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Abstract

The present study uses eye-tracking to study information
access in the context of category learning. Prior research has
pointed toward the importance of probability gain, the
increase in the chance of getting an answer correct, as a key
variable in determining what information is considered most
useful to acquire before making a classification decision. We
manipulate the probability gain of three features in a four-
category learning task by changing the base rates of the
categories to be learned. Using participants’ eye-movements
to determine the order in which they acquire information after
many trials of training, we find that increasing the probability
gain of a feature does bias participants’ first fixation.
However, participants’ strategies for acquiring feature
information indicate they are more sensitive to efficiency
goals: even with the low cost of eye-movements, participants
direct attention to maximize efficiency, and do so without
trading-off accuracy.

Keywords: attentional learning, categorization, eye-
movements, information acquisition, probability gain.

Introduction

The category learning paradigm offers ideal conditions for
studying how humans learn to differentially attend to
information, because it encompasses the cognitive skills
exercised by people in complex situations. Categorization
tasks incorporate perception, attention, decision-making,
memory, and motor behavior in a well-controlled
environment within the one-third to three second timeframe
argued to underlie the basic mechanisms that contribute to
embodied cognition (Gray, Sims, Fu, & Schollelles, 2006).
These tasks also measure changes in behavior across time,
in response to experience. To solve a categorization task,
participants must be able to figure out which features of a
stimulus are useful for making classification decisions.

Recent work by Nelson, McKenzie, Cottrell, and
Sejnowski (2010) suggests that participants evaluate the
usefulness of a diagnostic feature by its probability gain.
Probability gain defines the utility of looking at a feature as
the extent to which checking this feature increases the
probability, above chance, of making a correct decision; it
assumes perfect knowledge of the total category
probabilities and their features. Formally,

probabilityGain(F) = (E P(fi) x max P(ci| f;)) —max P(ci))
ﬁ ci ci
where F' represents a feature of unknown form to be looked

at; f; represents the specific forms a feature can take; and ¢;
represents specific categories (for example calculations, see

Nelson, 2005). Note that maximizing probability gain
corresponds to minimizing error; in fact, error-reduction has
been proposed as the mechanism for driving shifts in
attention during learning (Kruschke, 2003).

Using a probabilistic framework, under which beliefs
about two categories are updated using Bayes’s theorem,
Nelson et al. (2010) investigated probability gain and three
other plausible utility functions (information gain,
Kullback-Liebler distance, and impact) for evaluating which
of two features has the highest expected usefulness.
Participants were given lengthy training in one of four tasks,
each with different feature likelihoods, before completing a
testing phase in which they could reveal only one of two
probabilistic category features before making a
classification decision. In all cases, and in a subsequent
experiment, the majority of participants selected the feature
that maximized probability gain.

While these experiments provide convincing evidence
that probability gain is the utility function of choice in the
kind of task Nelson et al. (2010) investigated, it is not clear
yet how widely this finding can be generalized to more
realistic tasks. In the paradigm used by Nelson et al.,
participants are only able to access a single piece of
information. Typically, though, people have several
available sources of information and they may wish to
sample more than one. For example, in medical diagnostics
scenarios it might be that a combination of less diagnostic
tests has higher utility than a single, more diagnostic test.
This raises the question of whether probability gain should
be calculated for each feature sampled, or for each
combination of features sampled. Another factor worth
considering is information access costs: in real-world
situations, information invariably has associated costs,
whether they be time, money, or effort. Such factors may
weigh against the feature with the highest probability gain;
for example, one medical test may be slightly more
effective, but vastly more expensive.

The goal of the present study is to investigate the extent to
which probability gain plays a role in contexts where
information access is not restricted by a single mouse click;
instead, participants are allowed to sample multiple sources.
To avoid large information access costs, as those have been
shown to influence information access strategies (e.g., Gray
& Fu, 2004; Wood, Fry & Blair, 2010), we chose to record
participants’ gaze with eye-trackers. Using eye-tracking to
investigate how people attend to features when learning
categories has gained recent popularity (e.g., Rehder &
Hoffman, 2005; Kruschke, Kappenman, & Hetrick, 2005).
This method has the advantage of providing a measure of
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participant behaviour during a categorization trial, allowing
us to monitor how participants acquire information when
making decisions. Though not free, eye-movements have
some of the lowest time and energy costs possible.

In the present study we teach participants to identify four
categories of fictitious micro-organisms with three binary-
valued features (see Figure 1). All three features are relevant
for successful performance in the task; however, only two
features are relevant for making any one classification. As
can be seen in the figure, feature 1 (F1) indicates whether
the stimulus is a group A or group B category; feature 2 (F2)
distinguishes between Al and A2; and feature 3 (F3)
distinguishes between Bl and B2. Unlike Nelson et al.
(2010), features are fully diagnostic of category
membership, rather than probabilistic.

We manipulated probability gain across two between-
subjects conditions by altering the presentation frequency of
A and B categories. In the 1:1 condition of this experiment,
all four categories are presented with equal frequency
(25%). In the 5:1 condition, we present five group A
category stimuli for every group B stimulus. Thus, the
probability of sampling a member from a particular A
category is 41.67%, and 8.33% for each B category. The
utility of sampling a feature is therefore different in the two
conditions: it is equal (.25) for all three features in the 1:1
condition, but in the 5:1 condition the utility of F2 (.4167) is
much higher than F1 (.0833) or F3 (0). To ensure
participants had a good understanding of the categories and
feature probabilities, we ran an experiment with 480 trials;
typically, this kind of task is learned in 100 (Blair, Watson,
& Meier, 2009).

The manipulation of probability gain should have a strong
impact on how likely it is for participants to fixate a feature
after learning the categorization task. If the decision to
access a feature is based solely on probability gain, then
certain predictable patterns will emerge. Participants in the
1:1 condition will show no preference for any dimension, as
they all have equal probability gain. Participants in the 5:1
condition will fixate F2 before F1, as it has a much higher
probability gain. However, if participants are sensitive to
time, even under circumstances of very low information
access costs, then we may see different patterns emerge.
Fixating either F2 or F3 at the beginning of a trial runs the
risk of spending time on information irrelevant for that trial.
In both conditions, participants can minimize their number
of fixations by fixating F1 first, then F2 if F1 is consistent
with group A categories, or F3 if it is consistent with group
B categories. Alternately, participants may be very
motivated to speed things along, in which case we may see
participants conserving fixations even though it negatively
impacts accuracy in the task. This seems most likely in the
5:1 condition, where F2 alone is diagnostic of the correct
category 83% of the time.

Method

Participants

134 students at Simon Fraser University participated in this
experiment for course credit. All participants had normal or
corrected-to-normal vision.
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Figure 1: An example stimulus (left) and the category
structure with example features (right). Features take one of
two forms. Dashes indicate feature values are not useful for
classification. Participants in the 1:1 condition saw an equal

presentation of category members; participants in the 5:1
condition saw five group A categories for every group B.

Stimuli and Categories

Participants classified images of fictitious organisms. Each
organism was composed of three features, one in each of the
micro-organism's lobules (Figure 1, left). At a viewing
distance of 70 cm. the area of each feature subtended 1.3° of
visual angle, and features were equidistant from the centre
of the organism, approximately 10.6° apart from one
another. These features combined to form the category
structure illustrated in Figure 1 (right). Feature images,
locations and category labels were held constant for
individuals and counterbalanced across participants.

Participants were assigned to one of two conditions. The
1:1 condition consisted of an equal presentation rate of A
and B categories, and the 5:1 condition consisted of five
common categories for every rare category. Note that the
relative frequency of categories in the 5:1 condition was
counterbalanced such that half of the participants saw
common group A categories, and half saw common group B
categories; for clarity, results are reported as though all
participants viewed more group A categories.

Procedure

The procedure for the category learning task was identical in
both the 1:1 and the 5:1 conditions, with the exception of
presentation frequency noted above. Learning occurred by
trial-and-error through corrective feedback. Both conditions
included 480 trials. Each block of 24 trials was separated by
a short break that indicated accuracy on the previous block
as well as the number of blocks remaining.

Each trial began with a centrally-presented fixation cross.
After pressing a button to advance the trial, the participant
was shown an organism to classify. Participants had as
much time as they liked to view the stimulus, and indicated
responses on a four-button gamepad. Performance feedback
was presented for 500 ms as a solid green (correct) or red
(incorrect) mask, and the participant’s response and correct
category label were revealed in the centre of the screen as
the organism reappeared. Participants inspected the labelled
organism for as long as they wished before pressing a button
to advance to the next trial.
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Gaze Data Collection and Analysis

Gaze was recorded with a Tobii X120 eye-tracker sampling
at 120 Hz with a spatial resolution of 0.5°. Participants with
excessive sampling failures (defined as more than 30% of
total samples lost) were discarded from analyses. Gaze data
were transformed into fixations with a modified dispersion
threshold algorithm (Salvucci & Goldberg, 2000) using
spatial and temporal thresholds of 1.9° and 75 ms. A fixation
was counted to a feature if it fell within 140 pixels of a
feature’s centre. To correct for posture changes over time,
absolute values of fixation locations were corrected against
fixations to the central cross at the beginning of each trial.
Gaze analyses were conducted only on trials for which less
than 25% of gaze points recorded during that trial were lost.

Results

Of the 134 students who participated in the experiment, six
failed to complete the task. Data from an additional 12
participants were excluded due to an excessive number of
eye-tracker sampling errors. Four participants were
discarded for responding randomly throughout the task.

Because we are interested in the behaviour of subjects
who have complete knowledge of the category structure by
the end of the experiment, analyses are conducted only on
the 43 of 54 participants in the 1:1 condition and 52 of 58
participants in the 5:1 condition who reached a learning
criterion of 24 correct responses in a row. The mean number
of trials to reach this criterion was 133.77 (SD = 96.63) for
the 1:1 condition, and 117.00 (SD = 99.03) for the 5:1
condition (¢ < 1). Many of the current analyses focus on
trials during the last quarter, or 120 trials, of the experiment.
For participants in the 1:1 and 5:1 conditions, respectively,
accuracies during these trials were .98 (SD = .02) and .96
(SD =.04).

Of the six participants in the 5:1 condition who did not
reach the learning criterion, two appeared to learn common
categories (with accuracies of .92 and .81 over the last
quarter) while completely ignoring rare ones (accuracies of
0). The remaining four appeared to be slow learners.
Although we do not consider them here, the two who
learned common but not rare categories usually fixated F2-
only, and had fast response times. The surprising fact that
only two participants were willing to trade accuracy for
decreased time and effort costs indicates that participants
were highly motivated to do well in this task.

First Fixations

If participants are using probability gain as the basis for
viewing stimulus features, we would expect this to show up
most strongly in the first fixation. To understand how
participants learned to access information for solving the
task over time, we plotted the mean proportion of
participants’ first fixations to F1, F2, and F3 in each
condition (Figure 2). Participants in the 1:1 condition, where
probability gain is .25 for all features, clearly learn to fixate
F1 first: over the last quarter of the experiment, 74% of all
trials begin with a fixation to this feature, while 12% and
13% of all trials begin with fixations to F2 and F3. As noted
in the introduction, gathering information from F1 first

allows participants to make the fewest number of fixations
while maintaining perfect accuracy. Participants in the 5:1
condition also tend to fixate F1 first, but the high probability
gain of F2 in this condition (.4167, vs .0833 for F1) appears
to be boosting first fixations to this location: over the last
quarter, 57% of trials begin with a fixation to F1, and 41%
begin with a fixation to F2. Only 2% of all trials begin with
a fixation to F3. Participants’ mean proportion of F1-first
trials is lower in the 5:1 condition (M = .37, SD = .25) than
in the 1:1 condition (M = .50, SD = .27), #(93) = 2.28, p =
0.02. The mean proportion of F2-first trials, alternately, is
higher in the 5:1 condition (M = .26, SD = .24) than in the
1:1 condition (M = .081, SD = .15), #93) =4.32, p <.001.

In general, F1-first and F2-first trials over the last quarter
of the experiment in the 5:1 condition differ only slightly.
On average, fewer fixations are made on trials that begin
with fixations to F2 (M = 2.40, SD = 1.75) than to F1 (M =
2.53, SD = 1.61), #3966) = 2.32, p = .02; although response
time on F1-first trials (M = 1363 ms, SD = 793) is no faster
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Figure 2. Mean proportion of fixating each feature first in
eight bins across the experiment for participants in the 1:1
condition (top) and 5:1 condition (bottom).
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Figure 3. Frequency histograms displaying the mean frequency of each strategy’s use by participants in the 1:1 condition,
category A (left); and in the 5:1 condition, common category A (middle) and rare category B (right); for the first and last 120
trials of the experiment. Error bars reflect standard error of the mean. Note that over a block of 120 trials, the 1:1 condition
contains 60 category A presentations; the 5:1 condition contains 100 category A, and 20 category B, presentations. F1
distinguishes between A and B categories; F2 is diagnostic of group A categories, and F3 is diagnostic of group B categories.

than F2-first trials (M = 1376 ms, SD = 862; t < 1). most appropriate feature second. This strategy, in theory,
Accuracy on both trial types is high, though significantly allows participants perfect accuracy while making the
different, #(3966) = 4.68, p < .001; for F1-first trials, M = fewest fixations possible. However, increased use of F1-F2

0.98 (SD = .15) and for F2-first trials, M = .95 (SD = .22). sequences has no relationship with accuracy or response
time (ps > .05).
Information-access sequences Surprisingly, participants commonly fixate F1 only. This

To better understand how participants’ strategies for  Pattern should not yield enough information for accurate
acquiring information from the three available features are performance. Closer mspection reveals that participants
affected by presentation frequency, we investigated the  appear to be covertly attending to features they do not
relative frequency of ten possible information sequences; ~ fixate: that is, they are able to direct attention towards a
that is, ten orders in which participants can fixate category ~ feature without initiating an eye-movement. The result is a
features. Given the low number of trials that begin with ~ Very fast, very accurate trial. Fl-only trials are, on average,
fixations to F3 in the 5:1 condition (recall this feature is ~ about 450 ms faster than F1-F2 trials, and accuracy on these
diagnostic of rare group B categories only), we restrict our  trials appears no worse (Table 1); indeed, participants who
analysis to sequences that begin with F1 or F2. We also use a higher proportion of Fl-only sequences are faster at

collapse repeated fixations to features, as we are primarily

interested in the order in which information is gathered. Table 1. Mean frequency (Freq), accuracy (Acc), and

_ Figure 3 displays the mean relative frequency of each response time in ms (RT) for trials of each sequence during
information sequence occurring, for the first and last quarter  the Jast 120 trials of group A categories in the 1:1 condition,
of the experiment, in group A categories for participants in and A (common) and B (rare) categories in the 5:1
both conditions and group B categories in the 5:1 condition. condition.

Recall that accurately classifying group A categories

requires F1 and F2; while group B requires F1 and F3. 1:1 (A) 5:1 (A) 5:1 (B)

(Because we are not looking at patterns beginning with F3,

we are omitting group B categories in the 1:1 condition; F3 Order Freq Acc RT Freq Acc RT Freq Acc RT

data for these categories are complementary to the F2 data 1 28 98 1259 21 98 1051 08 98 1330
for group A categories.) Table 1 summarizes mean
frequency, accuracy, and response time for each strategy in 1234 99 1702 33 97 1623 13 96 1639
the last quarter of the experiment. Correlations reported 12303 1 3095 01 98 2391 23 093 1738
below use participants’ mean accuracy and response time
over these last 120 trials. 13 .10 92 2024 01 99 1599 .16 .96 1548

132 09 96 1872 01 1 1756
Fixation patterns - 1:1 condition. While viewing group A 0 96 1607

categories, participants in the 1:1 condition (Figure 3, left) 2 08 1 1471 26 951073 06 .69 1276
tend to use a diverse set of strategies in the first quarter of 21

the experiment. By the last quarter of the experiment, the 04 1 1978 .13 98 1486 .12 .76 2044
most common sequence is fixating F1 first, and F2 second. 213 01 83 2156 01 96 1897 .11 91 1842
Use of this sequence is correlated with F1-F3 sequences

during group B categories, (41) = .412, p = .006; indicating 2301 983227 02 1 2303 .10 83 2067
that participants are accessing F1 first in order to sample the 231 03 1 3841 01 1 3060 01 1 5451
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responding: » = -.361, p = .017; but use of this strategy has
no negative relationship with accuracy, p > .1. Participants
who tend to use the F1-only strategy when viewing group A
categories also use this strategy when viewing group B
categories, » =.705, p <.001.

Other participants also seem to be using highly efficient
strategies employing covert attention. As seen in Table I,
F2-only is not as common as F1-only, but shows the same
pattern of quick (about 230 ms faster than F1-F2 trials) and
accurate responses. Participants who rely more on this
strategy tend to use the covert F3-only strategy when
viewing group B categories, » =.736, p <.001.

In all, the mean proportion of single-feature fixation trials
increases from .18 (SD = .13) in the first quarter to .32 (SD
= .20) in the last quarter of the experiment, #(42) = 4.71, p
< .001. A higher proportion of single-feature trials over this
last quarter is correlated with faster response times, r =
-3.97, p = .008; but has no relationship with accuracy, p >
0.3. In other words, participants who adopt covert strategies
are saving time without sacrificing accuracy.

Though uncommon, F1-F3 and F1-F3-F2 sequences also
occur, which likely reflect the kinds of fixation errors people
make when trying to distribute attention dynamically in
response to information gathered during a first fixation.

Fixation patterns - 5:1 condition. Unlike participants in
the 1:1 condition, participants in the 5:1 condition appear to
use fewer distinct strategies for accessing information
during the first quarter of the experiment when viewing their
common group A categories (Figure 3, middle). Both F1-F2
and F2-F1 sequences are often used, as are F1-only and F2-
only. While participants continue to rely on three of these
strategies through the last quarter of the experiment, the
mean frequency of F2-F1 significantly decreases, #51) =
3.83, p < .001. The sequences used during common
categories in the first quarter of the experiment are also
found while viewing rare group B categories (Figure 3,
right), with the clear addition of the sequence F1-F2-F3. In
the last quarter of the experiment, participants increase their
reliance on the F1-F3 sequence, #(51) = 5.03, p < .001; and
decrease their reliance on the F2-F1 sequence, #(51) = 4.24,
p <.001.

There appear to be two general overt strategies for
acquiring feature information: F1-F2, or F2-F1; followed by
a fixation to F3 if the stimulus is a rare one. Greater reliance
on FI-F2 during common categories is most strongly
correlated with use of F1-F2-F3 sequences during rare
categories, r(50) = .758, p < .001; and is also associated
with F1-F2 (r = .304, p = .028) and F1-F3 (» = .340, p =
0.014) sequences. On the other hand, participants more
often relying on F2-F1 during common categories also rely
on this sequence during rare categories (r = .689, p <.001);
and on F2-F1-F3 sequences (» = .502, p < .001). The degree
to which participants rely on F1-F2 or F2-F1 during
common categories has no association with response time
(ps > .1) but greater use of F1-F2 sequences is correlated
with higher accuracy (r = .321, p =.02).

Single-feature fixation strategies, that is, strategies that
rely on covert attention, also appear in the 5:1 condition.
Although the mean response times associated with F1-only

and F2-only trials are similar, and about 400 ms faster than
the next quickest response time (Table 1), only participants
with a higher proportion of F2-only trials gain a response
time advantage, r = -.375, p = .006. Neither strategy appears
to help or hurt mean accuracy (ps > .1).

As in the 1:1 condition, participants appear to increase
their use of covert strategies in order to save time without
impeding their task accuracy. The mean proportion of
single-feature fixation trials increases from .25 (SD = .02) in
the first quarter of the experiment to .40 (SD = .03) in the
last quarter of the experiment, #51) = 4.76, p < .001.
Increased use of single-fixation trials has no relationship
with accuracy (p > .5), but is correlated with faster response
times, r = -.375, p = .006.

Discussion

The present study investigated the impact of probability
gain on fixation sequences in a categorization task. One key
finding is that the usefulness of information, as measured by
probability gain, has a significant and lasting influence on
strategies for accessing this information. The probability
gain of F2 in the 5:1 condition (.4167) is higher than the
probability gain of F2 in the 1:1 condition (.25), and indeed,
a higher proportion of fixations were made to F2 first in the
5:1 than in the 1:1 condition. However, it is also clear from
our data that probability gain was not the only factor which
influenced information access, and there were several clear
indicators that participants were deploying attention more
efficiently than would be necessary to maximize probability
gain alone.

One indicator was that fixating the highest probability
gain feature first was not the dominant strategy of
participants in either condition. In the 1:1 condition, where
the probability gain of sampling any of the three feature was
equal (.25), participants overwhelmingly chose to fixate F1
first; thus, efficiency considerations were enough to push
fixations toward a particular feature. By fixating F1 first,
participants were able to minimize the number of eye-
movements required to gather the necessary information for
perfect accuracy. In the 5:1 condition the situation is more
dramatic: even where the probability gain of F1 (.0833) is
far lower than F2 (.4167), there were still more first-
fixations to F1 than to F2 for most of the experiment. This
finding corresponds well with work by Matsuka and Corter
(2008). In a medical diagnostic task where participants can
reveal only one feature at a time with mouse-clicks, they
found, under a number of conditions, that participants used
cost-effective strategies for accessing feature information.
We extend this idea by showing that not only which features
are selected, but also the order in which features are
selected, are both important considerations for participants,
even at the level of eye-movements.

The high prevalence of single-feature fixation trials,
which increased over time, also emphasizes the importance
of efficiency. This may be in part a function of expertise, as
participants have a long time to practice making more
efficient fixations. Reanalysis of previously published data
in which participants performed a task similar to the 1:1
condition but for only 96 trials after reaching a learning
criterion (Blair, Watson, & Meier, 2009) indicates a low
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mean proportion of Fl-only strategies (.029) during these
trials. In the current study, we find participants increasing
their use of single-feature fixation strategies over a 480-trial
experiment. Participants using these strategies have, in
general, gained a response time advantage without trading-
off accuracy. There is evidence that covert attentional shifts
to a target location precede voluntary saccades to the
location (Kowler, Anderson, Dosher, & Blaser, 1995;
McPeek, Maljkovic, & Nakayama, 1999), so it may be that
practiced participants are sensitive enough to visual
information at feature locations that they can respond before
initiating an eye-movement to these locations.

In one sense, the general finding that people prefer the
most efficient method of achieving a goal is not surprising.
Even in the context of low-cost eye-movements, it has
already been shown, for example, that adult readers have
more efficient fixation patterns than children (Rayner,
1985). Our task, however, is not a task at which participants
have trained for many years. Here, participants are learning
a novel task, and given about an hour of practice. The task is
self-paced, with no emphasis on speed. Despite this,
participants come up with ways to improve their efficiency,
while still answering accurately.

Finally, our findings lend support to the idea that eye-
movements can be dynamically, and consistently, deployed
to information in real-time. In the 1:1 condition, participants
would often sample F1, and use information at this location
to direct eye-gaze to F2 or F3. This strategy, and a variety of
others (eg., F2-F1 and F3 if necessary; F1-F2 and F3 if
necessary), also emerged in the 5:1 condition. Participants
adopting F1-F2 / F1-F3 strategies are making fewer
fixations, but these strategies do not appear to save time.
There was surprisingly little difference in response times
between most of the overt information-access strategies.
This suggests that in this context, repeated practice of a
sequence — be it one beginning with F1, or one beginning
with F2 — helps efficiency as much as dynamically changing
fixation order. Perhaps the time it takes to decide where to
fixate next is roughly equivalent to the time spent
occasionally fixating an unnecessary feature in a well-
practiced fixation sequence.

Nelson et al. (2010) have shown that “information
acquisition optimizes probability gain.” Our data confirm
the importance of probability gain, but also suggest a
qualifier: all things being equal. Our results show that when
given the opportunity to sample any or even every available
source of information, participants use more than just
immediate probability gain for deciding what feature is most
important to sample. Instead, the deployment of overt
attention reflects a more complex strategy which is also
sensitive to the cost of accessing information. Participants
with minimal training can retain accuracy while being
remarkably frugal in how they acquire information. This
seems to be true even when, as with eye-movements,
information is cheap. The present work suggests that
choosing which information to access is a function of both
its utility and its cost.
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