What are the boundary conditions of differentiation in episodic memory?
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Abstract

One of the critical findings in recognition memory is the null
list-strength effect (LSE), which states that repeating study
items does not hurt the performance of other studied items.
Episodic memory models were able to predict the null LSE by
using the principle of differentiation, in which repetitions of
an item accumulate into a single strong memory trace. A
hypothesized boundary of differentiation is that repetitions of
an item in different contexts will create new traces. Two
experiments tested this hypothesis by repeating words across
different study-test cycles rather than within a single list
followed by a test on all of the studied lists. Results indicated
that as the proportion of strong items increased, there was
both a null LSE and a non-significant decrease in the FAR,
which is contrary to the predicted strength-based mirror
effect. These two results in tandem provide a challenge for
differentiation models.
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Introduction

Episodic recognition memory is typically tested using the
yes/no recognition task, in which participants are presented
with a list of words to study and during a subsequent test
phase are instructed to say “yes” to the previously studied
words and ‘“no” otherwise. In the 1980’s, a class of
simulation models referred to as global memory models
were developed to account for data from this paradigm, as
well as other paradigms such as free recall, cued recall, and
associative recognition. While these models posited
different storage operations, such as composite storage, in
which all memory traces compile into a single memory
representation (TODAM: Murdock, 1982; the Matrix
model: Pike, 1984), and multiple trace storage, in which
individual memory traces are separable and accessible
(SAM: Gillund & Shiffrin, 1984; Minerva 2: Hintzman,
1988), all of these models posit a retrieval process in which
the probe item is matched against all of the memory traces
from the study list in parallel, producing a “familiarity”
value for the test item that is compared to a criterion to
make a decision.

A success of the global memory models was the ability to
account for the list length effect, in which increases in the
size of the study list produce decreases in discriminability,
an effect which was believed to be a very robust finding in

recognition memory at the time (although recent
examinations of the list length paradigm have uncovered
several confounds, see Dennis & Humphreys, 2001; Dennis,
Lee, & Kinnell, 2008). These models were able to make this
prediction because each memory trace contributes additional
variance to the match strengths for both target and distracter
items, increasing the overlap between these distributions
and decreasing discriminability as a consequence (Clark &
Gronlund, 1996).

A majority of these models were also able to predict how
strengthening items by additional repetitions in the study list
produce increases in the hit rates for strengthened items.
This is because of the additional trace assumption:
repetitions of an item produce additional memory traces that
add match strength to target items during retrieval. A
consequence of this assumption is that repetitions of items
have the same effect on the variance of the match strengths
as increasing the length of a study list. This is the basis of
the list-strength prediction, in which increasing the strength
of the studied items reduces performance for non-
strengthened items due to the interference from the
additional traces produced by the repetitions.

The list-strength prediction of the global memory models
was tested by Ratcliff, Clark, and Shiffrin (1990) in a series
of experiments with all of them resulting in null list-strength
effect. Specifically, weak items were not harmed by the
strengthening of other items on the study list and strong
items did not benefit from the presence of weak items. This
was a challenge for virtually all of the global memory
models at the time as well as several other memory models,
as it was not possible for them to predict a list-length effect
while simultaneously predicting a null list-strength effect
(see Shiffrin, Ratcliff, & Clark, 1990 for a technical
description of how each memory model fails in these
predictions).

A potential solution to this problem posited by Shiffrin et
al. (1990) was the differentiation hypothesis. This proposes
a revision to the learning process in which repetitions
instead accumulate into a single strong memory trace that is
more responsive to its own cue and less responsive to other
cues, thus keeping the number of traces constant as strength
is increased and preventing interference from increasing.
The differentiation mechanism not only predicts a null list-
strength effect, but also predicts a lower false alarm rate
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(FAR) as the proportion of strong items increases because
strong memory traces are less responsive to non-studied
items presented at test (Criss, 2006). This prediction is
consistent with a decrease in the FAR that has been found as
the proportion of strong items on a list is increased in list-
strength paradigms (Criss, 2006; Hirshman, 1995; Stretch &
Wixted, 1998). The simultaneous increase in hit rate and
decrease in FAR as items are strengthened has been referred
to as the strength-based mirror effect.

While differentiation was first implemented in the SAM
model (Shiffrin et al., 1990), since then the null list-strength
effect has become a strong constraint on recognition
memory models and several models were designed to
accommodate this finding. These models include the
retrieving effectively from memory model (REM: Shiffrin
& Steyvers, 1997), the model of McClelland and Chappell
(1998), as well as the Norman and O’Reilly (2003) neural
network model, which incorporated differentiation into the
medial temporal lobe cortex layer. The most popular of
these explanations is likely to be the REM model, as the
predictions from REM’s differentiation mechanism have
been tested and fit to data in a number of experiments
(Criss, 2006, 2009, 2010; Starns, White, & Ratcliff, 2010).
Differentiation operates in REM by assuming that
repetitions or additional storage time provide opportunities
to copy additional features from the original study item into
its corresponding episodic trace.

What has not been previously explored is what the
boundary conditions on this process might be. That is, under
which conditions might a repetition of a study item cause a
new trace to be created rather than instigating the
differentiation of an older trace? To our knowledge, all
simulations of differentiation models assume that the first
presentation of an item within a study list creates a new
memory trace with subsequent presentations differentiate
the traces created earlier. Considering these are simulations
of experiments where the studied materials were stimuli that
were learned prior to the experiment (words), we can expect
the study items to have memory traces that were created
prior to the experiment. For instance, the word “dog” may
have been experienced hours or days prior to the onset of an
experiment, producing a pre-experimental memory trace.
Without an understanding of the boundary conditions of
differentiation, it is not clear why the first presentation of
the word “dog” on a study list creates a new episodic trace
instead of differentiating the older, pre-experimental
episodic trace.

One hypothesis for differentiation’s boundary conditions
comes from Criss (2009), who stated that new traces are
created in new contexts and repetitions within the same
context cause differentiation to occur. Thus, if a novel list-
strength paradigm was constructed in which repetitions
occurred in new contexts and all of the contexts were cued
during a test phase, Criss’s hypothesis predicts that there
should be increased interference as the proportion of
repeated items is increased, manifesting in a decrease in
discriminability.

In order to test this hypothesis in the novel list-strength
paradigm described, there needs to be an understanding of
what type of context shift would be sufficient to break the
differentiation process. While many episodic memory
models discuss the effects of context (Dennis &
Humphreys, 2001; Howard & Kahana, 2002; Shiffrin &
Steyvers, 1997), context has not yet been operationally
defined and instead tends to be described loosely as a set of
internal and external elements that enable subjects to focus
retrieval on an event, namely the experience of the study list
(Klein, Shiffrin, & Criss, 2007). Because there is no theory
of context, consideration of a context shift must instead
come from empirical work on the subject.

While one might be inclined to think that a shift in
environmental context (i.e.: changing the room or other
aspects of the physical environment during the study
episode) might be sufficient, it has not been shown to
produce changes in d’ in recognition memory (Godden &
Baddeley, 1980; Murnane, Phelps, & Malmberg, 1999). One
factor that has been shown to make significant contextual
shifts is list context (presenting items in different study
lists). Attempts at modeling the list discrimination paradigm
have measured significant changes in context across
different lists (Criss & Shiffrin, 2004; Dennis &
Humphreys, 2001). In a recent review of context change
manipulations, Klein et al. (2007) suggested that adding
testing between list presentations increases contextual
separation.

Considering these are the strongest context change
manipulations that are currently known to affect recognition
memory, we decided to test Criss’s (2009) hypothesis by
presenting participants with three study-test cycles and
repeating items across different study lists rather than within
the lists themselves (as is traditionally done in list-strength
experiments) and then subsequently testing all of the studied
lists with an end-of-session test (this procedure had been
used in a list-strength design by Murnane & Shiffrin, 1991,
although the repetitions did not occur between list
presentations).

If these conditions are sufficient to prevent
differentiation, differentiation models predict that a list-
strength effect should result and discriminability should
decrease as the proportion of strong items increases (see
Criss, 2006 for simulations of REM predicting a list-
strength effect when differentiation is not used). However, it
is also entirely possible that these shifts in context between
presentations are not sufficient to break the differentiation
process. If this is the case, differentiation models predict
that there should be a null list-strength effect and a decrease
in the FAR as the proportion of strong items increases
(Criss, 2006).

In most of the original list-strength experiments, Ratcliff
et al. (1990) utilized the mixed/pure paradigm. This
paradigm uses three conditions: pure strong (“PS”: 100%
strong items), pure weak (“PW”: 100% weak items), and a
mixed condition consisting of both strong and weak items
(half strong and half weak). A list-strength effect would be
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observed if PW > MW (weak items from mixed lists) and if
MS (strong items from mixed lists) > PS. In our case, since
repetitions are occurring across different lists instead of
within a single study list, a pure strong manipulation would
entail three repetitions of the same study list. Upon
realization that the study lists are the same, it’s possible that
participants would decrease their attention to the studied
items, reducing their performance relative to the mixed
condition and artificially inducing a list-strength effect (PS
< MS). Instead, both of our experiments used the mostly
strong/mostly weak manipulation (Ratcliff et al., 1990;
Experiment 7), in which all sessions were mixed but the
relative proportions of strong and weak items were
manipulated. A positive list-strength effect would be
observed if performance was worse in the mostly strong
condition than in the mostly weak condition.

Experiment 1

Method

Participants A total of 108 participants contributed to this
study.  Participants  were  undergraduate  students
participating for course credit.

Stimuli The word pool consisted of 264 words that were
between five and seven letters in length and between 1 and 4
Google counts per million in normative word frequency
(low frequency).

Procedure Participants were randomly assigned to either
the mostly strong or mostly weak conditions. In both
conditions, 180 items were presented across three study/test
cycles. For the mostly strong condition, 80% of the items
(144 items) were strengthened by presenting them in every
study list and the other 20% (36 items) were distributed
across the study lists (12 in each list), leading to a total of
156 presentations for each study list. For the mostly weak
condition, 80% of the items were distributed across the three
study lists (48 in each list) and 20% of the items were
strengthened by presenting them in every study list, leading
to a total of 84 presentations per list.

Before the study phase, participants were instructed to
study the items and make a pleasantness rating from 1-4 on
the keyboard while viewing the word. Each word was
studied for 2.5 seconds and followed by a blank screen for
500 ms.

Following each study list, participants engaged in a
distracter task consisting of a card game in which cards
from a deck were presented one at a time and participants
had to hit the spacebar when different patterns of cards had
been presented (such as two cards of the same suit in a row).
Participants engaged in distracter activity for 180 seconds in
the mostly strong condition and for 396 seconds in the
mostly weak condition. The purpose of the different lengths
of the distracter task was to ensure that the time between the
start of the study list and the beginning of the test list was

equivalent in both conditions. After the three study/test
cycles had completed, participants engaged in another 240
seconds of distracter activity before the end-of-session test.

Before each test list prior to the end-of-session test,
participants were instructed to say “yes” to items they had
studied during the preceding study list and “no” otherwise.
These test lists consisted of 20 test items. In the mostly
strong condition, 7 of the test items were drawn from the
strong items and 3 of the items were drawn from the weak
items. In the mostly weak condition, 7 of the items were
drawn from the weak items and 3 of the items were drawn
from the strong items. The remaining 10 test items were
distracters that had not been presented on any of the study
lists. The purpose of using different numbers of test items in
the different conditions was to ensure that there would be
enough test items in the end-of-session test for the minority
group of each condition. No test items were repeated across
the different test lists. The test lists were self paced and a
blank screen followed each presentation for 500 ms.

After the three study-test cycles and the distracter activity
had completed, participants began the end-of-session test.
Participants were instructed that they were going to be
tested on all of the items they had previously studied and
that they were to respond “yes” to any items they had
studied during the session and “no” otherwise. Prior to this
instruction, participants were given no indication that they
would be re-tested on the study lists in this fashion.
Participants were tested on 27 strong items, 27 weak items,
and 54 distracter items. An equal number of weak items
were sampled from each of the studied lists and none of the
end-of-session test items had been previously tested.

Results and Discussion

d’ scores were calculated for all participants as a measure
of memory sensitivity for the end-of-session test. To avoid
infinite values of d’, edge corrections were performed on the
hit and false alarm rates by adding 0.5 to the hit and false
alarm counts and 1 to the target and distracter counts
(Snodgrass & Corwin, 1988).

Data from 8 participants were not used in the analysis due
to failure to finish the experiment. All participants who
finished the experiment exhibited above chance
performance (4’ > 0). Hit rates, false alarm rates, and d’
scores from the end-of-session test can be seen in Figure 1.
It should be noted that while the graphs separate the hit rates
for weak items into their study list of origin, all statistical
analyses collapsed across the hit rates.

Because our hypotheses are concerned with the presence
of a list-strength effect when multiple lists are cued, data
analysis was restricted to performance from the end-of-
session test. Results indicated that strong items were better
discriminated than weak items, F(1, 98) = 271.20, p < .001.
Because both list conditions are mixed, a list-strength effect
would be observed if performance in the mostly weak
condition exceeded that of the mostly strong condition.
However, a null list-strength effect was observed:
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Performance on the mostly weak condition did not exceed
that of the mostly strong condition, F(1, 98) = 1.47, p > .05.
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Figure 1: Performance from the end-of-session test of
Experiment 1. Top — d’ scores for weak and strong items in
each condition. Bottom — false alarm rates and hit rates for
strong and weak items. The hit rates for weak items are
separated by the list they were originally studied in. Error
bars represent the 95% confidence interval.

One might be inclined to think that the context shifts that
occurred between repetitions of items weren’t dramatic
enough to break the boundaries of differentiation. However,
the decrease in FAR that differentiation models predict as
the proportion of strong items increases was not found,
t(97.27) = 0.14. Thus, these results present a challenge for
differentiation models.

While the results of the data analysis suggest a null list-
strength effect, there was a trend in the direction of a list-
strength effect, as hit rates for weak items were worse in the
mostly strong condition than in the mostly weak condition,
t(90.47) = 2.22, p < .05, although hit rates for strong items
were not significantly worse in the mostly strong condition,
t(94.47) = 1.43, p > .05. One possible reason why this might
be is because the lengths of the lists in the mostly strong
condition (156 presentations per list, which is almost eight
minutes) are unusually long for recognition experiments.
Many participants seemed very frustrated with the length
and tedium of the task, which may have caused fatigue.
Based on these observations, we decided to run the same
task with a smaller number of items to see if we would
obtain the same results.

Experiment 2

The design of Experiment 2 was identical to that of
Experiment 1 except with a reduction in the total number of
items studied in an attempt to reduce the possible fatigue
that may have resulted in the trend found in Experiment 1.

Method

Participants A total of 104 participants contributed to this

study.  Participants  were  undergraduate  students
participating for course credit.
Procedure The procedure was identical to that of

Experiment 1 except that the total number of presented
items was 120 instead of 180. Thus, in the mostly strong
condition, 96 items were strengthened by presenting them in
all three lists and 24 items were distributed across the three
lists (eight items per list), totaling 104 presentations per list.
In the mostly weak condition, 96 items were distributed
across the three lists (32 items per list) and 24 items were
strengthened by presenting them in each list, totaling 56
presentations per list. Following each study list, distracter
activity commenced for 180 seconds for the mostly strong
condition and 324 seconds for the mostly weak condition.
The end-of-session test consisted of 15 strong items, 15
weak items, and 30 distracter items.

Results
All participants exhibited above chance performance (d’ >

0). Hits, false alarm rates, and d’ scores for the end-of-
session test data can be seen in Figure 2.
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Figure 2: Performance from the end-of-session test of
Experiment 2. Top - d’ scores for strong and weak items in
each condition. Bottom — false alarm rates and hit rates for
strong and weak items in each condition. The hit rates for
weak items are separated by the list they were originally
studied in. Error bars represent the 95% confidence interval.

Results from Experiment 2 replicated the key results of
Experiment 1. A null list-strength effect was observed in
that discriminability did not change across the two
conditions, F(1, 102) = 0.11, strong items were better
discriminated than weak items, F(1, 102) = 272.76, p <
.001, and FAR did not differ between the two conditions,
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t(97.96) = .59. Unlike in Experiment 1, hit rates did not
differ between the two conditions for weak items, t(94.57) =
1.04, p > .05, or strong items, t(100.56) = 0.72.

General Discussion

The differentiation hypothesis has become a popular
explanation for the null list-strength effect in recognition
memory. While the predictions of differentiation have been
tested, little work has been done to explore or test the
boundary conditions under which such a process might
occur, despite the necessity in specifying such conditions in
order to understand why a memory trace would be created
upon an item’s first presentation in a study list and
differentiated in subsequent presentations.

Criss (2009) proposed the hypothesis that new traces are
created in new contexts. We tested this hypothesis by using
the strongest context shifts that have been reported to affect
recognition memory by repeating items across different
study/test cycles rather than within a single study list as is
traditionally done in list-strength experiments. When the
different lists were all cued in a final end-of-session test,
increasing the proportion of strong items that were studied
did not produce a list-strength effect and also did not
produce a significant decrease in the false alarm rate.

These results present a challenge for differentiation
models, which yield predictions that cannot account for both
of these null effects. If differentiation was not occurring
while viewing the study lists, differentiation models would
predict a list-strength effect due to the increased interference
from the creation of new memory traces during repetitions.
If differentiation was not occurring due to the context shift
not being dramatic enough, differentiation models would
predict a decrease in the false alarm rate due to the strong
memory traces providing a weaker match to the distracter
items.

It should be mentioned that differentiation is not required
to explain the data from list-strength paradigms. Context-
noise models, such as the bind-cue-decide model of episodic
memory (BCDMEM: Dennis & Humphreys, 2001) and the
recognition model proposed by Anderson and Bower
(1972), predict a null list-strength effect because the
recognition decision is based on the match between the test
context and an item’s retrieved contexts. Because non-probe
items do not affect the decision, the strength of those items
cannot provide interference.

The decrease in the FAR that tends to occur in list-
strength paradigms can also be explained by a criterion
shift. This account states that as the proportion of strong
items on a study list increases, participants are more likely
to use a stricter criterion at test that reflects higher
expectations of their learning from the study episode
(Hirshman, 1995; Starns et al., 2010; Stretch & Wixted,
1998). This account was directly tested by Starns et al.
(2010) in a series of experiments in which they found that
retrieval expectations at test, not encoding conditions,
produced changes in the FAR. This was tested by
conducting a list-strength experiment in which participants

were informed of the strength composition of the test list
before being tested. The FAR decreased when participants
were told that only the strong items would be tested and
increased when they were told that only the weak items
would be tested, despite the fact that encoding conditions
were identical under both sets of instructions.
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