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Abstract 

One of the critical findings in recognition memory is the null 
list-strength effect (LSE), which states that repeating study 
items does not hurt the performance of other studied items. 
Episodic memory models were able to predict the null LSE by 
using the principle of differentiation, in which repetitions of 
an item accumulate into a single strong memory trace. A 
hypothesized boundary of differentiation is that repetitions of 
an item in different contexts will create new traces. Two 
experiments tested this hypothesis by repeating words across 
different study-test cycles rather than within a single list 
followed by a test on all of the studied lists. Results indicated 
that as the proportion of strong items increased, there was 
both a null LSE and a non-significant decrease in the FAR, 
which is contrary to the predicted strength-based mirror 
effect. These two results in tandem provide a challenge for 
differentiation models. 

Keywords: Recognition memory; Episodic memory; 
Memory models; List-strength effect 

Introduction 

    Episodic recognition memory is typically tested using the 

yes/no recognition task, in which participants are presented 

with a list of words to study and during a subsequent test 

phase are instructed to say ―yes‖ to the previously studied 

words and ―no‖ otherwise. In the 1980’s, a class of 

simulation models referred to as global memory models 

were developed to account for data from this paradigm, as 

well as other paradigms such as free recall, cued recall, and 

associative recognition. While these models posited 

different storage operations, such as composite storage, in 

which all memory traces compile into a single memory 

representation (TODAM: Murdock, 1982; the Matrix 

model: Pike, 1984), and multiple trace storage, in which 

individual memory traces are separable and accessible 

(SAM: Gillund & Shiffrin, 1984; Minerva 2: Hintzman, 

1988), all of these models posit a retrieval process in which 

the probe item is matched against all of the memory traces 

from the study list in parallel, producing a ―familiarity‖ 

value for the test item that is compared to a criterion to 

make a decision. 

    A success of the global memory models was the ability to 

account for the list length effect, in which increases in the 

size of the study list produce decreases in discriminability, 

an effect which was believed to be a very robust finding in 

recognition memory at the time (although recent 

examinations of the list length paradigm have uncovered 

several confounds, see Dennis & Humphreys, 2001; Dennis, 

Lee, & Kinnell, 2008). These models were able to make this 

prediction because each memory trace contributes additional 

variance to the match strengths for both target and distracter 

items, increasing the overlap between these distributions 

and decreasing discriminability as a consequence (Clark & 

Gronlund, 1996). 

    A majority of these models were also able to predict how 

strengthening items by additional repetitions in the study list 

produce increases in the hit rates for strengthened items. 

This is because of the additional trace assumption: 

repetitions of an item produce additional memory traces that 

add match strength to target items during retrieval. A 

consequence of this assumption is that repetitions of items 

have the same effect on the variance of the match strengths 

as increasing the length of a study list. This is the basis of 

the list-strength prediction, in which increasing the strength 

of the studied items reduces performance for non-

strengthened items due to the interference from the 

additional traces produced by the repetitions. 

    The list-strength prediction of the global memory models 

was tested by Ratcliff, Clark, and Shiffrin (1990) in a series 

of experiments with all of them resulting in null list-strength 

effect. Specifically, weak items were not harmed by the 

strengthening of other items on the study list and strong 

items did not benefit from the presence of weak items. This 

was a challenge for virtually all of the global memory 

models at the time as well as several other memory models, 

as it was not possible for them to predict a list-length effect 

while simultaneously predicting a null list-strength effect 

(see Shiffrin, Ratcliff, & Clark, 1990 for a technical 

description of how each memory model fails in these 

predictions). 

    A potential solution to this problem posited by Shiffrin et 

al. (1990) was the differentiation hypothesis. This proposes 

a revision to the learning process in which repetitions 

instead accumulate into a single strong memory trace that is 

more responsive to its own cue and less responsive to other 

cues, thus keeping the number of traces constant as strength 

is increased and preventing interference from increasing. 

The differentiation mechanism not only predicts a null list-

strength effect, but also predicts a lower false alarm rate 
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(FAR) as the proportion of strong items increases because 

strong memory traces are less responsive to non-studied 

items presented at test (Criss, 2006). This prediction is 

consistent with a decrease in the FAR that has been found as 

the proportion of strong items on a list is increased in list-

strength paradigms (Criss, 2006; Hirshman, 1995; Stretch & 

Wixted, 1998). The simultaneous increase in hit rate and 

decrease in FAR as items are strengthened has been referred 

to as the strength-based mirror effect. 

    While differentiation was first implemented in the SAM 

model (Shiffrin et al., 1990), since then the null list-strength 

effect has become a strong constraint on recognition 

memory models and several models were designed to 

accommodate this finding. These models include the 

retrieving effectively from memory model (REM: Shiffrin 

& Steyvers, 1997), the model of McClelland and Chappell 

(1998), as well as the Norman and O’Reilly (2003) neural 

network model, which incorporated differentiation into the 

medial temporal lobe cortex layer. The most popular of 

these explanations is likely to be the REM model, as the 

predictions from REM’s differentiation mechanism have 

been tested and fit to data in a number of experiments 

(Criss, 2006, 2009, 2010; Starns, White, & Ratcliff, 2010). 

Differentiation operates in REM by assuming that 

repetitions or additional storage time provide opportunities 

to copy additional features from the original study item into 

its corresponding episodic trace. 

    What has not been previously explored is what the 

boundary conditions on this process might be. That is, under 

which conditions might a repetition of a study item cause a 

new trace to be created rather than instigating the 

differentiation of an older trace? To our knowledge, all 

simulations of differentiation models assume that the first 

presentation of an item within a study list creates a new 

memory trace with subsequent presentations differentiate 

the traces created earlier. Considering these are simulations 

of experiments where the studied materials were stimuli that 

were learned prior to the experiment (words), we can expect 

the study items to have memory traces that were created 

prior to the experiment. For instance, the word ―dog‖ may 

have been experienced hours or days prior to the onset of an 

experiment, producing a pre-experimental memory trace. 

Without an understanding of the boundary conditions of 

differentiation, it is not clear why the first presentation of 

the word ―dog‖ on a study list creates a new episodic trace 

instead of differentiating the older, pre-experimental 

episodic trace. 

    One hypothesis for differentiation’s boundary conditions 

comes from Criss (2009), who stated that new traces are 

created in new contexts and repetitions within the same 

context cause differentiation to occur. Thus, if a novel list-

strength paradigm was constructed in which repetitions 

occurred in new contexts and all of the contexts were cued 

during a test phase, Criss’s hypothesis predicts that there 

should be increased interference as the proportion of 

repeated items is increased, manifesting in a decrease in 

discriminability. 

    In order to test this hypothesis in the novel list-strength 

paradigm described, there needs to be an understanding of 

what type of context shift would be sufficient to break the 

differentiation process. While many episodic memory 

models discuss the effects of context (Dennis & 

Humphreys, 2001; Howard & Kahana, 2002; Shiffrin & 

Steyvers, 1997), context has not yet been operationally 

defined and instead tends to be described loosely as a set of 

internal and external elements that enable subjects to focus 

retrieval on an event, namely the experience of the study list 

(Klein, Shiffrin, & Criss, 2007). Because there is no theory 

of context, consideration of a context shift must instead 

come from empirical work on the subject. 

    While one might be inclined to think that a shift in 

environmental context (i.e.: changing the room or other 

aspects of the physical environment during the study 

episode) might be sufficient, it has not been shown to 

produce changes in d’ in recognition memory (Godden & 

Baddeley, 1980; Murnane, Phelps, & Malmberg, 1999). One 

factor that has been shown to make significant contextual 

shifts is list context (presenting items in different study 

lists). Attempts at modeling the list discrimination paradigm 

have measured significant changes in context across 

different lists (Criss & Shiffrin, 2004; Dennis & 

Humphreys, 2001). In a recent review of context change 

manipulations, Klein et al. (2007) suggested that adding 

testing between list presentations increases contextual 

separation. 

    Considering these are the strongest context change 

manipulations that are currently known to affect recognition 

memory, we decided to test Criss’s (2009) hypothesis by 

presenting participants with three study-test cycles and 

repeating items across different study lists rather than within 

the lists themselves (as is traditionally done in list-strength 

experiments) and then subsequently testing all of the studied 

lists with an end-of-session test (this procedure had been 

used in a list-strength design by Murnane & Shiffrin, 1991, 

although the repetitions did not occur between list 

presentations). 

    If these conditions are sufficient to prevent 

differentiation, differentiation models predict that a list-

strength effect should result and discriminability should 

decrease as the proportion of strong items increases (see 

Criss, 2006 for simulations of REM predicting a list-

strength effect when differentiation is not used). However, it 

is also entirely possible that these shifts in context between 

presentations are not sufficient to break the differentiation 

process. If this is the case, differentiation models predict 

that there should be a null list-strength effect and a decrease 

in the FAR as the proportion of strong items increases 

(Criss, 2006). 

    In most of the original list-strength experiments, Ratcliff 

et al. (1990) utilized the mixed/pure paradigm. This 

paradigm uses three conditions: pure strong (―PS‖: 100% 

strong items), pure weak (―PW‖: 100% weak items), and a 

mixed condition consisting of both strong and weak items 

(half strong and half weak). A list-strength effect would be 
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observed if PW > MW (weak items from mixed lists) and if 

MS (strong items from mixed lists) > PS. In our case, since 

repetitions are occurring across different lists instead of 

within a single study list, a pure strong manipulation would 

entail three repetitions of the same study list. Upon 

realization that the study lists are the same, it’s possible that 

participants would decrease their attention to the studied 

items, reducing their performance relative to the mixed 

condition and artificially inducing a list-strength effect (PS 

< MS). Instead, both of our experiments used the mostly 

strong/mostly weak manipulation (Ratcliff et al., 1990; 

Experiment 7), in which all sessions were mixed but the 

relative proportions of strong and weak items were 

manipulated. A positive list-strength effect would be 

observed if performance was worse in the mostly strong 

condition than in the mostly weak condition. 

Experiment 1 

Method 

 

Participants A total of 108 participants contributed to this 

study. Participants were undergraduate students 

participating for course credit. 

 

Stimuli The word pool consisted of 264 words that were 

between five and seven letters in length and between 1 and 4 

Google counts per million in normative word frequency 

(low frequency).   

 

Procedure Participants were randomly assigned to either 

the mostly strong or mostly weak conditions. In both 

conditions, 180 items were presented across three study/test 

cycles. For the mostly strong condition, 80% of the items 

(144 items) were strengthened by presenting them in every 

study list and the other 20% (36 items) were distributed 

across the study lists (12 in each list), leading to a total of 

156 presentations for each study list. For the mostly weak 

condition, 80% of the items were distributed across the three 

study lists (48 in each list) and 20% of the items were 

strengthened by presenting them in every study list, leading 

to a total of 84 presentations per list. 

    Before the study phase, participants were instructed to 

study the items and make a pleasantness rating from 1-4 on 

the keyboard while viewing the word. Each word was 

studied for 2.5 seconds and followed by a blank screen for 

500 ms. 

Following each study list, participants engaged in a 

distracter task consisting of a card game in which cards 

from a deck were presented one at a time and participants 

had to hit the spacebar when different patterns of cards had 

been presented (such as two cards of the same suit in a row). 

Participants engaged in distracter activity for 180 seconds in 

the mostly strong condition and for 396 seconds in the 

mostly weak condition. The purpose of the different lengths 

of the distracter task was to ensure that the time between the 

start of the study list and the beginning of the test list was 

equivalent in both conditions. After the three study/test 

cycles had completed, participants engaged in another 240 

seconds of distracter activity before the end-of-session test. 

Before each test list prior to the end-of-session test, 

participants were instructed to say ―yes‖ to items they had 

studied during the preceding study list and ―no‖ otherwise. 

These test lists consisted of 20 test items. In the mostly 

strong condition, 7 of the test items were drawn from the 

strong items and 3 of the items were drawn from the weak 

items. In the mostly weak condition, 7 of the items were 

drawn from the weak items and 3 of the items were drawn 

from the strong items. The remaining 10 test items were 

distracters that had not been presented on any of the study 

lists. The purpose of using different numbers of test items in 

the different conditions was to ensure that there would be 

enough test items in the end-of-session test for the minority 

group of each condition. No test items were repeated across 

the different test lists. The test lists were self paced and a 

blank screen followed each presentation for 500 ms. 

After the three study-test cycles and the distracter activity 

had completed, participants began the end-of-session test. 

Participants were instructed that they were going to be 

tested on all of the items they had previously studied and 

that they were to respond ―yes‖ to any items they had 

studied during the session and ―no‖ otherwise. Prior to this 

instruction, participants were given no indication that they 

would be re-tested on the study lists in this fashion. 

Participants were tested on 27 strong items, 27 weak items, 

and 54 distracter items. An equal number of weak items 

were sampled from each of the studied lists and none of the 

end-of-session test items had been previously tested. 

 

Results and Discussion 
 

d’ scores were calculated for all participants as a measure 

of memory sensitivity for the end-of-session test. To avoid 

infinite values of d’, edge corrections were performed on the 

hit and false alarm rates by adding 0.5 to the hit and false 

alarm counts and 1 to the target and distracter counts 

(Snodgrass & Corwin, 1988).  

Data from 8 participants were not used in the analysis due 

to failure to finish the experiment. All participants who 

finished the experiment exhibited above chance 

performance (d’ > 0). Hit rates, false alarm rates, and d’ 

scores from the end-of-session test can be seen in Figure 1. 

It should be noted that while the graphs separate the hit rates 

for weak items into their study list of origin, all statistical 

analyses collapsed across the hit rates. 

Because our hypotheses are concerned with the presence 

of a list-strength effect when multiple lists are cued, data 

analysis was restricted to performance from the end-of-

session test. Results indicated that strong items were better 

discriminated than weak items, F(1, 98) = 271.20, p < .001. 

Because both list conditions are mixed, a list-strength effect 

would be observed if performance in the mostly weak 

condition exceeded that of the mostly strong condition. 

However, a null list-strength effect was observed: 
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Performance on the mostly weak condition did not exceed 

that of the mostly strong condition, F(1, 98) = 1.47, p > .05. 

 

 
Figure 1: Performance from the end-of-session test of 

Experiment 1. Top – d’ scores for weak and strong items in 

each condition. Bottom – false alarm rates and hit rates for 

strong and weak items. The hit rates for weak items are 

separated by the list they were originally studied in. Error 

bars represent the 95% confidence interval. 

 

One might be inclined to think that the context shifts that 

occurred between repetitions of items weren’t dramatic 

enough to break the boundaries of differentiation. However, 

the decrease in FAR that differentiation models predict as 

the proportion of strong items increases was not found, 

t(97.27) = 0.14. Thus, these results present a challenge for 

differentiation models. 

    While the results of the data analysis suggest a null list-

strength effect, there was a trend in the direction of a list-

strength effect, as hit rates for weak items were worse in the 

mostly strong condition than in the mostly weak condition, 

t(90.47) = 2.22, p < .05, although hit rates for strong items 

were not significantly worse in the mostly strong condition, 

t(94.47) = 1.43, p > .05. One possible reason why this might 

be is because the lengths of the lists in the mostly strong 

condition (156 presentations per list, which is almost eight 

minutes) are unusually long for recognition experiments. 

Many participants seemed very frustrated with the length 

and tedium of the task, which may have caused fatigue. 

Based on these observations, we decided to run the same 

task with a smaller number of items to see if we would 

obtain the same results. 

 

Experiment 2 
     

     The design of Experiment 2 was identical to that of 

Experiment 1 except with a reduction in the total number of 

items studied in an attempt to reduce the possible fatigue 

that may have resulted in the trend found in Experiment 1. 

 

Method 

 

Participants A total of 104 participants contributed to this 

study. Participants were undergraduate students 

participating for course credit. 

 

Procedure The procedure was identical to that of 

Experiment 1 except that the total number of presented 

items was 120 instead of 180. Thus, in the mostly strong 

condition, 96 items were strengthened by presenting them in 

all three lists and 24 items were distributed across the three 

lists (eight items per list), totaling 104 presentations per list. 

In the mostly weak condition, 96 items were distributed 

across the three lists (32 items per list) and 24 items were 

strengthened by presenting them in each list, totaling 56 

presentations per list. Following each study list, distracter 

activity commenced for 180 seconds for the mostly strong 

condition and 324 seconds for the mostly weak condition. 

The end-of-session test consisted of 15 strong items, 15 

weak items, and 30 distracter items. 

 

Results 

 

All participants exhibited above chance performance (d’ > 

0). Hits, false alarm rates, and d’ scores for the end-of-

session test data can be seen in Figure 2. 

 

 
Figure 2: Performance from the end-of-session test of 

Experiment 2. Top - d’ scores for strong and weak items in 

each condition. Bottom – false alarm rates and hit rates for 

strong and weak items in each condition. The hit rates for 

weak items are separated by the list they were originally 

studied in. Error bars represent the 95% confidence interval. 

 

Results from Experiment 2 replicated the key results of 

Experiment 1. A null list-strength effect was observed in 

that discriminability did not change across the two 

conditions, F(1, 102) = 0.11, strong items were better 

discriminated than weak items, F(1, 102) = 272.76, p < 

.001, and FAR did not differ between the two conditions, 
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t(97.96) = .59. Unlike in Experiment 1, hit rates did not 

differ between the two conditions for weak items, t(94.57) = 

1.04, p > .05, or strong items, t(100.56) = 0.72.   

 

General Discussion 

The differentiation hypothesis has become a popular 

explanation for the null list-strength effect in recognition 

memory. While the predictions of differentiation have been 

tested, little work has been done to explore or test the 

boundary conditions under which such a process might 

occur, despite the necessity in specifying such conditions in 

order to understand why a memory trace would be created 

upon an item’s first presentation in a study list and 

differentiated in subsequent presentations. 

Criss (2009) proposed the hypothesis that new traces are 

created in new contexts. We tested this hypothesis by using 

the strongest context shifts that have been reported to affect 

recognition memory by repeating items across different 

study/test cycles rather than within a single study list as is 

traditionally done in list-strength experiments. When the 

different lists were all cued in a final end-of-session test, 

increasing the proportion of strong items that were studied 

did not produce a list-strength effect and also did not 

produce a significant decrease in the false alarm rate. 

These results present a challenge for differentiation 

models, which yield predictions that cannot account for both 

of these null effects. If differentiation was not occurring 

while viewing the study lists, differentiation models would 

predict a list-strength effect due to the increased interference 

from the creation of new memory traces during repetitions. 

If differentiation was not occurring due to the context shift 

not being dramatic enough, differentiation models would 

predict a decrease in the false alarm rate due to the strong 

memory traces providing a weaker match to the distracter 

items. 

It should be mentioned that differentiation is not required 

to explain the data from list-strength paradigms. Context-

noise models, such as the bind-cue-decide model of episodic 

memory (BCDMEM: Dennis & Humphreys, 2001) and the 

recognition model proposed by Anderson and Bower 

(1972), predict a null list-strength effect because the 

recognition decision is based on the match between the test 

context and an item’s retrieved contexts. Because non-probe 

items do not affect the decision, the strength of those items 

cannot provide interference. 

The decrease in the FAR that tends to occur in list-

strength paradigms can also be explained by a criterion 

shift. This account states that as the proportion of strong 

items on a study list increases, participants are more likely 

to use a stricter criterion at test that reflects higher 

expectations of their learning from the study episode 

(Hirshman, 1995; Starns et al., 2010; Stretch & Wixted, 

1998). This account was directly tested by Starns et al. 

(2010) in a series of experiments in which they found that 

retrieval expectations at test, not encoding conditions, 

produced changes in the FAR. This was tested by 

conducting a list-strength experiment in which participants 

were informed of the strength composition of the test list 

before being tested. The FAR decreased when participants 

were told that only the strong items would be tested and 

increased when they were told that only the weak items 

would be tested, despite the fact that encoding conditions 

were identical under both sets of instructions. 
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