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Abstract

Conjunctive causes are causes that all need to be present for an
effect to occur. They contrast with independent causes that by
themselves can each bring about an effect. We extend existing
“causal power” representations of independent causes to in-
clude a representation of conjunctive causes. We then demon-
strate how independent vs. conjunctive representations imply
sharply different patterns of reasoning (e.g., explaining away
effects for independent causes as compared to exoneration ef-
fects for conjunctive causes). An experiment testing how peo-
ple reason with independent and conjunctive causes found that
their inferences generally matched the model’s prediction, al-
beit with some important exceptions.

Rather than operating in a vacuum, causes frequently inter-
act with other factors to produce their effects. For example,
the conjunction of two or more variables is often necessary
for an outcome to occur. A spark may only produce fire if
there is fuel to ignite, a virus may only cause disease if
one’s immune system is suppressed, the motive to commit
murder may result in death only if the means to carry out the
crime are available. Sometimes, conjunctive causes take the
form of enablers. For example, the presence of oxygen en-
ables fire given spark and fuel. In contrast, disablers interact
with existing causes by preventing normal outcomes. Al-
though the eight ball’s path to the side pocket may appear
inevitable, it may be interrupted by an earthquake, a falling
ceiling tile, or a spilled beer.

The last 20 years has seen a growing interest in the role of
causal knowledge in numerous areas of cognition. Many
studies have investigated how causal relations are learned
from observed correlations (Cheng, 1997; Gopnik et al.,
2004; Griffiths & Tenenbaum, 2005; 2009; Lu et al., 2008;
Sobel et al., 2004; Waldmann et al., 1995). Others have
tested the impact of causal knowledge on various forms of
reasoning, including inference (Rehder & Burnett, 2005;
Kemp & Tenenbaum, 2009), interventions (Sloman &
Lagnado, 2005; Waldmann & Hagmeyer, 2005), analogy
(Holyoak et al., 2010; Lee & Holyoak, 2008), generalization
(Rehder, 2006; 2009), and classification (Rehder & Hastie,
2001; Rehder 2003a; b; Rehder & Kim, 2006; 2009; 2010).
But although some studies have investigated the learning of
interactive causes (e.g., Novick & Cheng, 2004), their role
in reasoning has received little attention. This article tests
how people reason with one sort of interactive cause—
conjunctions.

How should one reason with conjunctive causes? One
popular framework for modelling learning and reasoning
with causal knowledge is Bayesian networks or causal
graphical models (hereafter, CGMs). In CGMs, variables
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are represented as nodes and causal relations as directed
edges. For example, Figure 1A presents a CGM in which
variables C, and C, are causes of variable E. CGMs are
popular in part because they specify the causal Markov con-
dition that stipulates patterns of conditional independence
between variables and which has important implications for
how one learns and reasons with causal knowledge.

By itself, however, a CGM says nothing about the func-
tional relationship between an effect and its causes. For ex-
ample, Figure 1A does not specify whether C, and C, are
independent or interactive causes of E. Two possibilities are
represented in Figures 1B and 1C. In these figures, we as-
sume that C,, C,, and E are binary variables that are either
present or absent. Diamonds represent independent genera-
tive causal mechanisms, processes that work to produce the
effect when their causes are present. Figure 1B represents
the fact that C, and C, are independent causes of E—that is,
that E might be brought about by C, or C,. Figure 1C repre-
sents that C, and C, are conjunctive causes of E—E is
brought about only when C, and C, are both present. As
mentioned, there are other ways that E might depend on an
interaction between C, and C, (e.g., C, might disable the
causal link between E and C,), but here we focus on the
contrast between independent and conjunctive causes. Be-
low we specify the (independent or conjunctive) functions
that relate an effect and its causes and derive the different
patterns of inferences implied by those functions.

Other frameworks do not readily distinguish between al-
ternative interpretations of Figure 1A. For example, reason-
ers may treat it as an associative network, in which case
they may infer one variable given others without regard to
the direction of causality. Or, they may treat it as a depend-
ency network that is sensitive to causal direction (E depends
on C, and C,) but not their functional relationship. Accord-
ingly, our goal is to first establish that reasoners indeed dis-
tinguish between independent and conjunctive causes and
then determine whether they do so in the manner predicted
by our proposed representation of conjunctions.

Reasoning with Conjunctive Causes
To test how people reason with conjunctive causes, subjects
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were instructed on a novel category with six features. For
example, subjects who learned Romanian Rogos (a type of
automobile) were told that Rogos have a number of typical
or characteristic features (e.g., butane-laden fuel, a loose
fuel filter gasket, hot engine temperature, etc). In addition,
subjects were instructed on the interfeature causal relations
shown in Figure 2. Two features (IC, and IC, in Figure 2)
were described as independent causes of IE whereas CC,
and CC, were described as conjunctive causes of CE. Sub-
jects were then presented with an inference test in which
they predicted one Rogo feature given the state of others.

To derive predictions for this experiment, we first specify
the joint probability distribution for each of the two CGMs
represented by the subnetworks in Figure 2 and then use
those distributions to derive expected inferences.

Specifying the Joint Distributions

Independent cause network. We first specify the joint
distribution for the independent cause network, p,(IC,, IC,,
IE), that is, the probability that IC,, IC,, and IE will take any
particular combination of values in category k. From the
axioms of probability theory we have,

p.(I1C,.IC, ,IE)= p,(IENIC,,IC,)p,(IC,,IC,) )

Because IC, and IC, have no common causes in the inde-
pendent cause network (and because the causal sufficiency
constraint on CGMs rules out them having a hidden com-
mon cause, Spirites et al. 1993) they are assumed to be in-
dependent. Eq. 1 thus becomes,

pk(ICI ’ICz’IE) = pk(IE HC, ’ICQ)pk(ICI)pk(ICZ) 2

pIE I IC,, IC,) can be written as a function of parameters
that characterize the generative causal mechanisms that re-
late IE to its causes. Specifically, m, ; and my, ; are the
probabilities that those mechanisms will produce IE when
IC, and IC, are present, respectively. In terms introduced by
Cheng (1997), these probabilities refer to the “power” of the
causes. In addition, to allow for the possibility that IE has
additional causes not shown in Figure 2, b, is the proba-
bility that IE will be brought about by some other cause.
With these definitions, the probability that IE is present is
given by the familiar “fuzzy-or” equation,

P (IE =11c, ’ICZ) =1- (1 —by )Hi=12(1 ~Myc, e )"”d(lq) 3)

where ind(IC;) returns 1 when IC,; is present and O otherwise.
Equations 2 and 3 are sufficient to specify the probability
of any combination of IC,, IC,, and IE. These expressions
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are shown in the left hand side of Table 1. For example, the
probability that IC, and IE are present and IC, absent is

p(IC, =1,1C, =0,IE=1)
= Pk(IE =11C = LIC, =0)pk(lcl = ])pk(ICZ =0)

TR TR TR

where ¢,¢; and ¢,, are the probabilities that IC, and 1C,, will
appear in members of category k, respectively.

Conjunctive cause network. The joint distribution for
the conjunctive cause network, p,(CC,, CC,, CE), can be
written in a manner analogous to Eq. 2,

pk(CCl ,CC, ,CE) = pk(CE ICC,.CC, )pk (CCI )pk(CCZ) )

The conjunctive cause network in Figure 2 differs from in-
dependent causes in having one generative causal mecha-
nism. We extend the notion of “causal power” to conjunc-
tive causes by assuming that, when CC, and CC, are both
present, that mechanism will bring about CE with probabil-
ity myc; jc2.6- Thus we have,

&)

where b is the probability that CE will be brought about
by some other cause, and ind(CC,, CC,) returns 1 when CC,
and CC, are both present and O otherwise. Equations 4 and 5
are sufficient to specify the probability of any combination
of CC,, CC,, and CE, as shown in the right hand side of
Table 1. cq¢; and ¢, are the probabilities that CC,; and CC,
will appear in members of category k, respectively

)[nd( CC, £C,)

pCE=11CC,.CC) =1=(1=bey 1=y, oo

Theoretical Predictions

Given the joint distributions in Table 1, it is straightforward
to compute the conditional probability of any feature given
the state of any other features in the same subnetwork. To
demonstrate the qualitative pattern of these inferences, we
instantiate the joint distributions by assigning the causal
model parameters with values that are hypothetical but also
reasonable in light of conditions established in the upcom-

Table 1

Independent Causes

Conjunctive Causes

cicr = cie2 = 67,

mici,Ig = MiC2,JE = 755

ccc1 = ccer= 67,
Mmcc1,cC2,lE = 755

IC, IC, IE py(ICy, IC,IE) b= .20 CC, CC, CE pi(CC,, CC,,CE) beg= .20
1 1 1 [1--mce)(d-mcyie)(1-bi)lacicicy 422 1 1 [1 - (1-mcciccace)(1-bce)leccicecr 356
11 0 (I-mcre)(I-micae)(1-bi)cicicic 022 I 1 0  (I-mcciccace)(1-Dee)ecciceca .089
1 0 1 [1--mcre)(d-bi)leaci(1-cico) 178 1 0 1 beeecci(1-cec2) .044
0 1 1 [1--meoe)(1-bir)] (1-cic)eicz 178 0 1 1 beg (1—ccer)ecer .014
0 0 1 br(l-ce)(l-cc) .022 0 0 1  beg(I—ccc)(l-ccca) .022
0 1 0 (-mcye)(I-biE)(l-cic)eic: .044 0 1 0 (I-bep)(1-ccer)ecea 178
1 0 0 (l-mcre)(1-bi) cci(1-cica) .044 10 0 (I-bee)ecci(l-ccc2) 178
0 0 0 (d-bp)d-cc=cicr) 089 0 0 0 (I=bcp)(I—ccc)(1—cccr) -089

1407



A. Infer Effect
1.0

00 Causes
O1 Cause

W2 Causes

o
[

o
o

Probability
°
S

o
N

©
o

Independent

Conjunctive

B. Infer Cause (Effect Present)

C. Infer Cause (Effect Absent)

Network Type

D. Infer Effect OO0 Causes
100 - O1 Cause
M2 Causes

1.0 q DOOther Cause Absent 0.8 1 OOther Cause Absent
M Other Cause Present 0.7 | M Other Cause Present
0.9 '
0.6
2 z
= 0.8 1 =
3 ‘8 0.5
3 3
S 0.7 1— o 04
_ _
o o g3l |
0.6 T—
0.2 —
0.5 0.1 T
Independent Conjunctive Independent Conjunctive
Network Type Network Type

E. Infer Cause (Effect Present)

®
o

.

C. Infer Cause (Effect Absent)

fo)
o

N
o

Inference Rating

N
o

oL

|+

Independent

Conjunctive

Network Type

100 ~ DOOther Cause Absent 80 DO Other Cause Absent l_
M Other Cause Present ] M Other Cause Present
o 70 A
2 90 - 2
JE T 4[-6 60
&€ 80— © 50
(0] 0]
o o
S 70— S 40
pu. ju.
Q@ Q 30 I
S 60— S
= 59 -
| T
50 T 10 T
Independent Conjunctive Independent Conjunctive

Networ

k Type

Network Type
Figure 3. Panels A, B, and C present the predicted probability that a feature will be present as a function of the
presence or absence of other features for the independent and conjunctive cause networks. (A) The probability of

the effect as a function of the number of causes present. (B) The probability of a cause as a function of whether
the other cause is present, assuming the effect is present. (C) The probability of a cause as a function of whether
the other cause is present, assuming the effect is absent. The corresponding empirical results are presented in pan-

els D, E, and F. Error bars are standard errors.

ing experiment. Because they are described as typical cate-
gory features, each cause is assumed to be moderately
prevalent among category members (the c¢s = .67), each
causal mechanism is moderately strong (the ms = .75), and
the alternative causes of the effect features are weak (the bs
= .20). For example, given these parameter values, the prob-
ability of IC, conditioned on the presence of IE and the ab-
sence of IC, is,

p(IC, =111C, =0,IE = 1)
=p,(IC, =1,IC, =0,IE =1)/ p,(IC, = 0,IE = 1)
=.178/(.178 +.022) = .890

Predictions for the independent and conjunctive causal
networks for three distinct types of inference problems are
shown in Figures 3A, 3B, and 3C. First, Figure 3A presents
the probability of the effect as a function of the number of
causes that are present for both the independent and con-
junctive cause networks. For independent causes, the prob-
ability of the effect of course increases monotonically with
the number of causes. (The probability of the effect is .20
even when both causes are absent because of the potential of
additional causes, represented by b, = 20.) In contrast, for
conjunctive causes, the probability of the effect increases
from its baseline of .20 only when both causes are present.

Figure 3B presents inferences to a cause when the effect
is present as a function of the state of the other cause. For an
independent cause network, the probability of a cause is
higher when the other cause is absent versus present. This is

the well-known explaining away phenomenon in which the
presence of one cause of an effect makes other causes less
likely. For example, the discovery of the murder weapon in
a suspect’s possession lowers the probable guilt of other
suspects. Morris and Larrick (1995) have shown how ex-
plaining away is expected under a wide range of conditions.

The conjunctive cause network, in contrast, shows the
opposite pattern, namely, the probability of a cause is lower
when the other cause is absent versus present. For example,
murder requires not only the motive but also the means, so
discovering that a murder suspect didn’t possess the means
to carry out the crime (e.g., proximity to the victim) de-
creases his likely guilt. We refer to this as the exoneration
effect. To our knowledge, this effect has not been noted by
previous investigators.

Finally, Figure 3C presents the probability of a cause
when the effect is absent as a function of the state of the
other cause. On one hand, although independent causes are
negatively correlated when the effect is present (the explain-
ing away effect), they are uncorrelated when the effect is
absent (and thus the probability of a cause is unaffected by
state of the other cause). In contrast, the probability of a
conjunctive cause is lower when the other cause is present.
This represents another form of exoneration: Your brother,
who promised to attend your Thanksgiving dinner this year
but failed to arrive, is exonerated from responsibility (e.g.,
of returning an insincere RSVP) when you learn that his
flight was canceled due to a snowstorm.
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Table 2

Features Causal Relationships

High amounts of carbon monoxide
in the exhaust

Damaged fan belt
Long-lived generator
Butane-laden fuel

Loose-fuel filter gaskets

High amounts of carbon monoxide in the exhaust causes a long-lived generator. The carbon monoxide
increases the pressure of the exhaust that enters the turbocharger, resulting in the turbocharger drawing less
electricity from the generator, extending its life. [Independent]

A damaged fan belt causes a long-lived generator. When the damaged fan belt slips, the generator turns at
lower RPMs, which means that it lasts longer. [Independent]

Butane-laden fuel and loose fuel filter gaskets together cause a hot engine temperature. Loose fuel filter
gaskets allow a small amount of fuel to seep into the engine bearings. This normally has no effect. However,

if there is butane in the fuel, it undergoes a chemical reaction that creates heat as a byproduct. Thus, when a

Hot engine temperature

car has both butane-laden fuel and a loose filter gasket, the engine runs at a hot temperature. [Conjunctive ]

Overview of Experiment

The following experiment assesses whether people’s infer-
ence judgments are consistent with the predictions just pre-
sented. As this is the first test of how people reason with
conjunctive causes, our initial goal was to test whether sub-
jects manifest the qualitative phenomenon that distinguish
them from independent causes. Accordingly, subjects were
not provided with values corresponding to the causal model
parameters, that is, exact information about the probability
of each cause (the ¢ parameters), the strength of the causal
links (the m parameters), or the possibility of alternative
causes (the b parameters). Instead, we assess whether sub-
jects exhibit, for example, explaining away for independent
causes and exoneration for conjunctive causes.

Method

Materials. Six novel categories were tested: two biologi-
cal kinds (Kehoe Ants, Lake Victoria Shrimp), two
nonliving natural kinds (Myastars [a type of star], Meteoric
Sodium Carbonate), and two artifacts (Romanian Rogos,
Neptune Personal Computers). Each category had six binary
feature dimensions. One value on each dimension was de-
scribed as typical of the category. For example, participants
who learned Romanian Rogos were told that "Most Rogos
have a hot engine temperature whereas some have a normal
engine temperature," "Most Myastars have high density
whereas some have a low density," and so on.

Subjects were also provided with causal knowledge corre-
sponding to the structures in Figure 2. Each independent
causal relationship was described as one typical feature
causing another, accompanied with one or two sentences
describing the mechanism responsible for the causal rela-
tionship. Each conjunctive causal relationship was described
as two features together causing a third. Table 2 presents an
example of independent and conjunctive causes for Rogos.

The assignment of the six typical category features to the
causal roles in Figure 2 (IC,, IC,, IE, CC,, CC,, and CE)
was balanced over subjects such that for each category one
triple of features played the role of IC,, IC,, and IE and the
other played the role of CC,, CC,, and CE for half the sub-
jects and this assignment was reversed for the other half.
The features and causal relationships for all six categories
are available from the authors.

Procedure. Participants first studied several computer
screens of information about the category. Three initial
screens presented the category's cover story and which fea-

tures occurred in "most" versus "some" category members.
The fourth screen described the three causal relationships
and the causal mechanisms. A fifth screen presented a dia-
gram like that in Figure 2 (with the names of the category’s
actual features).

When ready, participants took a multiple-choice test that
tested them on this knowledge. While taking the test, par-
ticipants were free to return to the information screens;
however, doing so obligated them to retake the test. The
only way to proceed was to take the test all the way through
without errors and without asking for help.

Subjects were then presented with classification and in-
ference tests, counterbalanced for order. (The results of the
classification test are not the topic of this article and are not
discussed further.) During the inference test, participants
were presented with a total of 24 inference problems, 12 for
each subnetwork. They were asked to (a) predict the effect
given all possible states of the causes (4 problems), predict
each cause given all possible states of the effect and the
other cause (8 problems). For example, participants who
learned Rogos were asked to suppose that a Rogo had been
found that had butane-laden fuel and a loose fuel filter gas-
ket and to judge how likely it was that it also had a hot en-
gine temperature. Responses were entered by positioning a
slider on a scale where the left end was labeled "Sure that it
doesn’t" and the right end was labeled "Sure that it does”
The position of the slider was scaled into the range 0-100.
The order of presentation of the 24 test items was random-
ized for each participant. So that judgments did not depend
on subjects’ ability to remember the causal relations, they
were provided with a printed diagram similar to the one in
Figure 2. Subjects were asked to make use of those causal
relations in answering the inference questions.

Participants. 48 New York University undergraduates
received course credit for participating in this experiment.
There were three between-subject factors: the two assign-
ments of physical features to their causal roles, the two task
presentation orders, and which of the six categories was
learned. Participants were randomly assigned to these 2 x 2
x 3 = 12 between-participant cells subject to the constraint
that an equal number appeared in each cell.

Results

Initial analyses revealed no effects of which category sub-
jects learned, the assignment of features to causal roles, or
feature presentation order, and so the results are presented
collapsed over these factors.
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Feature inference ratings are presented in Figures 3D, 3E,
and 3F. These ratings generally reflected the predictions
shown in Figures 3A-C. Unsurprisingly, for both independ-
ent and conjunctive causes, subjects judged that the pres-
ence of the effect was rated to be very likely (ratings > 90)
when two causes were present and very unlikely (< 15)
when they were absent. In addition however, Figure 3D
shows that subjects were sensitive to the different functional
relationships relating the effects to their causes. They were
much more likely to predict the effect when one cause was
present when the causes were independent (rating of 79.9)
as compared to conjunctive (26.8).

Statistical analysis supported these conclusions. A 3 x 2
ANOVA of the data in Figure 3D revealed a main effect of
the number of causes, F(2, 94) = 470.36, MSE = 364, p <
0001, a main effect of network type, F(1,47) =6591, MSE
=335, p < 0001, and an interaction, F(2, 94) = 82.62, MSE
= 278, p < 0001, reflecting how the networks differed in
how inference ratings increased with the number of causes.
In particular, when only one cause was present, ratings were
much higher for the independent vs. conjunctive cause net-
works, #(47) =9.88, p < .0001.

Second, Figure 3E shows inference ratings when subjects
predicted a cause when the effect is present. When causes
were independent, subjects exhibited explaining away: The
cause was rated higher when the other cause was absent
(84.2) versus present (69.6). In contrast, this pattern was
reversed for conjunctive causes (58.4 vs. 94.0), that is, sub-
jects exhibited exoneration. A 2 x 2 ANOVA of the data in
Figure 3E revealed an effect of the state of the other cause,
F(1,47)=9.68, MSE = 549, p < 01, no effect of network
type, F < 1, but an interaction, F(1,47) = 83.62, MSE = 362,
p < 0001. Ratings were higher when the other cause was
absent, #(47) = 3.03, p < .01, when causes were independent
(explaining away) whereas they were lower when they were
conjunctive, #(47) =9.27,p < 0001 (exoneration).

Finally, Figure 3F shows that when reasoning about con-
junctive causes subjects also exhibited exoneration when
predicting a cause in the absence of an effect: The cause was
rated higher when the other cause was absent (32.1 vs. 19.8
when present). The independent cause network, in contrast,
did not show this pattern. Analyses of the data in Figure 3F
revealed no main effects, both F's < 1, but an interaction,
F(1,47)=1543, MSE =326, p < .001. In particular, ratings
were higher when the other conjunctive cause was absent,
#(47)=2.80,p < 01 (exoneration).

These analyses confirm that subjects exhibited many of
the key phenomena distinguish reasoning with independent
vs. conjunctive causes. Nevertheless, Figures 3D-F also
reveal a couple of ways in which the observed ratings differ
from the predicted ones. First, the model predicted equal
probabilities for certain inferences that in fact were rated
differently by subjects. For example, for conjunctive causes,
an effect should be equally probable regardless of whether
zero or one cause is present (Figure 3A). In contrast, sub-
jects judged that the effect was more probable in the pres-
ence of one cause (26.8) versus none (10.5), #(47) =5.25,p
< 0001. And, for independent causes, a cause should be
independent of the state of the other cause when the effect is

absent (Figure 3C) but subjects judged it more likely when
the other cause was present vs. absent (26.9 vs. 18.8), #(47)
=2.30, p < .05. These results are consistent with a typicality
effect in which features are judged to be more probable
when other typical features are present, even when those
other features are (according to out model) independent of
the feature being inferred. Rehder and Burnett (2005) found
typicality effects for a large variety of causal networks. We
discuss this result at greater length below.

Second, there are also signs that subjects were ignoring
feature base rates. For example, for conjunctive causes, the
probability of a cause when the effect and the other cause
are both absent should be its base rate (in Figure 3C, .67).
However, for this inference problem subjects produced a
rating of only 32.1 on a 100-point scale. Although the infer-
ence ratings should not be directly interpreted as probabili-
ties (because subjects were not explicitly told how the scale
maps onto probabilities) a rating that is below the midpoint
of the scale strongly suggests that subjects did not view the
probability of the cause as corresponding to its base rate
(which, because it was described as a typical category fea-
ture, should be > .50). That is, as in so many other studies,
our subject appears to be exhibiting base rate neglect.

General Discussion

The first question asked in this research is whether human
causal reasoners are sensitive to the different functional re-
lationships that can tie an effect to its causes. The answer is
that they are. Inferences differed sharply depending on
whether causes were independent or conjunctive.

A second question was whether those inferences would
exhibit the qualitative patterns predicted by a causal power
representation of causal knowledge. The answer is that they
(mostly) did. For example, when causes are independent,
subjects should (and did) exhibit explaining away, that is,
judged that a feature was less likely to be the cause of an
effect when another cause was present. This result is unsur-
prising in light of the numerous demonstrations of explain-
ing away in the social psychology (e.g., Morris & Larrick,
1995) and cognitive (e.g., Rehder & Burnett, 2005) litera-
tures. In contrast, when causes are conjunctive, subjects
should (and did) exhibit exoneration effects. To our knowl-
edge, this article is the first is to demonstrate both that ex-
oneration effects are entailed by a causal power representa-
tion of conjunctions and that human causal reasoners in fact
exhibit that effect.

Other frameworks for representing causal knowledge are
unable to readily explain these results. For example, simple
spreading activation networks are unable to account for the
present result because such networks are insensitive to both
the distinction between independent and conjunctive causes.
Particularly troublesome for such networks are cases in
which the presence of one variable decreases the probability
of another. For example, in the context of learning, the phe-
nomenon of explaining away is at the heart of CGM expla-
nations of backward blocking, a phenomenon notorious for
the difficulties it poses for associative learning theories
(e.g., Sobel et al., 2004; although see Van Hamme & Was-
serman, 1994, for updated versions of associative models
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Figure 4.

that attempt to account such phenomena). Our demonstra-
tion of exoneration with conjunctive causes when the effect
is absent (Figure 3F) presents an analogous challenge for
associative accounts: the probability of a cause is lower
when its conjunct is present.

As mentioned, the goal of this initial experiment was to
assess whether subjects exhibited the qualitative pattern of
inferences predicted by our model. In future work we intend
to present more stringent test of the model by providing
subjects with information corresponding to the parameters
of the causal model, such as the strength of the causal rela-
tions (the m parameters) and alternative causes (the b pa-
rameters). Morris & Larrick (1995) systematically evaluated
how subjects’ inferences varied with these factors for inde-
pendent but not conjunctive causes.

Nevertheless, even taking into account that we did not
provide causal strength information, we found that subjects’
ratings diverged from the predictions in one qualitative way:
They exhibited a typicality effect in which inferences were
stronger whenever more features were present, regardless of
whether those features were independent of the feature be-
ing predicted. Rehder and Burnett (2005) also found perva-
sive typicality effects and proposed that people assume that
categories possess underlying causal mechanisms that relate
observable features (UM in Figure 4). The underlying
mechanism provides a alternative inferential path such that
the presence of one feature makes the operation of the cate-
gory’s normal mechanism more certain, which in turn in-
creases the likelihood of other typical features (see May-
rhofer et al., 2010 for an alternative formalization). Our fu-
ture work will also focus on whether such proposals provide
a full account of reasoning with conjunctive causes. Yet
another question is whether a typicality effect appears for
inferences not involving features of categories.
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