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Abstract

Based on behavioral, neuroimaging and
neuropsychological data, | argue that a key to
understanding mathematical cognition is the sharing of
neural  resources  between  sensorimotor  and
mathematical processes. Mathematical cognition is
embodied in the sense that it is grounded in simulations
of sensorimotor processes through the use of neural
resources that are also active in bodily perception and
action. There are two approaches to the study of
embodied mathematical  cognition:  Behavioral,
neuroimaging and neuropsychological investigations
providing empirical evidence, and the study of
conceptual metaphors, focusing on how inferences
from physical domains are used to understand abstract
mathematical ideas. The first approach suffers from not
providing a unified explanation, while the second
approach is criticized for not having empirical
validation. | discuss the possible implications of
approaching to mathematical cognition as embodied
simulation in relating disparate findings to provide a
more connected picture of how mathematics emerges
from the embodied mind.

Keywords: embodiment; embodied cognition; mathematical
cognition; simulation theories

Embodied cognition is a theoretical stance that argues that
cognitive processes are grounded in the body’s interaction
with the world. Different approaches in embodied cognition
propose varying levels for bodily involvement in higher
cognition. Clark (1999) has distinguished between simple
versus radical embodiment. Simple embodiment focuses on
how the body and environment places constraints on a
theory of inner organization and processing. Radical
embodiment, however, asserts that all cognitive processes
are grounded in the sensorimotor system, proposing a
profound change in the "subject matter and theoretical
framework of cognitive science” (p. 348). The fundamental
difference between these two approaches is that simple
embodiment still relies on internal representations,
especially in explaining higher level thinking, whereas
radical embodiment entirely rejects the idea of an internal
realm and provides a representation free account of
cognitive phenomena. | use the term simulation theories of
cognition to refer to theories positing that all cognitive
processes are simulations of sensorimotor processes. Note
that the term simulation theories is also used to refer to a
theory of mind asserting that humans understand other
people’s mental states by adopting their perspective (Davies
& Stone, 1995), which is different than the usage here.

Simulation theories posit a decoupling of sensorimotor
functions from their original physical inputs and outputs.
For example, consider the case of counting on one’s fingers.
In its initial form counting can be done through explicit
motor behavior where an observer can see the fingers
moving. However, the motor movement of fingers can
become gradually more subtle, where at some point it might
merely seem like twitching to the observer. We can push the
activity inward even further allowing the use of motor
programs without any overt behavior. At this point finger
counting is a motor simulation. This situation exemplifies
how a motor function, without overt behavior, can be the
underlying neural mechanism for off-line thinking in the
very simple case of counting (Wilson, 2002).

Previous theories focused on how conceptual content is
represented in the sensorimotor system. Gallese & Lakoff
(2005) proposed that embodied simulations are the source of
both structural and semantic content in conceptual
knowledge. Embodied simulations take place in multimodal
sensorimotor networks. Unlike the conventional idea of
distinct sensory and motor areas communicating through
association areas, multimodality refers to the integration of
sensory modalities with one another and also with motor
modalities. Barsalou (1999) argued that during perceptual
experience association areas in the brain capture bottom-up
sensory-motor patterns. Later, during the use of perceptual
symbols association areas facilitate some of the same
sensory-motor areas in a top down manner. Through
experience, memories of the same component are stored in a
schematic manner. The memories implement simulators of
the perceptual experiences they represent. Simulators can be
perceptual, proprioceptive, or introspective. Abstract
concepts are grounded in the combinatorial and recursive
integration of simulators.

Mathematics is often characterized as a challenge to
embodiment (Nunez, 2008). Although it is relatively
difficult to apply the idea of embodied simulations to
explain mathematical cognition due to abstract nature of
mathematics, there is accumulating evidence for how basic
mathematical processes are grounded in the sensorimotor
system. In this paper | review different studies on
mathematical cognition and discuss some of the challenges
in interpreting findings to create a meaningful image of how
mathematics can emerge from the embodied mind.

Embodiment of Mathematical Thinking

Research on embodiment of mathematics is still in its
infancy. Mathematical cognition is a big puzzle with many
pieces, each piece requiring us to draw knowledge from a
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different field. Currently, there are two trends in studying
embodiment of mathematical cognition: 1) empirical
investigations of basic number processing skills, for
example number recognition and comparison, parity
judgment, arithmetic and to some extent simple algebra
through behavioral, neuroimaging and neuropsychological
studies. Another trend, most typically exemplified by Lakoff
and Johnson’s book on embodied mathematics (Lakoff &
Nunez, 2000), is the study of conceptual metaphors in
mathematics to explain how mathematical concepts are
grounded in bodily processes. Both trends have strengths
and shortcomings. Empirical studies provide accumulating
disparate evidence on embodiment of number processing;
however they do not provide a unified, big picture of how
number processing is grounded in the sensorimotor system.
Nevertheless, general theories explaining how number
processing takes place in the brain exists. One, arguably the
most well-known, theory is the triple-code model (Dehaene,
Piazza, Pinel, & Cohen, 2003), which provides a relatively
disembodied account of number processing.

The second trend is explanation of mathematical
cognition based on conceptual metaphors (Lakoff & Nunez,
2000). The role of conceptual metaphors in language and
thinking was first studied by Lakoff and Johnson (1980).
Sfard (1994) incorporated ideas from cognitive linguistics,
on the use of metaphors in language and thinking (Lakoff &
Johnson, 1980) to explain how we rely on daily physical
inferences to make sense of mathematical concepts. Lakoff
and Nunez (2000) extended this program by inquiring how
metaphors are used in diverse domains of mathematics,
including for example algebra, logic, sets and even
trigonometry. The main argument in this approach is that we
use inferences from our bodily interactions to understand
mathematical concepts; a conceptual metaphor links a
physical source domain to a target abstract domain. This
approach is criticized for lacking empirical verification and
for overextending the claims of embodiment to higher
domains of mathematics without sufficient support (Goldin,
2001).

I believe that there is a need for bridging these two trends
to have a unified explanation of numerical cognition that is
supported by empirical findings. Approaching to
mathematical cognition as embodied simulations might have
the potential to do that.

Empirical Evidence

There are four major sources of evidence supporting the
relation between bodily processes and mathematical
cognition. First, studies on neural correlates of hand
movements and action understanding of hand gestures point
to an overlapping circuitry in the prefrontal and intraparietal
regions with number processing (Binkofski et al., 1999;
Chong, Cunnington, Williams, Kanwisher, & Mattingley,
2008; Corina & Knapp, 2006; Peltier et al., 2007; Sakata &
Taira, 1998) . In addition, a separate body of neuroimaging
research point to a relation between neural correlates of
hand/finger movement control and number processing

(Andres, Seron, & Olivier, 2007). Secondly, studies
conducted  with  repetitive  Transcranial ~Magnetic
Stimulation (rTMS) show excitability of hand muscles
during different number processing tasks (Andres, et al.,
2007; Sato, Cattaneo, Rizzolatti, & Gallese, 2007). Third,
behavioral studies on math learning provide evidence for a)
better math learning when instruction is supported with
hand gestures, b) higher problem solving performance when
non-communicative hand gestures are allowed, compared to
when hands are restricted, and ¢) non-communicative hand
gestures during problem solving provide clues for
misconceptions in conceptual understanding of arithmetic
and algebra (Goldin-Meadow, 1997, 1999, 2006; Goldin-
Meadow, Nusbaum, Kelly, & Wagner, 2001; Goldin-
Meadow & Singer, 2003; Goldin-Meadow & Wagner,
2005). The fourth major support comes from
neuropsychological conditions, particularly ~ Gerstmann
syndrome (Gerstmann, 1940), which is discussed later in
this paper.

Conceptual Metaphors and First Person
Accounts

The use of conceptual metaphors is characterized by the
use of a physical, source domain to understand an abstract,
target domain. First person accounts of mathematical
experience provide additional insight about how
metaphorical thinking is involved in mathematical
processes. In a letter to mathematician Jacques Hadamard,
Einstein once wrote:

Thoughts do not come in any verbal formulation.
Words and language, whether written or spoken, do not
seem to play any part in my thought processes. The
psychological entities that serve as building blocks for
my thought are certain signs or images, more or less
clear, that I can reproduce and recombine at will...The
above mentioned elements are, in my case, of visual
and some of muscular type. Conventional words or
other signs have to be sought for laboriously only in a
secondary stage, when the mentioned associative play is
sufficiently established and can be reproduced at will
(Hadamard, 1945, pp. 142,143)

Sfard questioned mathematicians about how they process
mathematical concepts. In particular, she investigated if they
process mathematical concepts in a way that is similar to
physical objects. When Sfard asked how it feels to have a
deep understanding of a mathematical idea, three
mathematicians responded by saying, “identify a structure
[one is] able to grasp somehow”, “to see an image”, and “to
play with some wunclear images of things”. One
mathematician reported, “In those regions where I feel an
expert ... the concepts, the [mathematical] objects turned
tangible for me” (Sfard, 1994, p. 48). Another
mathematician stated:

To understand a new concept | must create an
appropriate metaphor. A personification. Or a spatial
metaphor. A metaphor of structure. Only then can |
answer questions, solve problems. | may even be able
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then to perform some manipulations on the concept.
Only when | have the metaphor. Without the metaphor |
just can’t do it. (Sfard, 1994, p. 48)

The same mathematician also reported that the structure
he uses has to have some spatial elements no matter how
abstract the mathematical idea is. In the same study,
mathematicians pointed to personification as another
strategy for understanding mathematical concepts.
Similarly, Hadamard (1945) reported mathematicians’
tendency to treat mathematical concepts as human faces.

In a discussion of understanding and meaning in
mathematical thinking, Sfard (1994) distinguished between
objectivist and embodied theories of meaning. She
characterized objectivist claims about knowledge as
propositional and disembodied. Following the steps of
Lakoff and Johnson (1980) Sfard defines a metaphor as a
relation between a bodily and a conceptual domain.
Metaphors facilitate our use of inferences from physical and
bodily experiences to understand abstract concepts and
relations. Lakoff and Johnson (1980) introduce embodied
schemata to explain how metaphors work. Embodied
schemata is “the vehicle which carries our experimentally
constructed knowledge” (Sfard, 1994, p. 46). They are the

. structures of an activity by which we organize our
experience in ways that we can comprehend. They are a
primary means by which we construct or constitute order
and are not mere passive receptacles into which experience
is poured” (Lakoff & Johnson, 1980, pp. 29-30). According
to Sfard, embodied schemata are non-propositional. They
are “ . .. image-like and embodied, embodied in the sense
that they should be viewed as analog reflections of bodily
experience rather than as factual statements we may wish to
check for validity. The non-propositional nature of
embodied schemata makes it difficult, sometimes
impossible, to describe them in words.” In this sense,
embodied schemata are preverbal constructs that are
dynamic, ever changing and shaped by our physical and
social experiences. However, the nature of embodied
schemata, how they are shaped in the sensorimotor system
and how abstract thinking emerges from these preverbal
constructs is still not clear. Although an embodied schema is
a preverbal construct shaped in the sensorimotor system, we
still talk about it like a cognitive construct since we cannot
explain how it relates to the simple bodily functions and
sensorimotor interactions.

Interpretation of mathematical thinking as embodied
simulations requires a conceptual shift. Mathematical
thinking is reconceptualized as simulated sensorimotor
activity. This activity takes place in a temporal and spatial
stage involving all modalities. As mathematician Alain
Connes puts it: “The evolution of our perception of
mathematical reality causes a new sense to develop, which
gives us access to a reality that is neither visual nor
auditory, but something else together” (Dehaene, 1997, p.
149). The key to understanding the multimodal
sensorimotor foundations of mathematical might be through

adopting an embodied perspective in designing studies and
interpreting data.

An Embodied Approach to Interpreting
Neuroimaging Data

Imaging studies, as well as neuropsychological cases,
point to the importance of a network of areas consisting of
prefrontal and parietal regions, particularly angular gyrus
and IPS (Intraparietal Sulcus). In this section I will revisit
previous interpretations on the functional contribution of
angular gyrus and IPS to number processing and propose an
alternative embodied approach to provide a more connected
explanation that is also compatible with behavioral and
neuropsychological findings. The idea here is to provide an
example for how embodied simulations framework can be
applied to the interpretation of neuroimaging data in the
mathematical cognition domain.

Angular Gyrus

Angular gyrus is located in the inferior parietal cortex. It
is situated at a very central location in the cortex,
neighboring multimodal sensory regions. It was once
characterized as the “association area of association areas”
together with the supramarginal gyrus (Geschwind, 1965).
Angular gyrus activations, particularly left, were found in
various number processing tasks, for example exact addition
(Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999),
multiplication (Lee, 2000) and number recognition (Pesenti,
Thioux, Seron, & Volder, 2000). Although it is established
that angular gyrus is an essential part of the number
processing network, it is role is still not well understood.
According to the well-known, triple-code model, being part
of the perisylvian language network, the angular gyrus is
functional in verbal processing of numbers (Dehaene, et al.,
2003). Nevertheless accumulating behavioral, neuroimaging
and neuropsychological data tell us a different story about
the involvement of angular gyrus.

A relation between angular gyrus and number processing
was first formulated when, in 1924, Josef Gerstmann
diagnosed a condition, now named Gerstmann’s syndrome,
with four co-occurring symptoms: finger agnosia (loss in
finger sense), acalculia (inability to do simple calculations),
left-right disorientation and agraphia (inability to write).
Gerstmann found that the condition was most commonly
due to a lesion in the left angular gyrus (Gerstmann, 1940).
He believed that the main symptom was finger agnosia, a
specific type of body schema impairment (autopagnosia)
affecting the mental representation of hands and fingers. He
proposed that the loss of finger sense combined with the
left-right disorientation caused acalculia, - the inability to
carry out simple mathematical calculations (Butterworth,
1999b, p. 219). There have been a number of studies
reporting data to support Gerstmann’s theory. For example,
a study examining patients with tumors in and around the
angular gyrus found that these patients had impairments in
writing, calculating, and finger recognition (Roux, Boetto,
Sacko, Chollet, & Tremoulet, 2003). Also, in a rTMS study
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of healthy subjects it was found that disruption of the left
angular gyrus impaired access to the finger schema and
number processing (Rusconi, Walsh, & Butterworth, 2005).

These studies support the idea that involvement of angular
gyrus in number processing is due to a functional relation
between number processing and finger representations.
There is also supportive behavioral data for this argument.
A series of behavioral studies have consistently shown that
finger gnosia (finger sense) in younger children is a
predictor of numerical abilities (Noel, 2005; Penner-Wilger,
et al., 2007). In addition, in our lab we found that finger
tapping differentially interferes with finger tapping, showing
use of shared resources between addition and finger
processing (Soylu & Newman, 2011).

IPS (Intraparietal Sulcus) and the SNARC Effect

IPS is another region that has been consistently found
active in a variety of number processing tasks, for example
number comparison (Pinel, Piazza, Le Bihan, & Dehaene,
2004) and simple addition (Pesenti, et al., 2000). In the
triple-code model it was proposed the IPS, particularly its
horizontal segment, is responsible from quantity processing
independent from the number notation, and that its function
is analogous to one of a “mental number line” (Dehaene, et
al.,, 2003). The mental number line argument is also
supported by the SNARC (spatial-numerical association of
response codes) effect, which refers to the finding that in a
parity judgment test right button responses are faster for
large numbers and left button responses are faster for small
numbers. This supports the idea that the comparison of
numerical quantities takes place on a mental number line
extending from left to right. (Dehaene, Bossini, & Giraux,
1993).

However there is evidence challenging the idea of a
mental number line for quantity processing. Fischer (2008)
explored whether finger-counting habits contribute to the
SNARC effect and found that subjects who are left-starters
show a SNARC effect significantly more than right-starters.
In another study subjects were asked to identify Arabic
digits by pressing one of 10 keys with all 10 fingers. The
configuration of response buttons varied both in terms of the
global direction of the hand-digit mapping and the direction
of the finger-digit mapping within each hand, from small to
large digits or vice versa. The results showed that subjects
performed better when there was a congruency between the
reported finger-counting strategy of the subject and the
mapping of the response buttons (Di Luca, Grana, Semenza,
Seron, & Pesenti, 2006).

Based on the presented evidence it is possible that angular
gyrus contributes to a finger based representation of
numbers, while IPS contributes to a multimodal
representation of numerical quantity. The “mental number
line” analogy can still be useful in explaining the function of
IPS, while taking into account that the direction and
structure of this number line is grounded in bodily
dynamics, for example handedness and finger counting
habits. In addition the analogy can be modified in a way that

we not only talk about a number line but also hands tracing
it during its use.

We need further neuroimaging studies investigating the
relation between bodily and basic mathematical processes to
clarify the question about the exact roles of angular gyrus
and IPS, as well as pre-frontal regions in number
processing.

Adopting an Evolutionary Perspective

Since one of the main ideas behind embodiment is the
exploitation of simple perceptual and motor neural resources
for higher cognitive functions, adopting an evolutionary
perspective can help not only in understanding how these
functions emerged during evolution but also explaining how
they are currently situated in the sensorimotor system. This
is also true for mathematics. An evolutionary perspective
provides a bigger and more connected picture as to why a
distributed network of brain areas is functional in number

processing.
One recent theory on the evolution of higher cognition is
Anderson’s “massive redeployment theory” (2007).

Anderson argues that higher cognition is possible through
redeployment of existing neural systems for new functions.
By reviewing 135 neuroimaging studies in different
domains he provided empirical validation for three
predictions: 1) A single brain region is used for many
cognitive functions, 2) evolutionarily older brain areas are
affiliated with more cognitive functions, and 3) newer
cognitive functions utilize more distributed brain areas.
Let’s revisit the case of angular gyrus from this perspective.
We have already covered how interpretation of angular
gyrus activation as verbal processing (Dehaene, et al.,
2003) makes it difficult to explain a range of
neuropsychological (such as Gerstmann’s syndrome),
neuroimaging and behavioral findings. What we currently
know about evolution of language can help us in
understanding the role of angular gyrus. Arbib (2002, 2005)
proposed that human languages followed an evolutionary
trajectory including such stages as; the simple grasping
movement, understanding actions of another individual,
imitation, a manual based communication, and verbal
communication, finally vyielding to complex human
languages. Considering the argument that hand/finger
related sensorimotor areas were redeployed for language
during evolution, we can expect that verbal processing also
use neural resources related to the perception and execution
of hand movements. Studies on verb meaning provide
support for the proposed relation between the sensorimotor
system and language processing. Buccino et al. (2005)
showed that action-related sentences modulate relevant
parts of the motor system, especially the mirror neuron
system. A simulation theory is proposed as one possible
explanation for this phenomenon: . . . the understanding of
action-related sentences implies an internal simulation of the
actions expressed in the sentences, mediated by the
activation of the same motor representation that are
involved in their execution” (Buccino, et al., 2005, p. 361).
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This partially supports the idea that angular gyrus activation
in verbal processing might be due to use of finger
processing resources, which is shared by number
processing. Although we do not have empirical data to
support this claim, the idea here is to show how adopting an
evolutionary perspective has the potential to provide
alternative explanations that is more consistent with
disparate findings on number processing. In this sense,
interpretation of data requires consideration of not only the
nature of the task, but also its evolutionary past.

Criticisms & Alternative Views

The idea of embodiment of mathematics is not free of
criticism. The embodied account of mathematics was
particularly criticized by mathematicians who believe that
“brain  based” mathematics necessarily refuses a
“transcendent mathematics”. From this perspective
mathematical embodiment negates mathematical realism;
that is propositions about embodiment and transcendence
mathematics are mutually exclusive. The view that
mathematics cannot be a product of the embodied mind
since it is transcendent is characterized as “Romance of
Mathematics” by Lakoff and Nunez (2000).

However, according to an alternative view the ... fact
that human mathematics is based in human cognitive
capacities does not mean that these capacities cannot
provide recognition of transcendent mathematical truth*
(Voorhees, 2004, p. 87). | believe that how we do
mathematics and what mathematics is should be studied
separately, since the answer to the former question does not
inform the latter one. The confusion of these two
fundamental questions can blur the study of embodied
mathematics by attracting invalid criticism.

A different perspective, which shows that the discussion
about the transcendence of mathematics is more
philosophical rather than empirical in nature, was proposed
by Godel. He argued that mathematical concepts are as
“real” as physical objects: “It seems to me that the
assumption of [mathematical] objects is quite as legitimate
as the assumption of physical [ones] and there is quite as
much reason to believe in their existence” (Longo, 2007, p.
207). However, the mathematical realism of Gddel is not
conclusive. He points out that questions that relate to the
ontology of physical objects are the same as the ontology of
mathematical concepts: “the objective existence of the
objects of mathematical intuition ... is an exact replica of
the question of the objective existence of the outside world”
(Longo, 2007, p. 209). Overall, | believe that studies on
mathematical cognition inform how we do mathematics and
not what mathematics is.

Conclusion

Mathematics, being one of the most abstract domains of
human knowledge, is a challenge to embodiment. There are
two types of approaches to the study of mathematical
embodiment: 1) Empirical investigation of how bodily
processes interact with mathematical processes, and 2) study

of how people use conceptual metaphors to make sense of
mathematical concepts; by using already existing
knowledge in a physical domain to understand a more
complex and abstract mathematical concept. While the
former approach provides empirical validation for claims, it
does not provide a unified theory of how mathematics is
grounded in the sensorimotor systems. The second
approach, focusing on the role of conceptual metaphors in
mathematical thinking, provides a general theory, but
attracts serious criticisms due to lack of empirical
validation. | propose that approaching to mathematical
cognition as embodied simulation can make it possible to
interpret seemingly disparate findings to provide a more
comprehensive explanation for how people do math.

I have also reflected on the implications of adopting an
embodied and evolutionary perspective in interpreting
neuroimaging data. | proposed that a study of the neural
underpinnings of mathematical cognition should aim at
explaining how the processes studied are grounded in the
complex interactions of sensorimotor networks from an
evolutionary perspective. Study of the neural underpinnings
of mathematical thinking is more about understanding how
a complex network of sensorimotor circuitry interact to
bring forth mathematical ideas rather than identifying
rigidly modularized areas that are only specific to
mathematical thinking.
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