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Abstract

We apply a cognitive modeling approach to the problem
of measuring expertise on rank ordering tasks. In these
tasks, people must order a set of items in terms of a given
criterion. Using a cognitive model of behavior on this
task that allows for individual differences in knowledge,
we are able to infer people’s expertise directly from the
rankings they provide. We show that our model-based
measure of expertise outperforms self-report measures,
taken both before and after doing the task, in terms
of correlation with the actual accuracy of the answers.
Based on these results, we discuss the potential and
limitations of using cognitive models in assessing
expertise.

Keywords: expertise, ordering task, wisdom of
crowds, model-based measurement

Introduction

Understanding expertise is an important goal for cogni-
tive science, for both theoretical and practical reasons.
Theoretically, expertise is closely related to the structure
of individual differences in knowledge, representation,
decision-making, and a range of other cognitive capabil-
ities (Wright & Bolderm, 1992). Practically, the abil-
ity to identify and use experts is important in a wide
range of real-world settings. There are many possible
tasks that people could do to provide their expertise, in-
cluding estimating numerical values (e.g., "what is the
length of the Nile?”), predicting categorical future out-
comes ("who will win the FIFA World Cup?”), and so
on. In this paper, we focus on the task of ranking a set of
given items in terms of some criterion, such as ordering
a set of cities from most to least populous.

One prominent theory of expertise argues that the key
requirements are discriminability and consistency (e.g.,
Shanteau, Weiss, Thomas, & Pounds, 2002). Experts
must be able to discriminate between different stimuli,
and they must be able to make these discriminations re-
liably or consistently. Protocols for measuring exper-
tise in terms of these two properties are well-developed,
and have been applied in settings as diverse as au-
dit judgment, livestock judgment, personnel hiring, and
decision-making in the oil and gas industry (Malhotra,
Lee, & Khurana, 2007). However, because these pro-
tocols need to assess discriminability and consistency,
they have two features that will not work in all applied

settings. First, they rely on knowing the answers to the
discrimination questions, and so must have access to a
ground truth. Second, they must ask the same (or very
similar) questions of people repeatedly, and so are time
consuming. Given these limitations, it is perhaps not sur-
prising that expertise is often measured in simpler and
cruder ways, such as by self-report.

In this paper, we approach the problem of expertise
from the perspective of cognitive modeling. The basic
idea is to build a model of how a number of people with
different levels of expertise produce judgments or esti-
mates that reflect their knowledge. This requires making
assumptions about how individual differences in knowl-
edge are structured, and how people apply decision-
making processes to their knowledge to produce an-
Swers.

There are two key attractive properties of this ap-
proach. The first is that, if a reasonable model can be
formulated, the knowledge people have can be inferred
by fitting the model to their behavior. This avoids the
need to rely on self-reported measures of expertise, or
to use elaborate protocols to extract a measure of exper-
tise. The cognitive model does all of the work, providing
an account of task behavior that is sensitive to the latent
expertise of the people who do the task.

The second attraction is that expertise is determined
by making inferences about the structure of the different
answers provided by individuals. This means that perfor-
mance does not have to be assessed in terms of an accu-
racy measure relative to the ground truth. It is possible
to measure the relative expertise of individuals, without
already having the expertise to answer the question.

The structure of this paper is as follows. We first de-
scribe an experiment that asks people to rank order sets
of items, and rate their expertise both before and after
having done the ranking. We then describe a simple cog-
nitive model of the ranking task, and use the model to
infer individual differences in the precision of the knowl-
edge each person has. In the results section, we show that
this individual differences parameter provides a good
measure of expertise, in the sense that it correlates well
with actual performance. We also show it outperforms
the self-reported measures of expertise. We conclude
with some discussion of the strengths and limitations of
our cognitive modeling approach to assessing expertise.
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Table 1: The six rank ordering tasks. Each involves ten items, shown in correct order.

Holidays Landmass Amendments US Cities Presidents World Cities
New Year’s Russia Freedom speech and religion New York Washington Tokyo
Martin Luther King Canada Right to bear arms Los Angeles Adams Mexico City
President’s China No quartering of soldiers Chicago. Jefferson New York
Memorial United States  No unreasonable searches Houston Monroe Sao Paulo
Independence Brazil Due process Phoenix Jackson Mumbai
Labor Australia Trial by jury Philadelphia Roosevelt Delhi
Columbus India Civil trial by jury San Antonio  Wilson Shanghai
Halloween Argentina No cruel punishment San Diego Roosevelt Kolkata
Veteran’s Kazakhstan Right to non-specified rights  Dallas Truman Buenos Aires
Thanksgiving Sudan Power for states and people San Jose Eisenhower Dhaka
Experiment developed in the context of the ‘wisdom of the crowd’
Participants phenomenon as applied to order data. The basic wisdom

A total of 70 participants completed the experiment. Par-
ticipants were undergraduate students recruited from the
University of California, Irvine subject pool, and given
course credit as compensation.

Stimuli

We used six rank ordering problems, all with ten items,
as shown in Table 1. All involve general ‘book’ knowl-
edge, and were intended to be of a varying levels of dif-
ficulty for our participants, and lead to individual differ-
ences in expertise.

Procedure

The experimental procedure involved three parts. In the
first part, participants completed a pre-test self-report of
their level of expertise in the general content area of each
of the stimuli. This was done on a 5-point scale, simply
by asking questions like “Please rate, on a scale from
1 to 5, where 1 is no knowledge and 5 is expert, your
knowledge of the order of American holidays.”.

In the second part, participants completed each of the
six ranking questions from Table 1 in a random order.
Within each problem, the ten items were presented in an
initially random order, and could then be ‘dragged and
dropped’ to any part of the list to update the order. Par-
ticipants were free to move items as often as they wanted,
with no time restrictions. They hit a ‘submit’ button once
they were satisfied with their answer. No time limit was
placed

The third part of the experimental procedure was com-
pleted immediately after each final ordering answer was
submitted. Participants were asked to express their level
of confidence in their answer, again on a 5-point scale,
were 1 was ‘not confident at all’ and 5 was ‘extremely
confident’.

A Thurstonian Model of Ranking

We use a previously developed Thurstonian model of
how people complete ranking tasks (Steyvers, Lee,
Miller, & Hemmer, 2009). Originally, this model was

of the crowd idea is that the average of the answers of
many individuals may be as good as or better than all of
the individual answers (Surowiecki, 2004). An important
component in developing good group answers is weight-
ing those individuals who know more, and so the model
we use already is designed to accommodate individual
differences in expertise.

We first illustrate the model intuitively, and explain
how its parameters can be interpreted in terms of lev-
els of knowledge and expertise. We then provide some
more formal details, including some information about
the inference procedures we used to fit the model to our
data.

Overview of Model

The model is described in Figure 1, using a simple ex-
ample involving three items and two individuals. Fig-
ure 1(a) shows the ‘latent ground truth’ representation
for the three items, represented by i, uz, and y3 on an
interval scale. Importantly, these coordinates do not nec-
essarily correspond to the actual ground truth, but rather
represent the knowledge that is shared among individu-
als. Therefore, these coordinates are latent variables in
the model that can be estimated on the basis of the order-
ings from a group of individuals.

Figure 1(b) and (c) show how these items might give
rise to mental representations for two individuals. The
individuals might not have precise knowledge about the
exact location of each item on the interval scale due to
some sort of noise or uncertainty. This mental noise
might be due to a variety of sources such as encoding
and retrieval errors. In the model, all these sources of
noise are combined together into a single Gaussian dis-
tribution’.

The model assumes that the means of these item distri-
butions are the same for every individual, because, every
individual is assumed to have access to the same infor-

n our experiment, participants give only one ranking for
each problem. Therefore, the model cannot disentangle the dif-
ferent sources of error related to encoding and retrieval.
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Figure 1: Illustration of the Thurstonian model.

mation about the objective ground truth. The widths of
the distributions, however, are allowed to vary, to capture
the notion of individual differences. There is a single
standard deviation parameter, ¢; for the ith participant,
that is applied to the distribution of all items. In Figure 1
Individual 1 is shown as having more precise item infor-
mation than Individual 2, and so 6] < G5.

The model assumes that the realized (latent) mental
representation is based on a single sample from each item
distribution, represented by x in Figure 1, where x;; is the
sample for the ith item and jth participant. The ordering
produced by each individual is then based on an ordering
of the mental samples. For example, individual 1 in Fig-
ure 1(b) draws sample for items that leads to the ordering
(1,2,3) whereas individual 2 draws a sample for the third
item that is smaller than the sample for the second item,
leading to the ordering (1,3,2). Therefore, the overlap in
the item distributions can lead to errors in the orderings
produced by individuals.

The key parameters in the model are ¢ and 6;. In
terms of the original wisdom of the crowd motivation, the
most important was u, because it represents the assumed
common latent ordering individuals share. Inferring this
ordering corresponds to constructing a group answer to
the ranking problem. In our context of measuring exper-
tise, however, it is the ¢; parameters that are important.
These are naturally interpreted as a measure of exper-
tise. Smaller values will lead to more consistent answers
closer to the underlying ordering. Larger values will lead
to more variable answers, with more possibility of devi-
ating from the underlying ordering.

Generative Model and Inference

Figure 2 shows the Thurstonian model, as it applies to
a single question, using graphical model notation (see
Koller, Friedman, Getoor, & Taskar, 2007; Lee, 2008;
Shiffrin, Lee, Kim, & Wagenmakers, 2008, for statis-
tical and psychological introduction). The nodes rep-
resent variables and the graph structure is used to in-
dicate the conditional dependencies between variables.

Yi

L 1 participants)

Figure 2:
model.

Graphical representation of Thurstonian

Stochastic and deterministic variables are indicated by
single and double-bordered nodes, and observed data are
represented by shaded nodes. The plates represent inde-
pendent replications of the graph structure, which corre-
sponds to individual participants in this model.

The observed data are the ordering given by the ith
participant, denoted by the vector y;, where y; ; represents
the item placed in the jth position by the participant.

To explain how these data are generated, the model be-
gins with the underlying location of the items, given by
the vector pu. Each individual is assumed to have access
to this group-level information. To determine the order
of items, the ith participant samples for the jth item, as
xij ~ Gaussian(u;,c;), where o; is the uncertainty that
the ith individual has about the items, and the samples x;;
represent the realized mental representation for the indi-
vidual. The ordering for each individual is determined
by the ordering of their mental samples y; = rank(x;).

We used a flat prior for u and a 6; ~ Gamma(A, 1/A)
prior on the standard deviations, where A is a hyperpa-
rameter that determines the variability of the noise dis-
tributions across individuals. We set A = 3 in the current
modeling, but plan to explore a more general approach
where A is given a prior, and inferred, in the future.

Although the model is straightforward as a generative
process for the observed data, some aspects of inference
are difficult because the observed variable y; is a deter-
ministic ranking. Yao and Bockenholt (1999), however,
have developed appropriate Markov chain Monte Carlo
(MCMC) methods. We used an MCMC sampling proce-
dure that allowed us to estimate the posterior distribution
over the latent variables x;;, 6;, and u, given the observed
orderings y;. We use Gibbs sampling to update the men-
tal samples x;;, and Metropolis-Hastings updates for o;
and u. Details of the MCMC inference procedure are
provided in the appendix.

Results

We first describe how we measure the accuracy of a rank
order provided by a participant, as a ground truth assess-

1306



26 Ho||da)fs 40 La.ndmass. o7 Amencilments o7 us C;)m?s: Pr.eS|dents 4 World.leles
. o ° ° ° . MK T HE ) E .
: . . ! ; ?. Ve c . ¢ i .
il S e ! 4 P R
HE t 3 ‘ ¢ o ! H it ey ‘ Y ? .

~0.24 ; 0—0.0; ¢ . 0—0.28 ® ' : -0.16 0—0.24 : 9 M 0—0.11 °
12345 12345 12345 12345 12345 12345
Pre—Report

26 40 27 27 24 34

>
©
|_

0 ~0.47 ~0.25 -0.54 -0.28 —0.61 0 ~0.09
12345 12345 12345 12345 12345 12345
Post-Report

26 - 40 %, 27 v 27 . 24 . 34 PP

S ' Y e - Fh
. * e P ¥ ]

I - o3 %, ‘f::' “?:. A
. > - .

:Ff 0.92 & 0 ¥ os C o8 £ oo - s

0 . 0 . 0 - . O . 0 .. .. 0 o
0 3 0 3 0 3 0 3 0 3 0 3

Sigma

Figure 3: Results comparing the relationship between the three measures of expertise and the accuracy of individual
answers. The plots are organized with the measures in rows, and the problems in columns.

ment of their expertise. We then examine the correla-
tions between this ground truth and their pre- and post-
reported self-assessments, and the model-based measure.

Ground Truth Accuracy

To evaluate the performance of participants, we mea-
sured the distance between their provided order, and the
correct orders given in Table 1. A commonly used dis-
tance metric for orderings is Kendall’s T, which counts
the number of adjacent pairwise disagreements between
orderings. Values of T range from 0 <t <n(n—1)/2,
where n = 10 is the number of items. A value of zero
means the ordering is exactly right, and a value of one
means that the ordering is correct except for two neigh-
boring items being transposed, and so on, up to the max-
imum possible value of 45.

Relationship Between Expertise and Accuracy

Figure 3 presents the relationship between the three mea-
sures of expertise—pre-reported expertise, post-reported
confidence, and the mean of the ¢ parameter inferred in
the Thurstonian model—and the T measures of accuracy.
In each plot, a point corresponds to a participant. The
plots are organized with the six problems in columns, and
the three measures as rows. The Pearson correlations are
also shown. Note that, for the self-reported measures,
the goal is for higher levels of rated expertise should cor-
respond to lower (more accurate) values of T, and so a
negative correlation would mean the measure was effec-
tive. For the model-based ¢ measure, smaller values cor-
respond to higher expertise, and so a positive correlation
means the measure is effective.

Figure 3 shows that the six different problems ranged
in difficulty. Looking at the maximum T needed to show
results, the Holidays, Amendments, US Cities and Presi-
dents questions were more accurately answered than the
Landmass and World Cities questions. This finding ac-
cords with our intuitions about the difficulty of the topic
domains and the experience of our participant pool.

More importantly, there is a clear pattern, for all six
problems, in the way the three expertise measures relate
to accuracy. The correlations are generally in the right
direction, but small in absolute size, for the pre-reported
expertise. They continue to be in the right direction, and
have larger absolute values, for the post-reported con-
fidence measure of expertise. But correlations are in
the right direction, and strongest, for the model-based ¢
measure of expertise.

Perhaps most importantly, it is also clear that the
model-based measure improves upon the self-reported
measures. It achieves, for all but the world cities prob-
lem, an impressively high level of correlation with accu-
racy. With correlations around 0.9, the 6 measure of ex-
pertise explains about 80% of the variance between peo-
ple in their accuracy in completing the rank orderings.”

ZA legitimate concern is that the correlations for the
Thurstonian model benefit from ¢ being continuous, whereas
the pre- and post-report measures are binned. To check this, we
also calculated correlations for the Thurstonian model using 5
binned values of ¢, and found correlations of 0.88, 0.88, 0.80,
0.77, 0.92 and 0.54 for the six problems in the order shown
in Figure 3. While slightly reduced, these correlations clearly
support the same conclusions.
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Discussion

We first discuss the advantages of the modeling approach
we have explored for measuring expertise, then acknowl-
edge some of its limitations, before finally mentioning
some possible extensions.

Advantages

Our results could be used to make a strong case for the
assessment of expertise, at least in the context of rank
order questions, using the Thurstonian model. We have
shown that by having a group of participants complete
the ordering task, the model can infer an interpretable
measure of expertise that correlates highly with the ac-
tual accuracy of the answers.

One attractive feature of this approach is that it does
not require self-ratings of expertise. It simply requires
people to do the ordering task. Our results indicate that
the model-based measure is much more useful than self-
reported assessments taken before doing the task, focus-
ing on general domain knowledge, or confidence ratings
done after having done the task, focusing on the specific
answer provided.

An even more attractive feature of the modeling ap-
proach is that it does not require access to the ground
truth to assess expertise. We used ground truth accura-
cies to assess whether the measured expertise was useful,
but we did not need the T values to estimate the ¢ mea-
sures themselves. The model-based expertise emerges
from the patterns of agreement and disagreement across
the participants, under the assumption there is some fixed
(but unknown) ground truth, as per the wisdom of the
crowd origins of the model.

A natural consequence is that the approach developed
here could be applied to prediction tasks, where there is
not (yet) a ground truth. For example, we could ask peo-
ple to predict the end-of-season rankings of sports teams,
and potentially use the model to assess their expertise
ahead of time. If the model-based approach continues
to perform well with prediction, it would be especially
valuable, since standard measures of expertise based on
self-report are have often been found to be unreliable pre-
dictors of forecasting accuracy (e.g., Tetlock, 2006).

Limitations

A basic property of the approach we have presented is
that it involves assessing the relative expertise for a large
group of people. There are two inherent limitations with
this.

One is that a possibly quite large number of partic-
ipants need to complete the task. The other limitation
is that the measure of expertise makes sense as a com-
parison between individuals, and predicts their relative
performance, but does not automatically say anything
about the absolute level of performance. As the results
in Figure 3 show, the relationship between ¢ and 7 is
well correlated, but with different slopes and intercepts.
This means we cannot equate an inferred ¢ value for the
expertise of an individual with a predicted t level of ac-

curacy. We can merely say which individuals are more
accurate.

For this reason, our approach is best suited to real-
world problems where the goal is to be able to find the
most expert individuals from a large pool. If more pre-
cise statements about levels of accuracy are important the
sorts of protocols we mentioned in the Introduction, mea-
suring discriminability and consistency, seem likely to be
better suited.

Extensions

Our current results are specific to rank ordering tasks,
but the basic approach could be applied to other sorts of
tasks for expressing knowledge and expertise. One obvi-
ous possibility is estimation tasks, in which people have
to give values for quantities (Merkle & Steyvers, 2011).
It should also be possible to develop suitable models for
tasks, such as multiple choice questions, where the an-
swers are discrete and nominally scaled.

Our analysis considered each problem independent of
the others, which seems reasonable as a starting point.
However, if there was reason to believe a domain-level
expertise might exist for a set of related questions (e.g., if
we had believed there was expertise for city populations,
linking the US and World Cities questions), that assump-
tion could be incorporated into the model. The basic idea
would be to create a hierarchical model, with a single
¢ for each participant that applied to all of the relevant
problems in the domain (e.g., Klementiev, Roth, Small,
& Titov, 2009). Usually, when hierarchical assumptions
are reasonable, they improve inference, leading to better
estimates of parameters from fewer data. As such, this
is an interesting possibility worth exploring, both to test
the theoretical assumption of domain-level expertise, and
to make the measurement of expertise more efficient in
practical applications.

Conclusion

In this paper, we have developed and demonstrated a
model-based approach to measuring expertise for rank
ordering tasks. The approach simply requires people
to complete the task on which their expertise is sought,
with parameter inference then automatically providing
the measure of expertise. The method was shown to
work extremely well, giving expertise measures that cor-
related strongly with the actual accuracy of people’s per-
formance, and providing significantly better information
that two self-reported measures.
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Appendix: MCMC Details

In the first Gibbs sampling step, we sample a value for
each x; ; conditional on all other variables. Using Bayes
rule and the conditional independencies in the model,
this distribution can be evaluated by

P(xij|uj, 05,5 %;7) o< P(y; | x:)P(xi j | mj,00) (1)

where x;; refers to all samples x for individual i except

the sample for the jthitem. The distribution P(x; ;|u;, G;)
is Normally distributed and P(y;|x;) is

P(yl-lx»—{ Lo ity = f(n) »)

0 otherwise.

where f (-) is the ranking function. Taken together, the
sampling distribution for x; ; conditional on all other vari-
ables can be evaluated by:

-xij | ‘uja Giaxilaxiu ~ TNX,'[,X,'M (,uja Gi)' (3)

The sampling distribution is the truncated Normal with
the lower and upper bounds determined by x;; and x;,, re-
spectively. The values x;; and x;, are based on the next
smallest and largest values from x; relative to x;;. Specif-
ically, if 7t(j) denotes the rank given to item j and T~ (})
denotes the item assigned to rank j, [ = (=" (n(j) — 1),
and u = (=Y (n(j) + 1). We also define x;; = —oo when
n(j) = 1, and x;, = o, when n(j) = N. With these
bounds, it is guaranteed that the samples satisfy Equa-
tion (2) and the ordering of samples x; is consistent with
the observed ordering y; for the ith individual.

We update the group means u using Metropolis Hast-
ings. We sample a new mean u; from a proposal distribu-
tion Q(1/; | u;) and accept the new value with probability

. P(u; | xi.,0) Ou; | 1))
1 J 2. 4
i < Pl [ 30,9 O Iuj)> @

With Bayes rule and a uniform prior on y;, the first ratio
can be simplified to
P(xijlid;, 6:)

P(dx.;,0)
f— 5
Pulx,0) L PG, o)) ®)

which has a natural expansion in terms of an exponen-
tial sum. For the proposal distribution, we use a Nor-
mal distribution with mean equal to the current mean,
O(W'-j | uj) ~ N(uj,C), where the standard deviation {
controls the step size of the adjustments in u;.

We update the standard deviations for each individual
o; using another Metropolis Hastings step. We sample
a new standard deviation 6; from a proposal distribution
0(o! | 0;) and accept the new value with probability

, ( P(oj|xi., 1) Q(oi | GE))
min ( 1, ; .
P(oilxi.,p) O(c; | o)
Using Bayes rule, the first ratio can be simplified to

P(c}|\) vy Plxijlo},uj)

= 7
o Lt for) 7

(6)

P(oj|xi., p)
P(Gi|xi-nu)

which also has an exponential sum expansion. We use
a Gamma proposal distribution with a mean set to the
current value of 6;, Q(6}|6;) ~ Gamma(c;v,1/v), and a
precision parameter V.

For the MCMC sampling procedure, the proposal dis-
tribution parameters were { = 0.1, v = 20, to approxi-
mately give an acceptance probability of 0.5. We started
each chain with randomly initialized values. In a single
iteration, we used Equations (3), (4), and (6) to sample
new values in the vectors x, g, and 6 respectively. Each
chain was continued for 500 iterations, and samples were
taken after 300 iterations with an interval of 10 iterations.
In total, we ran 8 chains and collected 160 samples.
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