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Abstract

Recent experience can influence judgments in a wide range
of tasks, from reporting physical properties of stimuli to
grading papers to evaluating movies. In this work, we
analyze data from a task involving a series of judgments of
pain (discomfort) made by participants who were asked to
place their hands in a bowl of water of varying temperature.
Although trials in this task were separated by a minute in order
to avoid sequential dependencies, we nonetheless find that
responses are reliably influenced by the recent trial history.
We explore a space of statistical models to predict sequential
dependencies, and show that a nonlinear autoregression using
neural networks is able to predict over 6% of the response
variability unrelated to the stimulus itself. We discuss the
possibility of using decontamination procedures to remove
this variability and thereby obtain more meaningful ratings
from individuals.

Keywords: Sequential Dependencies; Judgment Mod-
els

Introduction
When asked to make absolute judgments in an experimen-
tal setting individuals use anchoring or primacy: informa-
tion presented earlier in time serves as a basis for making
judgments later in time (Tversky & Kahneman, 1974). The
need for anchors is due to the fact that individuals are poor
at or possibly incapable of making absolute judgments and
instead must rely on reference points to make relative judg-
ments (Laming, 1984 ; Parducci, 1965 ; Stewart, Brown, &
Chater, 2005). The literature in experimental and theoretical
psychology exploring sequential dependencies suggests that
reference points change from one judgment or rating to the
next in a systematic manner.

Teachers are cognizant of potential drift when grading pa-
pers and the necessity of comparing early papers to those
graded later. Sequential dependencies arise in a myriad of
common tasks, such as responding to surveys, questionnaires,
and evaluations. A relatively unexplored field of sequen-
tial effects involves online recommendation engines. Net-

flix, Amazon, and Google consistently recommend products
through advertisements that they think you would be inter-
ested in buying. Could these recommendation engines be
improved by observing how you are rating products sequen-
tially? By mitigating the influence of recent judgments, rec-
ommendation engines could make more meaningful and ac-
curate predictions for what products you are interested in.
Even small improvements in these engines can mean large in-
come increases. By having the best recommendation engine
you not only sell more products, but you draw more users.

Carefully controlled laboratory studies of sequential de-
pendencies, dating from the 1950’s (Miller, 1956), consist of
rating unidimensional stimuli, such as the decibel level of a
tone, or the length of a line. These studies suggest that across
many such domains, responses convey not much more than
two bits of mutual information with the stimulus (Stewart et
al., 2005). Various types of judgment tasks have been studied
including absolute identification, where the individual’s task
is to specify the value of the stimulus level (e.g., 10 levels
of loudness), magnitude estimation, where the task is to esti-
mate the magnitude of the stimulus which could vary contin-
uously along a dimension, and categorization, where the task
requires the individual to label stimuli by range. Due to the
large size of responses in absolute identification and catego-
rization tasks, and because individuals aren’t usually aware of
the discrete stimuli in absolute identification tasks, there isn’t
a qualitative difference among tasks. Typically, feedback is
provided in absolute identification and categorization tasks.
Without this feedback, explicit anchors against which stimuli
can be assessed wouldn’t exist.

The consequences of sequential effects can be complex.
Normally, on trial t of an experiment, trial t−1 has the largest
influence on ratings and earlier trials—t − 2, t − 3, and so
forth—have successively diminishing influences. Both the
stimulus and response on a previous trial can have an effect,
which makes sense if individuals formulate a response to the
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current stimulus by analogy to the relationship between pre-
vious stimuli and responses. Two types of effects are ob-
served: an assimilative effect occurs when the current re-
sponse moves in the direction of stimulus or response from
a previous trial; a contrastive effect is one that moves away.
Analyzing recency effects using assimilation and contrast is
complex and theory dependent (DeCarlo & Cross, 1990).

Because cognitive scientists are aware the recent trial his-
tory can influence responses to a stimulus, studies are of-
ten designed to limit or completely avoid sequential depen-
dencies. Increasing the number of response categories and
varying the type and frequency of anchors are common meth-
ods to mitigate sequential dependencies (Mumma & Wilson,
2006 ; Wedell, Parducci, & Lane, 1990). Another possible ap-
proach is to increase the intertrial interval, on the assumption
that recency effects decay to some extent with the passage of
time. In this paper we will describe data that was collected in
which trials were separated by sixty seconds, in the hope that
sequential effects would be suppressed. We show that even
in this scenario, significant sequential effects do occur. For-
tunately, we also show that they can be predicted and there
is therefore hope for removing the contaminative effect they
have.

Experimental Data
The data we analyze in this paper come from experiments
conducted in Tor Wager’s lab at Columbia University over
a period of several years. Wager studies brain activity asso-
ciated with pain and placebo effects. Participants are asked
to judge the level of discomfort (pain) associated with pools
of water varying from 32◦ to 53◦ Celsius, with the higher
temperatures associated with more discomfort. Each partic-
ipant in an fMRI study begins with a calibration procedure
that attempts to determine the mapping between water tem-
perature in degrees Celsius and pain rating using a 10 point
rating scale, 1 being lowest level of pain, and 10 being the
highest.

The calibration procedure involves 24 trials, the goal of
which is to determine temperatures that correspond to sub-
jective pain levels 2, 5, and 8 on a 10-point scale. This
goal is achieved by an adaptive algorithm that explores the
range of temperatures in order to obtain data that is well fit
by an affine transformation from temperature to pain level
via least squares regression. Consequently, the order of stim-
uli is not entirely random, because the temperature is chosen
on a trial to provide the most information about the trans-
formation. However, because the procedure jumps pseudo-
randomly between calibration of low, medium, and high pain
levels, there is significant trial-to-trial variability in the tem-
peratures. From the participants’ perspective, there is no trial-
to-trial predictability of temperature, and the temperature lev-
els fluctuate without any perceptible pattern.

We obtained pain judgment data from a total of 284 par-
ticipants. Although the participants were part of 17 distinct
experiments, the calibration procedure was identical in all ex-

periments.

Analysis of Pain Judgment Data
Our first goal is to determine whether sequential dependen-
cies are present in the data. One intuitive approach is simply
to plot the response to the current stimulus as a function of the
previous stimulus. Because of the sparsity of data, the closest
we could come to making such a graph is to partition the stim-
uli into five ranges, and plot—for each stimulus partition—
the response as a function of the previous stimulus partition,
as is shown in Figure 1. Each point on the graph is an ex-
pectation over all trials of all participants who were shown a
particular stimulus on trial t, S(t), following a previous stim-
ulus, S(t−1); this response is denoted E[R(t)|S(t),S(t−1)].
Because we are concerned with how responses deviate based
on earlier trials, we subtract out the mean response to the cur-
rent stimulus, E[R(t)|S(t)].

If previous trials had no influence, each curve in the Figure
would be flat, indicating that the mean-subtracted response on
trial t—depicted on the ordinate—is independent of the pre-
vious stimulus, S(t−1)—depicted along the abscissa. How-
ever, the pattern we observe is quite different. Four of the five
stimulus partitions show a clear negative slope: the response
to the current stimulus tends to decrease as the previous stim-
ulus increases. This negative slope is a contrast effect. A
low value of S(t−1) tends to cause S(t) to be given a higher
rating, and a high value of S(t− 1) tends to cause S(t) to be
given a lower rating.

The fifth partition of S(t) in Figure 1—reflecting the tem-
perature range 32–37◦, seems to be relatively unaffected by
the previous trial. It is quite common for the extreme stimu-
lus values to be less influenced by recency that the interme-
diate stimulus values, due to the fact that the extreme stimuli
become effective anchors. For example, (Mozer et al., 2010)
found very weak sequential effects for the extrema in a line
length judgment task.

The sequential effects can be quite substantial. For the
43.5–45◦ range, the response fluctuated by 4 points on the
10 point scale due to the previous stimulus.

In Figure 1, we partitioned the stimulus range in order to
obtain roughly equal numbers of judgments in each partition.
We explored several other partitioning schemes—including
selecting equal temperature bin widths and bin widths that
yielded an equal range over responses— and all produced
graphs qualitatively similar to Figure 1.

Although the graph strongly suggests the existence of se-
quential effects in the pain judgment data, one must interpret
it with caution because the data points represent averages over
many individuals and many trials. It’s altogether possible that
even if sequential effects are robust and measurable for aggre-
gated data, it will be impossible to detect them for a particular
individual on a particular trial. If our long-term goal is to ob-
tain more meaningful ratings from individuals by removing
the contamination from recent trials, then we need to show
that it is possible to account for variability in an individual
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Figure 1: Each curve represents the average response devia-
tion for a given range of the current stimulus, S(t), as a func-
tion of the previous stimulus, S(t− 1). The response devia-
tion specifies how much the expected response differs from
the overall mean response. Each data point is an average over
many trials and many participants.

trial based on recent history. In past work, we (Wilder, Jones,
& Mozer, 2009) found that sequential effects could explain
upward of 95% of variability in aggregated responses on a
very simple two-alternative forced choice task but only about
25% of variability in individual trials.

Thus, our next goal is to show that we can reliably detect
sequential effects on an individual trial in our data set. We
approach this goal by constructing mathematical models that
describe how recent history—e.g., S(t−1), R(t−1), S(t−2),
and R(t−2)—influences the current response, R(t). There is
a rich psychological modeling literature that attempts to ex-
plain sequential effects in judgment, absolute identification,
and choice tasks. DeCarlo et Cross (1990) describe a thirty
year history of models that all characterize the current re-
sponse as a linear function of the previous stimulus and/or
response. Other models are in the same form (e.g., Stewart
et al., 2005 ; Wilder et al., 2009), although they include stim-
uli and responses from two and more trials back in the linear
model. For judgment of physical magnitudes (e.g., pitch), the
simple linear form of the models is obtained by log trans-
forming the raw stimulus intensities. The primary distinc-
tion among the various linear models is the coefficients that
weight terms in the model, and constraints assumed to op-
erate among these coefficients. To represent this large class
of models, we explore linear predictive models and treat the
coefficients as free parameters that are fit to the data.

In the literature, a class of psychological models assume
that past trials provide reference or anchor points relative to
which the current trial is compared (e.g., Parducci, 1965 ;
Petrov & Anderson, 2005). One key feature of these anchors
is that generalization from the anchors to the current trial is

similarity dependent (Petrov & Anderson, 2005). To allow
for nonlinear effects such as similarity dependence, we also
consider a class of models that is primarily linear but allows
some degree of nonlinearity, specifically via the computation
of distances between the current and previous stimuli.

The models we explore predict the response on the current
trial given recent trial history, and we attempt to show that
these models outperform a baseline model that predicts based
solely on the current stimulus. We begin by describing the
baseline model.

Baseline Regression
We assume that individuals map the stimulus continuum to
the response continuum using an affine transformation, and
thus we can predict an individual’s response as

R̂(t) = β0 +β1S(t), (1)

where the coefficients β = {β0,β1} may differ from one indi-
vidual to the next. Although Weber’s law suggests that trans-
forms from physical stimulus magnitudes to internal repre-
sentations should be logarithmic, an inspection of the data re-
veals a roughly linear relationship, as depicted in Figure 2 for
six different participants. The red circles indicate responses
on individual trials. The solid green line represents the least
squares regression, which obtains the coefficients β and the
blue squares represent the improved fit of a model that we
have yet to describe.

The residual error, ρ(t) = R(t)− R̂(t), might simply be due
to factors outside of the experimental context, such as the in-
dividual’s attentional state, or the residual error might be at-
tributable to some systematic influence, such as sequential
dependencies in formulating a response. We will investigate
this latter possibility via computational models. We build sev-
eral types of models to predict the residual error. If the recent
trial history helps to reduce the residuals, we have evidence
for sequential dependencies in this experimental study.

Although we obtain β coefficients for each individual sepa-
rately, we build a single sequential-dependency model for all
individuals. The reason for this decision is that we have rela-
tively sparse data from each individual—a total of 24 trials—
and some of the sequential-dependency models we consider
have a large number of free parameters, and can only be con-
strained with large amounts of data. However, if we do find
significant variability that can be explained across partici-
pants from a model of sequential dependencies, the explana-
tory power of a model tailored to an individual is potentially
even greater.

We define the baseline fit via the root mean squared error,

RMSEbaseline =

(
∑

i
∑

t
ρi(t)2

) 1
2

, (2)

where i is an index over participants, t is an index over trials,
and ρi(t) denotes the residual from the regression for partic-
ipant i on trial t. Intuitively, the RMSE indicates how large
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Figure 2: Pain judgment data from six participants. Each red circle in the scatterplot represents a single stimulus-response pair,
where the stimulus level is depicted along the abscissa and the response level is shown on the ordinate. The solid green line
represents the least square regression. The blue squares show the cross validated prediction of the best model we explored.

a deviation a model produces from the actual response an in-
dividual makes. In our data set, RMSEbaseline = 1.2502, in-
dicating that the baseline model produces a typical deviation
slightly larger than one unit on the 1-10 response scale. We
will evaluate all sequential-dependency models in terms of
how effectively they reduce RMSEbaseline.

We use cross validation—the standard paradigm from ma-
chine learning and statistics—to estimate the effectiveness of
a model. In all simulation results reported below, we perform
10-fold cross validation on our set of participants, using data
from 9/10th of the individuals for training and then hold out
1/10th for evaluation, and repeating the validation step for
each of 10 hold out sets.

Models
In this section, we describe a series of models that are de-
signed to predict the residuals from the baseline model, i.e.,
to predict the structure in the data due to the sequence and un-
related to the current stimulus. If the model has no predictive
ability—i.e., it predicts 0 for each residual—it will perform
no better than the baseline model. If the model is able to pre-
dict all of the residual, the RMSE will drop to 0. Thus, the
models we explore should yield RMSE values between 0 and
RMSEbaseline.

We explored a space consisting of eight distinct models

which differ along three binary dimensions. The dimensions
of the model space are motivated by existing theories of se-
quential dependencies. We now describe the three dimen-
sions of our model space: the model class, history, and order.

Model Class: Regression Versus Neural Net. Most mod-
els of sequential effects assume some linear influence of pre-
vious trials and some nonlinear influence. Thus, we consider
both linear and nonlinear regression. We use a three-layer
back propagation neural network as a generic nonlinear re-
gression model. All neural nets had 10 hidden units, used
a tan-sigmoid transfer function for the hidden layer, a linear
transfer function for the output layer, and were trained with
early stopping. The early stopping procedure reserves 10% of
the training data for validation, and terminates training when
the error rate on the validation set begins to rise. (The train-
ing and validation sets are distinct from the cross-validation
hold-out set used to evaluate the model.) We experimented
with networks of different sizes and the results were compa-
rable to what we present below.

Model History: One Versus Two Trials Back. All theo-
ries of sequential effects assume a diminishing influence of
more distant trial history, usually with an exponential fall
off. Many models consider only the previous trial, but gener-
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ally modelers find a benefit of including longer histories. We
explored what we will term one-back and two-back models.
One-back models utilized the previous stimulus and response,
S(t−1) and R(t−1). Two-back models utilized the previous
two trials, S(t−1), R(t−1), S(t−2), and R(t−2).

Model Order: First Versus Second. Some models of se-
quential effects suppose that the spillover from trial t− n to
trial t is dependent on the similarity of the stimuli on tri-
als t − n and t (DeCarlo & Cross, 1990 ; Petrov & Ander-
son, 2005). Given that the stimuli in our data were tempera-
ture levels from a continuous scalar dimension, the similarity
can be measured in terms of the squared Euclidean distance,
(S(t)− S(t − n))2. To allow models to readily utilize this
measure, we included as model regressors the terms S(t)2,
S(t)S(t− n), and S(t− n)2 for a model that considers the n-
back trial. With these three additional regressors, it is a linear
operation to compute squared distance.

Simulation Results
The three binary dimensions of our model space specify eight
distinct models. We trained each model to predict the resid-
uals of the baseline model, ρ(t), across all individuals in the
data set. Table 1 shows the RMSE for the different models ob-
tained via cross validation, and also the percentage improve-
ment of the model over the baseline. This latter quantity is
simply

%Improvement = 100(RMSEbase−RMSEmodel)/RMSEbase

As we anticipated, the nonlinear regression model—the
neural net—performed far better than the linear model. In-
deed, we find little leverage from the models that are purely
linear in S(t − n) and R(t − n). The nonlinearity of the sec-
ond order models—which include terms quadratic in S(t) and
S(t− n)—also apppears to have improved prediction signifi-
cantly.

Finally, the two-back models performed better than the
one-back models. The boost provided by trial t − 2 is gen-
erally smaller than the boost provided by trial t− 1, consis-
tent with the exponential decay of influence of previous trials
found empirically in the sequential effects literature.

Figure 3 shows the RMSE represented as a bar graph with
standard errors indicating the uncertainty in the RMSE across
cross-validation splits of the data. Inspecting Figure 3, one
surprising finding is that the neural net yields not only larger
improvements in RMSE, but also highly consistent improve-
ments: the standard error in the RMSE estimate is quite small.

The most complex model—the second order neural net-
work model with two-back history—is evidently the best.
This model produces a more than 6% reduction in error over
the baseline model. That is, the sequential influence of pre-
vious trials on judgment explains 6% of what appears to be
noise in the data. This result is all the more impressive con-
sidering that a single model is constructed for all participants,
and there may well be significant individual differences in the
nature of sequential effects.

Figure 3: Root Mean Squared Error (RMSE) for the eight
models. The errorbars indicate +/- one standard error of the
mean. base=baseline model; regxy = x-order y-back linear
regression; nnxy = x-order y-back neural network

Figure 2 shows some examples of data and the correspond-
ing model fit. Each graph represents a different individual.
Each red circle plots the response produced by the individual
(on the ordinate) to a stimulus (on the abscissa). The solid
green line is the best fitting linear regression, and ρ is the de-
viation from the red circles to the green line. The blue squares
show the predictions of the second-order neural net with two-
back history. (For this simulation, the neural net was trained
on data excluding the individual whose data on which predic-
tions are plotted. Thus, the red squares are not fits to data, but
predictions from a pretrained model.) The prediction of the
model is an improvement over the baseline if the red circle
is closer to the corresponding blue square than to the green
line. For most trials, the Figure shows that a better prediction
of the response is made by considering the influence of re-
cent trial history (the blue squares) than by using the current
stimulus alone (the green line).

Conclusion
Through our simulation models, we find that sequential de-
pendencies can explain more than 6% of the ’noise’ in judg-
ments of pain. To gauge what 6% means, consider that the
much-publicized Netflix competition aimed to improve pre-
dictions of movie ratings by 10% (Koren, August 2009). The
winners of the competition used many different methods to
reach this goal, most of which produced a much smaller im-
provement than 6%. Sequential dependencies likely played
a role in the Netflix data, given that individuals often rate
movies in consecutive bursts.

The 6% improvement is particularly interesting given that
our data come from an experiment that was designed to avoid
sequential dependencies by spacing judgements a minute
apart. It seems likely that the effects would have been larger
in magnitude if judgments had been more closely spaced in
time.

Sequential dependencies are ubiquitous in cognitive tasks.
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Table 1: RMSE Results for Sequential-Dependency Models

Model Class Model Order Model History Cross-validation % Improvement
(n back) RMSE Over Baseline

Regression
1st 1 1.2423 0.63%

2 1.2418 0.67%

2nd 1 1.2360 1.14%
2 1.2301 1.61%

Neural Net
1st 1 1.2469 0.26%

2 1.2298 1.63%

2nd 1 1.2064 3.50%
2 1.1712 6.32%

It’s impossible to find a domain where sequential dependen-
cies don’t arise, from the simplest of choice tasks, to language
use, to the control of attention (Mozer, Kinoshita, & Shet-
tel, 2007). Cognitive scientists well appreciate that experi-
mental design needs to take into consideration the possibility
of sequential dependencies. Despite attempts to control for
sequential dependencies, for example by increasing the in-
tertrial lag or by requesting a judgment of the same item in
many different contexts, sequential dependencies still inject
a source of uncontrolled variability into human performance.
Rather than attempting to mitigate sequential dependencies
in the experimental design, perhaps it is more productive to
design experiments that enhance sequential effects, because
doing so will make the modeling of these effects easier and
when sequential effects are large, other forms of response
variability may be suppressed.

Having constructed quantitative models to predict sequen-
tial dependencies, there is hope of exploiting the same mod-
els to remove their influence. We have taken steps in this
direction with our attempt to invert models such as those we
presented in this paper to decontaminate judgments, and ef-
fectively remove the contribution of recent trials to responses
(Mozer et al., 2010). Although we have been successful
in decontaminating responses in a simple visual judgment
task, extending the technique to more complex, naturalistic
tasks requires better models of the contamination process by
which previous trials affects current judgements. The work
described in this paper suggests the importance of nonlinear-
ity in modeling the influence of recent trials on behavior.
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