

situations where the causal influence of one of the cues is 

already known with near-certainty, this prediction can be 

distinguished from the predictions of Bayesian models, 

which will not predict inferential dependencies in such 

circumstances. The results in Experiments 1 and 2 favor the 

Bayesian model over the associative models. 

These experiments suggest that any model of causal 

inference should represent uncertainty by distributing belief 

across multiple explanations. A model that does so – 

whether through probabilistic inference, propositional 

reasoning, or other mechanisms – will be able to explain the 

appropriate inferential dependencies. This is something that 

the Bayesian models of causal inference clearly do. It is also 

something that within-compound associations clearly fail to 

approximate. 
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