
 

 

 

Reasoning with Conjunctive Causes 

Bob Rehder (bob.rehder@nyu.edu) 
Department of Psychology, New York University  
6 Washington Place, New York, NY 10003 USA  

 
 

Abstract 
 

Conjunctive causes are causes that all need to be present for an 
effect to occur. They contrast with independent causes that by 
themselves can each bring about an effect. We extend existing 
“causal power” representations of independent causes to in-
clude a representation of conjunctive causes. We then demon-
strate how independent vs. conjunctive representations imply 
sharply different patterns of reasoning (e.g., explaining away 
effects for independent causes as compared to exoneration ef-
fects for conjunctive causes). An experiment testing how peo-
ple reason with independent and conjunctive causes found that 
their inferences generally matched the model’s prediction, al-
beit with some important exceptions.  
 

Rather than operating in a vacuum, causes frequently inter-
act with other factors to produce their effects. For example, 
the conjunction of two or more variables is often necessary 
for an outcome to occur. A spark may only produce fire if 
there is fuel to ignite, a virus may only cause disease if 
one’s immune system is suppressed, the motive to commit 
murder may result in death only if the means to carry out the 
crime are available. Sometimes, conjunctive causes take the 
form of enablers. For example, the presence of oxygen en-
ables fire given spark and fuel. In contrast, disablers interact 
with existing causes by preventing normal outcomes. Al-
though the eight ball’s path to the side pocket may appear 
inevitable, it may be interrupted by an earthquake, a falling 
ceiling tile, or a spilled beer. 

The last 20 years has seen a growing interest in the role of 
causal knowledge in numerous areas of cognition. Many 
studies have investigated how causal relations are learned 
from observed correlations (Cheng, 1997; Gopnik et al., 
2004; Griffiths & Tenenbaum, 2005; 2009; Lu et al., 2008; 
Sobel et al., 2004; Waldmann et al., 1995). Others have 
tested the impact of causal knowledge on various forms of 
reasoning, including inference (Rehder & Burnett, 2005; 
Kemp & Tenenbaum, 2009), interventions (Sloman & 
Lagnado, 2005; Waldmann & Hagmeyer, 2005), analogy 
(Holyoak et al., 2010; Lee & Holyoak, 2008), generalization 
(Rehder, 2006; 2009), and classification (Rehder & Hastie, 
2001; Rehder 2003a; b; Rehder & Kim, 2006; 2009; 2010). 
But although some studies have investigated the learning of 
interactive causes (e.g., Novick & Cheng, 2004), their role 
in reasoning has received little attention. This article tests 
how people reason with one sort of interactive cause—
conjunctions. 

How should one reason with conjunctive causes? One 
popular framework for modelling learning and reasoning 
with causal knowledge is Bayesian networks or causal 
graphical models (hereafter, CGMs). In CGMs, variables 

are represented as nodes and causal relations as directed 
edges. For example, Figure 1A presents a CGM in which 
variables C1 and C2 are causes of variable E. CGMs are 
popular in part because they specify the causal Markov con-
dition that stipulates patterns of conditional independence 
between variables and which has important implications for 
how one learns and reasons with causal knowledge.  

By itself, however, a CGM says nothing about the func-
tional relationship between an effect and its causes. For ex-
ample, Figure 1A does not specify whether C1 and C2 are 
independent or interactive causes of E. Two possibilities are 
represented in Figures 1B and 1C. In these figures, we as-
sume that C1, C2, and E are binary variables that are either 
present or absent. Diamonds represent independent genera-
tive causal mechanisms, processes that work to produce the 
effect when their causes are present. Figure 1B represents 
the fact that C1 and C2 are independent causes of E—that is, 
that E might be brought about by C1 or C2. Figure 1C repre-
sents that C1 and C2 are conjunctive causes of E—E is 
brought about only when C1 and C2 are both present. As 
mentioned, there are other ways that E might depend on an 
interaction between C1 and C2 (e.g., C2 might disable the 
causal link between E and C1), but here we focus on the 
contrast between independent and conjunctive causes. Be-
low we specify the (independent or conjunctive) functions 
that relate an effect and its causes and derive the different 
patterns of inferences implied by those functions. 

Other frameworks do not readily distinguish between al-
ternative interpretations of Figure 1A. For example, reason-
ers may treat it as an associative network, in which case 
they may infer one variable given others without regard to 
the direction of causality. Or, they may treat it as a depend-
ency network that is sensitive to causal direction (E depends 
on C1 and C2) but not their functional relationship. Accord-
ingly, our goal is to first establish that reasoners indeed dis-
tinguish between independent and conjunctive causes and 
then determine whether they do so in the manner predicted 
by our proposed representation of conjunctions.  

Reasoning with Conjunctive Causes 
To test how people reason with conjunctive causes, subjects 

Figure 1. 
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were instructed on a novel category with six features. For 
example, subjects who learned Romanian Rogos (a type of 
automobile) were told that Rogos have a number of typical 
or characteristic features (e.g., butane-laden fuel, a loose 
fuel filter gasket, hot engine temperature, etc). In addition, 
subjects were instructed on the interfeature causal relations 
shown in Figure 2. Two features (IC1 and IC2 in Figure 2) 
were described as independent causes of IE whereas CC1 
and CC2 were described as conjunctive causes of CE. Sub-
jects were then presented with an inference test in which 
they predicted one Rogo feature given the state of others.  

To derive predictions for this experiment, we first specify 
the joint probability distribution for each of the two CGMs 
represented by the subnetworks in Figure 2 and then use 
those distributions to derive expected inferences.  

Specifying the Joint Distributions 
Independent cause network. We first specify the joint 

distribution for the independent cause network, pk(IC1, IC2, 
IE), that is, the probability that IC1, IC2, and IE will take any 
particular combination of values in category k. From the 
axioms of probability theory we have, 

! 

pk IC1, IC2, IE( ) = pk IE | IC1, IC2( )pk IC1, IC2( )  (1) 

Because IC1 and IC2 have no common causes in the inde-
pendent cause network (and because the causal sufficiency 
constraint on CGMs rules out them having a hidden com-
mon cause, Spirites et al. 1993) they are assumed to be in-
dependent. Eq. 1 thus becomes, 

! 

pk IC1, IC2, IE( ) = pk IE | IC1, IC2( )pk IC1( )pk IC2( )  (2) 

pk(IE | IC1, IC2) can be written as a function of parameters 
that characterize the generative causal mechanisms that re-
late IE to its causes. Specifically, mIC2,IE and mIC2,IE are the 
probabilities that those mechanisms will produce IE when 
IC1 and IC2 are present, respectively. In terms introduced by 
Cheng (1997), these probabilities refer to the “power” of the 
causes. In addition, to allow for the possibility that IE has 
additional causes not shown in Figure 2, bIE is the proba-
bility that IE will be brought about by some other cause. 
With these definitions, the probability that IE is present is 
given by the familiar “fuzzy-or” equation, 

! 

pk IE =1| IC1, IC2( ) =1" 1"bIE( ) 1"mICi ,IE( )ind ICi( )

i=1,2
#  (3) 

where ind(ICi) returns 1 when ICi is present and 0 otherwise.  
Equations 2 and 3 are sufficient to specify the probability 

of any combination of IC1, IC2, and IE. These expressions 

are shown in the left hand side of Table 1. For example, the 
probability that IC1 and IE are present and IC2 absent is  

! 

pk IC1 =1, IC2 = 0, IE =1( )
     = pk IE =1| IC1 =1, IC2 = 0( )pk IC1 =1( )pk IC2 = 0( )
     = 1" 1"bIE( ) 1"mIC1 ,IE( )[ ]cIC1

1" cIC2( )

 

where cIC1 and cIC2 are the probabilities that IC1 and IC2, will 
appear in members of category k, respectively.  

Conjunctive cause network. The joint distribution for 
the conjunctive cause network, pk(CC1, CC2, CE), can be 
written in a manner analogous to Eq. 2, 

! 

pk CC1,CC2 ,CE( ) = pk CE |CC1,CC2( )pk CC1( )pk CC2( )  (4) 

The conjunctive cause network in Figure 2 differs from in-
dependent causes in having one generative causal mecha-
nism. We extend the notion of “causal power” to conjunc-
tive causes by assuming that, when CC1 and CC2 are both 
present, that mechanism will bring about CE with probabil-
ity mIC1,IC2,IE. Thus we have, 

! 

pk CE =1|CC1,CC2( ) =1" 1"bCE( ) 1"mIC1,IC2 ,IE( )ind CC1 ,CC2( )  (5) 

where bCE is the probability that CE will be brought about 
by some other cause, and ind(CC1, CC2) returns 1 when CC1 
and CC2 are both present and 0 otherwise. Equations 4 and 5 
are sufficient to specify the probability of any combination 
of CC1, CC2, and CE, as shown in the right hand side of 
Table 1. cCC1 and cCC2 are the probabilities that CC1 and CC2 
will appear in members of category k, respectively 

Theoretical Predictions 
Given the joint distributions in Table 1, it is straightforward 
to compute the conditional probability of any feature given 
the state of any other features in the same subnetwork. To 
demonstrate the qualitative pattern of these inferences, we 
instantiate the joint distributions by assigning the causal 
model parameters with values that are hypothetical but also 
reasonable in light of conditions established in the upcom-

Figure 2. 

Independent Causes  Conjunctive Causes 
 
 
IC1 

 
 
IC2 

 
 
IE 

 
 
pk(IC1, IC2,IE) 

cIC1 = cIC2 = .67;  
mIC1,IE = mIC2,IE = .75;  
bIE= .20 

  
 
CC1 

 
 
CC2 

 
 
CE 

 
 
pk(CC1, CC2,CE) 

cCC1 = cCC2 = .67;  
mCC1,CC2,IE = .75;  
bCE= .20 

1 1 1 [1 – (1–mIC1,IE)(1–mIC2,IE)(1–bIE)]cIC1cIC2 .422  1 1 1  [1 – (1–mCC1CC2CE)(1–bCE)]cCC1cCC2 .356 
1 1 0 (1–mIC1,IE)(1–mIC2,IE)(1–bIE)cIC1cIC2 .022  1 1 0  (1–mCC1CC2CE)(1–bCE)cCC1cCC2 .089 
1 0 1 [1 – (1–mIC1,IE)(1–bIE)]cIC1(1–cIC2) .178  1 0 1 bCEcCC1(1–cCC2) .044 
0 1 1 [1 – (1–mIC2,IE)(1–bIE)] (1–cIC1)cIC2 .178  0 1 1 bCE (1–cCC1)cCC2  .014 
0 0 1 bIE(1–cIC1)(1–cIC2) .022  0 0 1 bCE (1–cCC1)(1–cCC2) .022 
0 1 0 (1–mIC2,IE)(1–bIE)(1–cIC1)cIC2 .044  0 1 0 (1–bCE)(1–cCC1)cCC2 .178 
1 0 0 (1–mIC1,IE)(1–bIE) cIC1(1–cIC2) .044  1 0 0 (1–bCE)cCC1(1–cCC2) .178 
0 0 0 (1–bIE)(1–cIC1)(1–cIC2) .089  0 0 0 (1–bCE)(1–cCC1)(1–cCC2) .089 
 

Table 1 
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ing experiment. Because they are described as typical cate-
gory features, each cause is assumed to be moderately 
prevalent among category members (the cs = .67), each 
causal mechanism is moderately strong (the ms = .75), and 
the alternative causes of the effect features are weak (the bs 
= .20). For example, given these parameter values, the prob-
ability of IC2 conditioned on the presence of IE and the ab-
sence of IC1 is, 

! 

pk IC2 =1| IC1 = 0, IE =1( )
     = pk IC2 =1, IC1 = 0, IE =1( ) / pk IC1 = 0, IE =1( )
     = .178 / .178 + .022( ) = .890

 

 Predictions for the independent and conjunctive causal 
networks for three distinct types of inference problems are 
shown in Figures 3A, 3B, and 3C. First, Figure 3A presents 
the probability of the effect as a function of the number of 
causes that are present for both the independent and con-
junctive cause networks. For independent causes, the prob-
ability of the effect of course increases monotonically with 
the number of causes. (The probability of the effect is .20 
even when both causes are absent because of the potential of 
additional causes, represented by bIE = 20.) In contrast, for 
conjunctive causes, the probability of the effect increases 
from its baseline of .20 only when both causes are present.  

  Figure 3B presents inferences to a cause when the effect 
is present as a function of the state of the other cause. For an 
independent cause network, the probability of a cause is 
higher when the other cause is absent versus present. This is 

the well-known explaining away phenomenon in which the 
presence of one cause of an effect makes other causes less 
likely. For example, the discovery of the murder weapon in 
a suspect’s possession lowers the probable guilt of other 
suspects. Morris and Larrick (1995) have shown how ex-
plaining away is expected under a wide range of conditions.   

The conjunctive cause network, in contrast, shows the 
opposite pattern, namely, the probability of a cause is lower 
when the other cause is absent versus present. For example, 
murder requires not only the motive but also the means, so 
discovering that a murder suspect didn’t possess the means 
to carry out the crime (e.g., proximity to the victim) de-
creases his likely guilt. We refer to this as the exoneration 
effect. To our knowledge, this effect has not been noted by 
previous investigators.   

Finally, Figure 3C presents the probability of a cause 
when the effect is absent as a function of the state of the 
other cause. On one hand, although independent causes are 
negatively correlated when the effect is present (the explain-
ing away effect), they are uncorrelated when the effect is 
absent (and thus the probability of a cause is unaffected by 
state of the other cause). In contrast, the probability of a 
conjunctive cause is lower when the other cause is present. 
This represents another form of exoneration: Your brother, 
who promised to attend your Thanksgiving dinner this year 
but failed to arrive, is exonerated from responsibility (e.g., 
of returning an insincere RSVP) when you learn that his 
flight was canceled due to a snowstorm.  
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Figure 3. Panels A, B, and C present the predicted probability that a feature will be present as a function of the 
presence or absence of other features for the independent and conjunctive cause networks. (A) The probability of 
the effect as a function of the number of causes present. (B) The probability of a cause as a function of whether 
the other cause is present, assuming the effect is present. (C) The probability of a cause as a function of whether 
the other cause is present, assuming the effect is absent. The corresponding empirical results are presented in pan-
els D, E, and F. Error bars are standard errors. 
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Overview of Experiment  
The following experiment assesses whether people’s infer-
ence judgments are consistent with the predictions just pre-
sented. As this is the first test of how people reason with 
conjunctive causes, our initial goal was to test whether sub-
jects manifest the qualitative phenomenon that distinguish 
them from independent causes. Accordingly, subjects were 
not provided with values corresponding to the causal model 
parameters, that is, exact information about the probability 
of each cause (the c parameters), the strength of the causal 
links (the m parameters), or the possibility of alternative 
causes (the b parameters). Instead, we assess whether sub-
jects exhibit, for example, explaining away for independent 
causes and exoneration for conjunctive causes. 

Method  
Materials. Six novel categories were tested: two biologi-

cal kinds (Kehoe Ants, Lake Victoria Shrimp), two 
nonliving natural kinds (Myastars [a type of star], Meteoric 
Sodium Carbonate), and two artifacts (Romanian Rogos, 
Neptune Personal Computers). Each category had six binary 
feature dimensions. One value on each dimension was de-
scribed as typical of the category. For example, participants 
who learned Romanian Rogos were told that "Most Rogos 
have a hot engine temperature whereas some have a normal 
engine temperature," "Most Myastars have high density 
whereas some have a low density," and so on. 

Subjects were also provided with causal knowledge corre-
sponding to the structures in Figure 2. Each independent 
causal relationship was described as one typical feature 
causing another, accompanied with one or two sentences 
describing the mechanism responsible for the causal rela-
tionship. Each conjunctive causal relationship was described 
as two features together causing a third. Table 2 presents an 
example of independent and conjunctive causes for Rogos.  

The assignment of the six typical category features to the 
causal roles in Figure 2 (IC1, IC2, IE, CC1, CC2, and CE) 
was balanced over subjects such that for each category one 
triple of features played the role of IC1, IC2, and IE and the 
other played the role of CC1, CC2, and CE for half the sub-
jects and this assignment was reversed for the other half. 
The features and causal relationships for all six categories 
are available from the authors. 

Procedure. Participants first studied several computer 
screens of information about the category. Three initial 
screens presented the category's cover story and which fea-

tures occurred in "most" versus "some" category members. 
The fourth screen described the three causal relationships 
and the causal mechanisms. A fifth screen presented a dia-
gram like that in Figure 2 (with the names of the category’s 
actual features).  

When ready, participants took a multiple-choice test that 
tested them on this knowledge. While taking the test, par-
ticipants were free to return to the information screens; 
however, doing so obligated them to retake the test. The 
only way to proceed was to take the test all the way through 
without errors and without asking for help.  

Subjects were then presented with classification and in-
ference tests, counterbalanced for order. (The results of the 
classification test are not the topic of this article and are not 
discussed further.) During the inference test, participants 
were presented with a total of 24 inference problems, 12 for 
each subnetwork. They were asked to (a) predict the effect 
given all possible states of the causes (4 problems), predict 
each cause given all possible states of the effect and the 
other cause (8 problems). For example, participants who 
learned Rogos were asked to suppose that a Rogo had been 
found that had butane-laden fuel and a loose fuel filter gas-
ket and to judge how likely it was that it also had a hot en-
gine temperature. Responses were entered by positioning a 
slider on a scale where the left end was labeled "Sure that it 
doesn’t" and the right end was labeled "Sure that it does” 
The position of the slider was scaled into the range 0-100. 
The order of presentation of the 24 test items was random-
ized for each participant. So that judgments did not depend 
on subjects’ ability to remember the causal relations, they 
were provided with a printed diagram similar to the one in 
Figure 2. Subjects were asked to make use of those causal 
relations in answering the inference questions. 

Participants. 48 New York University undergraduates 
received course credit for participating in this experiment. 
There were three between-subject factors: the two assign-
ments of physical features to their causal roles, the two task 
presentation orders, and which of the six categories was 
learned. Participants were randomly assigned to these 2 x 2 
x 3 = 12 between-participant cells subject to the constraint 
that an equal number appeared in each cell. 

Results  
Initial analyses revealed no effects of which category sub-
jects learned, the assignment of features to causal roles, or 
feature presentation order, and so the results are presented 
collapsed over these factors. 

Table 2 
Features ! Causal Relationships !
High amounts of carbon monoxide 
in the exhaust 

Damaged fan belt 

Long-lived generator 

Butane-laden fuel 

Loose-fuel filter gaskets 

Hot engine temperature !

High amounts of carbon monoxide in the exhaust causes a long-lived generator. The carbon monoxide 
increases the pressure of the exhaust that enters the turbocharger, resulting in the turbocharger drawing less 
electricity from the generator, extending its life. [Independent] 

A damaged fan belt causes a long-lived generator. When the damaged fan belt slips, the generator turns at 
lower RPMs, which means that it lasts longer. [Independent] 

Butane-laden fuel and loose fuel filter gaskets together cause a hot engine temperature. Loose fuel filter 
gaskets allow a small amount of fuel to seep into the engine bearings. This normally has no effect. However, 
if there is butane in the fuel, it undergoes a chemical reaction that creates heat as a byproduct. Thus, when a 
car has both butane-laden fuel and a loose filter gasket, the engine runs at a hot temperature. [Conjunctive ] !
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Feature inference ratings are presented in Figures 3D, 3E, 
and 3F. These ratings generally reflected the predictions 
shown in Figures 3A-C. Unsurprisingly, for both independ-
ent and conjunctive causes, subjects judged that the pres-
ence of the effect was rated to be very likely (ratings > 90) 
when two causes were present and very unlikely (< 15) 
when they were absent. In addition however, Figure 3D 
shows that subjects were sensitive to the different functional 
relationships relating the effects to their causes. They were 
much more likely to predict the effect when one cause was 
present when the causes were independent (rating of 79.9) 
as compared to conjunctive (26.8).  

Statistical analysis supported these conclusions. A 3 x 2 
ANOVA of the data in Figure 3D revealed a main effect of 
the number of causes, F(2, 94) = 470.36, MSE = 364, p < 
.0001, a main effect of network type, F(1, 47) = 65.91, MSE 
= 335, p < .0001, and an interaction, F(2, 94) = 82.62, MSE 
= 278, p < .0001, reflecting how the networks differed in 
how inference ratings increased with the number of causes. 
In particular, when only one cause was present, ratings were 
much higher for the independent vs. conjunctive cause net-
works, t(47) = 9.88, p < .0001.  

Second, Figure 3E shows inference ratings when subjects 
predicted a cause when the effect is present. When causes 
were independent, subjects exhibited explaining away: The 
cause was rated higher when the other cause was absent 
(84.2) versus present (69.6). In contrast, this pattern was 
reversed for conjunctive causes (58.4 vs. 94.0), that is, sub-
jects exhibited exoneration. A 2 x 2 ANOVA of the data in 
Figure 3E revealed an effect of the state of the other cause, 
F(1, 47) = 9.68, MSE = 549, p < .01, no effect of network 
type, F < 1, but an interaction, F(1, 47) = 83.62, MSE = 362, 
p < .0001. Ratings were higher when the other cause was 
absent, t(47) = 3.03, p < .01, when causes were independent 
(explaining away) whereas they were lower when they were 
conjunctive, t(47) = 9.27, p < .0001 (exoneration). 

Finally, Figure 3F shows that when reasoning about con-
junctive causes subjects also exhibited exoneration when 
predicting a cause in the absence of an effect: The cause was 
rated higher when the other cause was absent (32.1 vs. 19.8 
when present). The independent cause network, in contrast, 
did not show this pattern. Analyses of the data in Figure 3F 
revealed no main effects, both Fs < 1,  but an interaction, 
F(1, 47) = 15.43, MSE = 326, p < .001. In particular, ratings 
were higher when the other conjunctive cause was absent, 
t(47) = 2.80, p < .01 (exoneration). 

These analyses confirm that subjects exhibited many of 
the key phenomena distinguish reasoning with independent 
vs. conjunctive causes. Nevertheless, Figures 3D-F also 
reveal a couple of ways in which the observed ratings differ 
from the predicted ones. First, the model predicted equal 
probabilities for certain inferences that in fact were rated 
differently by subjects. For example, for conjunctive causes, 
an effect should be equally probable regardless of whether 
zero or one cause is present (Figure 3A). In contrast, sub-
jects judged that the effect was more probable in the pres-
ence of one cause (26.8) versus none (10.5), t(47) = 5.25, p 
< .0001. And, for independent causes, a cause should be 
independent of the state of the other cause when the effect is 

absent (Figure 3C) but subjects judged it more likely when 
the other cause was present vs. absent (26.9 vs. 18.8), t(47) 
= 2.30, p < .05. These results are consistent with a typicality 
effect in which features are judged to be more probable 
when other typical features are present, even when those 
other features are (according to out model) independent of 
the feature being inferred. Rehder and Burnett (2005) found 
typicality effects for a large variety of causal networks. We 
discuss this result at greater length below. 

Second, there are also signs that subjects were ignoring 
feature base rates. For example, for conjunctive causes, the 
probability of a cause when the effect and the other cause 
are both absent should be its base rate (in Figure 3C, .67). 
However, for this inference problem subjects produced a 
rating of only 32.1 on a 100-point scale. Although the infer-
ence ratings should not be directly interpreted as probabili-
ties (because subjects were not explicitly told how the scale 
maps onto probabilities) a rating that is below the midpoint 
of the scale strongly suggests that subjects did not view the 
probability of the cause as corresponding to its base rate 
(which, because it was described as a typical category fea-
ture, should be > .50). That is, as in so many other studies, 
our subject appears to be exhibiting base rate neglect.   

General Discussion 
The first question asked in this research is whether human 
causal reasoners are sensitive to the different functional re-
lationships that can tie an effect to its causes. The answer is 
that they are. Inferences differed sharply depending on 
whether causes were independent or conjunctive. 

A second question was whether those inferences would 
exhibit the qualitative patterns predicted by a causal power 
representation of causal knowledge. The answer is that they 
(mostly) did. For example, when causes are independent, 
subjects should (and did) exhibit explaining away, that is, 
judged that a feature was less likely to be the cause of an 
effect when another cause was present. This result is unsur-
prising in light of the numerous demonstrations of explain-
ing away in the social psychology (e.g., Morris & Larrick, 
1995) and cognitive (e.g., Rehder & Burnett, 2005) litera-
tures. In contrast, when causes are conjunctive, subjects 
should (and did) exhibit exoneration effects. To our knowl-
edge, this article is the first is to demonstrate both that ex-
oneration effects are entailed by a causal power representa-
tion of conjunctions and that human causal reasoners in fact 
exhibit that effect.  

Other frameworks for representing causal knowledge are 
unable to readily explain these results. For example, simple 
spreading activation networks are unable to account for the 
present result because such networks are insensitive to both 
the distinction between independent and conjunctive causes. 
Particularly troublesome for such networks are cases in 
which the presence of one variable decreases the probability 
of another. For example, in the context of learning, the phe-
nomenon of explaining away is at the heart of CGM expla-
nations of backward blocking, a phenomenon notorious for 
the difficulties it poses for associative learning theories 
(e.g., Sobel et al., 2004; although see Van Hamme & Was-
serman, 1994, for updated versions of associative models 
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that attempt to account such phenomena). Our demonstra-
tion of exoneration with conjunctive causes when the effect 
is absent (Figure 3F) presents an analogous challenge for 
associative accounts: the probability of a cause is lower 
when its conjunct is present.   

 As mentioned, the goal of this initial experiment was to 
assess whether subjects exhibited the qualitative pattern of 
inferences predicted by our model. In future work we intend 
to present more stringent test of the model by providing 
subjects with information corresponding to the parameters 
of the causal model, such as the strength of the causal rela-
tions (the m parameters) and alternative causes (the b pa-
rameters). Morris & Larrick (1995) systematically evaluated 
how subjects’ inferences varied with these factors for inde-
pendent but not conjunctive causes. 

Nevertheless, even taking into account that we did not 
provide causal strength information, we found that subjects’ 
ratings diverged from the predictions in one qualitative way: 
They exhibited a typicality effect in which inferences were 
stronger whenever more features were present, regardless of 
whether those features were independent of the feature be-
ing predicted. Rehder and Burnett (2005) also found perva-
sive typicality effects and proposed that people assume that 
categories possess underlying causal mechanisms that relate 
observable features (UM in Figure 4). The underlying 
mechanism provides a alternative inferential path such that 
the presence of one feature makes the operation of the cate-
gory’s normal mechanism more certain, which in turn in-
creases the likelihood of other typical features (see May-
rhofer et al., 2010 for an alternative formalization). Our fu-
ture work will also focus on whether such proposals provide 
a full account of reasoning with conjunctive causes. Yet 
another question is whether a typicality effect appears for 
inferences not involving features of categories.  
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