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Abstract

When inferring causal relationships, people are often faced
with ambiguous evidence. Models of causal inference have
taken different approaches to explain reasoning about such
evidence. One approach — epitomized by Bayesian models of
causal inference — defers judgment by representing
uncertainty across multiple explanations. Another approach —
usually adopted by associative models — approximates
uncertainty by positing within-compound associations, a
special type of association that forms between simultaneously
presented cues. Although these approaches explain many of
the same experimental findings, we note some limitations of
the latter approach. Within-compound associations form
whenever two cues are presented simultaneously — even when
the causal influences of the cues are already known. Since
associative models use within-compound associations to
modify beliefs about one potential cause when learning about
another, associative models therefore predict that cues with
known causal influences can have their influence revised as a
result of being presented with other cues. In two experiments,
we tested the predictions of the two approaches. The results
were consistent with models that represent uncertainty across
multiple explanations and inconsistent with models that use
within-compound associations.
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Introduction

Everyday causal inference often requires reasoning about
ambiguous evidence. Consider a reasoner who is trying to
explain events such as a recent illness, a lapse in a
friendship, or a car accident. Each of these events has many
possible explanations, and, in many cases, the reasoner will
not be able to identify the correct explanation with certainty.

While there are different ways to respond to ambiguous
evidence, the most reasonable response involves deferring
judgment by representing the uncertainty associated with the
evidence. That is, rather than committing to a single
explanation prematurely, a reasoner presented with
ambiguous evidence should distribute his or her belief
across the possible explanations in accordance with the
plausibility of each explanation. It has commonly been
observed that while Bayesian models exemplify this sort of
approach, associative models adopt another approach (e.g.,
Courville, Daw, Gordon, & Touretzky, 2003; Kruschke,
2008; Lu, Rojas, Beckers, & Yuille, 2008; Sobel,
Tenenbaum, & Gopnik, 2004).

Most of the research that investigates reasoning about
ambiguous evidence focuses on situations where there is an
inferential dependency such that learning about whether one
cue causes the effect provides information about whether
other cues cause the effect. Consider, for example, a
situation where the effect occurs in the presence of two
possible causes (we write this as AB+, letting letters
represent the potential causes and +/— represent the
presence/absence of the effect). This ambiguous evidence
establishes an inferential dependency between cues A and B
because subsequent learning about cue A can provide
information about cue B and vice versa (e.g., if shown A—
trials, a reasoner would probably conclude that cue B
definitely causes the effect). As we will see later, Bayesian
models can explain this inferential dependency — as well as
other inferential dependencies — by distributing belief across
multiple explanations.

The evidence for the superiority of this approach,
however, is less strong than one might expect: some
associative models — which do not seem to defer judgment
or represent uncertainty — explain the same experimental
findings. At the very least, associative models are able to
approximate a genuine representation of uncertainty and
handle some types of ambiguous evidence. In the present
paper, we present (1) an analysis of the weakness of the
associative approximation of uncertainty and (2) an
empirical test based on the analysis that -clearly
differentiates the two approaches.

Associative models

The Rescorla-Wagner (RW) model (Rescorla & Wagner,
1972) is the most well-known associative model. The RW
model adopts the following learning rule, which modifies
the associations between a cue (potential cause) and the
effect in order to reduce prediction error:

AV; = si5.(T — Xi V) (1

In this learning rule, s; represents the salience or learning
rate for cue { when it is present (s; = o) or absent (s; = 0), s,
represents the salience of the effect (s, = f), T represents the
presence (7 = 1) or absence (7 = 0) of the effect, and V;
represents the prior association between cue i and the effect.
The summation, which occurs over all cues present on a
given trial, represents the predicted strength of the effect.
The difference between 7' and the summation therefore
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represents the prediction error (observed — expected), and
the model modifies the association between the cue and the
effect in order to reduce this error on future trials.

The RW model accounts for notable experimental
findings such as forward blocking (A+ AB+). Compared to
a control condition without the initial A+ trials (i.e., AB+
alone), blocking produces a weaker association between cue
B and the effect. The RW model explains this finding
because it learns a strong association between A and the
effect during the A+ trials. Consequently, the prediction
error on the AB+ trials will be small, leaving little room for
learning an association between cue B and the effect.

When presented with ambiguous evidence, however, the
RW model fails to predict the existence of inferential
dependencies. Consider the model predictions for backward
blocking (AB+ A+) and recovery from overshadowing
(AB+ A-), the most commonly demonstrated dependencies.
Since the RW model does not modify the associations of
absent cues (s; = 0 for absent cues), it does not predict any
learning about cue B during the A+ or A— trials.

Associative models have been proposed that can explain
these findings, including the Van Hamme and Wasserman
(1994) model, the comparator hypothesis (Denniston,
Savastano, & Miller, 2001; Miller & Matzel, 1988; Stout &
Miller, 2007), and the modified SOP model (Dickinson &
Burke, 1996). These models explain inferential
dependencies by positing within-compound associations,
associations formed between cues that are presented on the
same trial. These associations are used to support learning
about absent cues. Since problems with the modified SOP
model have been considered previously (Carroll, Cheng, &
Lu, 2010), we focus on the Van Hamme and Wasserman
model and the comparator hypothesis in this paper.

The Van Hamme and Wasserman model

The Van Hamme and Wasserman (1994) model modifies the
RW model by (1) imposing within-compound associations
between the cues and (2) positing a negative learning rate
for expected but absent cues. In short, while the Van
Hamme and Wasserman model also uses Equation 1 to
update the associations, it assigns different saliences to the
cue depending on whether it is present (s; = a;), absent but
expected (s; = a, where o, is negative), or absent and
unexpected (s; = 0.0). The salience of the effect also varies
as a function of its presence (s, = f5;) and absence (s. = f,).

Figure 1: The asymptotic associations of the Van Hamme
and Wasserman model on AB+ trials. The dashed line
represents a within-compound association.

Figure 1 shows the asymptotic associations of the Van
Hamme and Wasserman model during the AB+ phase of
backward blocking or recovery from overshadowing. The
modifications create a dependency between cues A and B. If
shown an A+ trial after the AB+ trials, for example, the A-
effect association will increase and the B-effect association
will decrease.

To derive the quantitative predictions of the Van Hamme
and Wasserman model, we follow Wasserman and Castro
(2005) by letting a; = .7, a; =—4, ;= .5 and S, = 4.

The comparator hypothesis

According to the comparator hypothesis (Denniston,
Savastano, & Miller, 2001; Miller & Matzel, 1988; Stout &
Miller, 2007), the direct activation of the effect from a cue
(its association) is compared to the indirect activation of the
effect from the cue (which is approximately equal to the
product of the associations along an indirect path to the
effect).” Figure 2 shows the asymptotic associations of the
comparator hypothesis for AB+ trials. Since the direct and
indirect activations of the effect by cue B are both large
following the AB+ trials, the comparator hypothesis predicts
that responding to cue B alone should be limited after these
trials. Subsequent learning could influence this prediction,
however. On A— trials, for example, the A-effect association
would decrease, attenuating cue B’s indirect activation of
the effect. The comparator hypothesis predicts that cue B
will be viewed as a stronger predictor of the effect after the
A-— trials, thereby explaining recovery from overshadowing.

Figure 2: The asymptotic associations of the comparator
hypothesis following AB+ trials.

The comparator hypothesis updates its associations using
an equation more similar to Hull’s (1952) than to the RW
and Van Hamme and Wasserman equations:

AVL] = SiSj(T - Vll) (2)

Because Equation 2 calculates the error relative to the
prediction of a single association (V;;) rather than relative to
a sum of associations, the AB+ trials of backward blocking
and recovery from overshadowing lead to associations that

1 .
When there are two or more comparison cues, the

comparison mechanism is more complicated. Because none
of the present experiments involve higher-order
comparisons, we can ignore these complications.
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asymptotically approach 1.0 (see Figure 2). The salience of
cue i depends on whether the cue is present (s; = o) or absent
(s; = 0.0), and the salience of cue j (which could be the
effect) also depends on whether the cue is present (s; = a) or
absent (s; = k1).

A final®> parameter k2 controls the strength of the
competition from the indirect activation of the effect.
Following Stout and Miller (2007), we set a = .7071, kI =
1768, k2 = .9 as the default parameters of the model. In all
of our simulations, we assume that context is ignored.

Bayesian models of causal inference

Many Bayesian models of causal inference have been
proposed. These models often represent possible
explanations of the data as causal graphs. In these models,
inferential dependencies arise from the ability of the model
to distribute belief across multiple explanations. Consider
Figure 3, which shows what a Bayesian model that assumes
deterministic causation might infer from AB+ trials. The
AB+ trials will concentrate belief on the explanations where
at least one of the cues causes the effect. This belief
distribution sets up an inferential dependency. To see why,
observe that the probability that cue B causes the effect
given that cue A causes the effect is 0.33/(0.33+0.33) = 0.5,
whereas the probability that cue B causes the effect given
that cue A does not cause the effect is 0.33/(0.33+.00) = 1.0.
This suggests a dependency where learning whether or not
cue A causes the effect will influence the model’s beliefs
about cue B.

.33 .33

Figure 3: The predictions of a simple Bayesian model when
given AB+ evidence. The numbers are the posterior
probabilities of the explanations given the data, P(G|D).

We adopt a Bayesian model of causal inference that
extends Griffiths and Tenenbaum’s (2005) model. Provided
with a set of cues, the model considers all of the causal
graphs where each cue is either a cause of the effect or does
not influence the effect. Given some data D, the model uses
Bayes theorem to calculate the posterior probability of each
graph G:

P(DIG)P(G)

P(D)

P(GID) = A3)

The likelihood function, P(D|G), can be specified by
assuming that causes produce their effects in accordance
with causal power theory (Cheng, 1997). We assume
uniform priors across both the causal graphs and the causal

% The model’s fourth parameter k3 does not influence on the
predictions of the model in any of the present experiments.

weights that the likelihood function uses to represent the
strengths of the causal relationships. For a more detailed
description of the model, see Carroll, Cheng, and Lu (2010).

Distinguishing the models

Due to the assumption that within-compound associations
form whenever two cues are paired together, the associative
models predict inferential dependencies in some
counterintuitive situations. Consider what these models will
predict when A+ trials are followed by AB+ trials. The
models will establish within-compound associations during
the AB+ trials, suggesting that subsequent learning about
cue B might lead people to make an inference about cue A.
According to the Bayesian model, on the other hand, the
unambiguous A+ trials will concentrate all or almost all of
the posterior probability on explanations where cue A is a
cause of the effect. Subsequent evidence about other cues
may change how belief is distributed between these
explanations, but it is not likely to shift belief to other
explanations. Two experiments tested whether, as the
associative models predict, the simultaneous presentation of
two cues might lead people make inferences about cues for
which causal influence was unambiguously established on
previous trials.

Experiment 1

The comparator hypothesis predicts that cues will become
competitive as soon as there is a within-compound
association between them. Consider a situation where a
reasoner learns that two cues predict the effect separately
(A+ B+) before learning that the cues predict the effect as a
compound (AB+). The comparator hypothesis predicts that
the initial A+ and B+ trials will establish strong cue-effect
associations and that the subsequent AB+ trials will put the
cues in competition by establishing a within-compound
association between them. Therefore, participants should
become less certain that either cue A or cue B causes the
effect after observing AB+ trials.

Experiment 1 contrasted these predictions with the
predictions of the Bayesian model through the experiment
design shown in Table 1. The two causes and one cause
conditions present situations that may be problematic for the
comparator hypothesis. The causal influences of the cues in
these conditions are unambiguous after phase 1, but within-
compound associations will form during phase 2. These
within-compound associations have the potential to decrease
responding to the cues. Two control conditions were also
included in the experiment. The competition control was
included to confirm that the experiment was adequate to
establish competition between cues in at least some
circumstances. Without this control, the comparator
hypothesis could account for a lack of competition in the
experimental conditions by setting the parameter that
controls the amount of competition to zero. A second control
was included in order to control for forgetting.
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Table 1: The data presented in Experiment 1.

condition phase 1 phase 2
two causes A+ B+ AB+
one cause C-D+ CD+
competition control EF+
forgetting control G+ H-

Method

Participants

Eighteen undergraduates at the University of California, Los
Angeles participated for course credit.

Materials and Procedure

The experimental instructions informed the participants that
they would be attempting to diagnose the fruit allergies of a
patient at the hospital. Participants were told that the
diagnoses would be made by reviewing the patient’s “fruit
journal.” The fruit journal provided a daily log of the fruits
that the patient ate and of his allergic reactions.

Table 1 summarizes the content of the fruit journal. Since
we wanted to assess how the participant’s causal beliefs
changed over the course of the experiment, we presented the
fruit journal in two separate learning phases. Participants
reported their causal beliefs after each learning phase.

Within a learning phase, there were five trials for each
trial-type (i.e., in the first phase, there were five A+ trials,
five B+ trials, and so on), and the trials were presented in
random order. Each trial began by displaying the icons and
labels of whichever fruits the patient ate on that day. The
icons and labels of the fruits were displayed alone for 1.5
seconds, at which point an cartoon face appeared. The
cartoon face signified whether the patient had an allergic
reaction on that day: a smiley face with the text “ok”
indicated that the patient did not have an allergic reaction
and a frowning face with the text “allergic reaction”
indicated that the patient had an allergic reaction. The trial
concluded after the fruit or fruits and cartoon face were
displayed together for 2.0 seconds.

After each learning phase, participants reported their
causal beliefs by answering questions such as:

Suppose that on a given day, coconuts are the only
fruit that the patient eats. Do you think that the
patient will have an allergic reaction on that day?

The participants responded on a slider with seven tick
marks. The leftmost tick was labeled “definitely not,” the
middle mark was labeled “maybe,” and the rightmost tick
was labeled “definitely.” Responses were coded as integers
ranging from 1 (“definitely not”) to 7 (“definitely”).

Results and Discussion

Figure 4 shows the participant’s causal ratings and the
predictions of the Bayesian model and comparator

hypothesis. The most informative comparisons are between
the final ratings for the cues in the experimental conditions
(i.e., cues A, B, C, and D) to the final ratings for the relevant
forgetting control cue (i.e., cue G for the causal cues; cue H
for the noncausal cues). Because the comparator hypothesis
predicts that competition will develop between the
experimental cues during phase 2, it predicts that the final
causal ratings for the experimental cues will be lower. This
was not the case. No significant differences were found
between the final causal ratings for cue G and the final
causal ratings for cue A, #(17) =0.79, p = .44, cue B, #(17) =
0.11, p = .91, or cue C, (17) = 0.77, p = .45. Similarly, the
difference between the causal ratings for cue H and cue D
was also non-significant, #(17) = 1.49, p = .15. The failure
to find differences between these cues is not due to a simple
lack of statistical power: the participants clearly
distinguished between different cues in phase 1, F(5, 85) =
126.01, p < .001, and phase 2, F(7, 119) = 30.51, p < .001.
The Bayesian model correctly predicts the relative stability
of the experimental cues.

As one might expect, therefore, the Bayesian model
provided a better fit to the data (» = .98) than the comparator
hypothesis (» = .59). To investigate whether the comparator
hypothesis could explain the results when other parameter
settings were adopted, we searched for the parameters that
maximized the correlation between the model predictions
and the causal ratings across both phases. With the best-
fitting parameters, the model offered a much better fit (» =
0.99 with a = .30, kI = .08; k2 did not influence the model
predictions). The better fit was achieved by slowing down
the learning rate (o). With a slower learning rate, the
associations between the cues and the effect did not
approach asymptote on the trials in phase 1. Consequently,
the associations continued to increase in phase 2. The best-
fitting parameters adjusted the magnitude of this increase so
that it exactly offset the increased competition that arises
through the formation of the within-compound association.

Although post-hoc better-fitting parameters made the
comparator hypothesis’s predictions correlate well with the
results, there are reasons to be suspicious of this adjustment.
First, in the better fitting model, the predicted cue-effect
associations in phase 1 (.37) are far from asymptote, making
it awkward to explain why participants viewed the causal
cues (cues A, B, D, and G) as “definite” causes of the effect.
Furthermore, the model only predicts a stable cue A-effect
association under very specific parameter settings. The
causal influence of cue A will only be stable during the AB+
trials when the increase in the direct activation of the effect
from cue A is exactly offset by the increase in the indirect
activation via cue B. This delicate balance would be difficult
to maintain across many situations.

% Rather than comparing the final ratings for the

experimental and control cues, one could compare the initial
and final ratings for the experimental cues. However, the
small differences between these ratings were not statistically
significant and could be attributed to forgetting in any case.
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Figure 4: The data from Experiment 1 and the predictions of the models.

Experiment 2

Experiment 2 sought to find a clearer refutation of the
comparator hypothesis and to modify the experimental
procedure so that the Van Hamme and Wasserman model
also predicts inferential dependencies. Because the Van
Hamme and Wasserman model predicts that within-
compound associations are only utilized when there is an
expected but absent cue, testing the predictions of the model
involves presenting one of the cues in isolation after a
within-compound association has been formed.

Method

Participants

Eleven undergraduates at the University of California, Los
Angeles participated for course credit.

Materials and Procedure

Except where noted, the materials and procedure were
identical to those in Experiment 1. The data were presented
in three phases rather than two, and Table 2 shows the
presented data. We also altered the experimental procedure
in an attempt to limit the influence of forgetting across the
phases. Rather than presenting data about the allergic
reactions of a single patient to many fruits, we presented
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data about the allergic reactions of three different patients
(one for each experimental condition). Participants viewed
all of the data for one patient before moving on to the next
patient. As was the case in the previous experiment,
participants reported their causal beliefs after each phase.

Table 2: The presented data. The bold trials involved cues
whose associations with the effect were analyzed. The other
cues were only included as controls.

condition phase 1  phase2  phase 3
two causes A+ G- AB+ B+
one cause C-H+ CD+ D+
recovery from I+J- EF+ F-

overshadowing

Results and Discussion

Figure 5 shows the causal ratings for the cues across the

phases, as well as the predictions of the Bayesian model and

the associative models with the best-fitting parameters. The

model predictions differ most informatively for cues A, C,

and E. Across the learning phases, the causal ratings for

cues A and C were much more stable than the causal ratings
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Figure 5: Results and predictions for Experiment 2.
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for cue E. The Bayesian model predicts the relative stability
of these ratings. The associative models do not, even when
the parameters of the associative models were selected to
maximize the correlation with the causal ratings.
Consequently, the parameter-free Bayesian model (» = .98)
provides a better fit to the data than the Van Hamme and
Wasserman model (r = .81 with ;8; = .06, a, / a; = -.60, p,
/ B; = 5.53) and the comparator hypothesis (r = .81 with a =
37, kI = .41, and k2 = .84).

Planned comparisons confirmed that the ratings for cues A
and C were stable across phases 2 and 3 (in fact, none of the
participants gave these cues different causal ratings in the
two phases) and that there was a clear change in the ratings
for cue E across these phases, #(10) = 5.04, p < .001. Since
the Van Hamme and Wasserman model predicts (1) that a
within-compound association will form on the AB+ trials
and (2) that the B+ trial will be very surprising, it
incorrectly predicts that beliefs about cue A will change
dramatically during phase 2. The comparator hypothesis can
only predict stable ratings for cue A on the AB+ trials if the
learning rate is slow, but a slower learning rate insures that
the B-effect association will still be increasing during the
B+ trials. It is impossible for the comparator hypothesis to
predict the stability of the causal ratings for cue A on both
the AB+ and the B+ trials.

General Discussion

Associative models predict that inferential dependencies can
arise whenever two cues are simultancously presented. In
situations where the causal influence of one of the cues is
already known with near-certainty, this prediction can be
distinguished from the predictions of Bayesian models,
which will not predict inferential dependencies in such
circumstances. The results in Experiments 1 and 2 favor the
Bayesian model over the associative models.

These experiments suggest that any model of causal
inference should represent uncertainty by distributing belief
across multiple explanations. A model that does so —
whether through probabilistic inference, propositional
reasoning, or other mechanisms — will be able to explain the
appropriate inferential dependencies. This is something that
the Bayesian models of causal inference clearly do. It is also
something that within-compound associations clearly fail to
approximate.

Acknowledgments

The preparation of this article was supported by AFOSR
FA 9550-08-1-0489. The authors wish to thank Betty Huang
and Aaron Placensia for assistance with data collection.

References

Carroll, C. D., Cheng, P. W., & Lu, H. (2010). Uncertainty
in causal inference: The case of retrospective revaluation.
In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of
the 32nd Annual Conference of the Cognitive Science
Society.

Cheng, P. W. (1997). From covariation to causation: A
causal power theory. Psychological Review, 104, 367-405.

Courville, A. C., Daw, N. D., Gordon, G. J., & Touretzky, D.
S. (2003). Model uncertainty in classical conditioning. In
S. Thrun, S. L, & B. Schoelkopf (Eds.), Advances in
Neural Information Processing Systems 16. Cambridge,
MA: MIT Press.

Denniston, J. C., Savastano, H. 1., & Miller, R. R. (2001).
The extended comparator hypothesis: Learning by
contiguity, responding by relative strength. In R. R.
Mowrer, & S. B. Klein, Handbook of contemporary
learning theories. Mahwah, NJ: Lawrence Erlbaum
Associates.

Dickinson, A., & Burke, J. (1996). Within-compound
associations mediate the retrospective revaluation of
causality judgments. The Quarterly Journal of
Experimental Psychology, 49B (1), 60-80.

Griffiths, T. L., & Tenenbaum, J. B. (2005). Structureand
strength in causal induction. Cognitive Psychology, 51,
334-384.

Hull, C. L. (1952). A behavior system: An introduction to
behavior theory concerning the individual organism. New
Haven, CT: Yale University Press.

Kruschke, J. K. (2008). Bayesian approaches to associative
learning: From passive to active learning. Learning &
Behavior, 36 (3), 210-226.

Lu, H., Rojas, R. R., Becker, T., & Yuille, A. (2008).
Sequential causal learning in humans and rats. In
Proceedings of the 29th Annual Conference of the
Cognitive Science Society.

Miller, R. R., & Matzel, L. D. (1988). The comparator
hypothesis: A response rule for the expression of
associations. In G. H. Bower (Ed.), The Psychology of
learning and motivation (Vol. 2). San Diego, CA:
Academic Press.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
Pavlovian conditioning: Variations in the effectiveness of
reinforcement and non-reinforcement. In A. H. Black, &
W. E. Prokasy (Eds.), Classical conditioning II: Current
research and theory. New York: Appleton-Century-Crofts.

Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2004).
Children's causal inferences from indirect evidence:
Backwards blocking and Bayesian reasoning in
preschoolers. Cognitive Science, 28, 303-333.

Stout, S. C., & Miller, R. R. (2007). Sometimes-competing
cue retrieval (SOCR): A formalization of the comparator
hypothesis. Psychological Review, 114 (3), 759-783.

Van Hamme, L. J., & Wasserman, E. A. (1994). Cue
competition in causality judgments: The role of
nonpresentation of compound stimulus elements.
Learning & Motivation, 25, 127-151.

Wasserman, E. A., & Castro, L. (2005). Surprise and
change: Variations in the strength of present and absent
cues in causal learning. Learning & Behavior, 33 (2), 131-
146.

1423



