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Abstract 

Based on behavioral, neuroimaging and 
neuropsychological data, I argue that a key to 
understanding mathematical cognition is the sharing of 
neural resources between sensorimotor and 
mathematical processes. Mathematical cognition is 
embodied in the sense that it is grounded in simulations 
of sensorimotor processes through the use of neural 
resources that are also active in bodily perception and 
action. There are two approaches to the study of 
embodied mathematical cognition: Behavioral, 
neuroimaging and neuropsychological investigations 
providing empirical evidence, and the study of 
conceptual metaphors, focusing on how inferences 
from physical domains are used to understand abstract 
mathematical ideas. The first approach suffers from not 
providing a unified explanation, while the second 
approach is criticized for not having empirical 
validation. I discuss the possible implications of 
approaching to mathematical cognition as embodied 
simulation in relating disparate findings to provide a 
more connected picture of how mathematics emerges 
from the embodied mind.  

 
Keywords: embodiment; embodied cognition; mathematical 
cognition; simulation theories 

 

Embodied cognition is a theoretical stance that argues that 

cognitive processes are grounded in the body’s interaction 

with the world. Different approaches in embodied cognition 

propose varying levels for bodily involvement in higher 

cognition. Clark (1999) has distinguished between simple 

versus radical embodiment. Simple embodiment focuses on 

how the body and environment places constraints on a 

theory of inner organization and processing. Radical 

embodiment, however, asserts that all cognitive processes 

are grounded in the sensorimotor system, proposing a 

profound change in the "subject matter and theoretical 

framework of cognitive science” (p. 348). The fundamental 

difference between these two approaches is that simple 

embodiment still relies on internal representations, 

especially in explaining higher level thinking, whereas 

radical embodiment entirely rejects the idea of an internal 

realm and provides a representation free account of 

cognitive phenomena. I use the term simulation theories of 

cognition to refer to theories positing that all cognitive 

processes are simulations of sensorimotor processes. Note 

that the term simulation theories is also used to refer to a 

theory of mind asserting that humans understand other 

people’s mental states by adopting their perspective (Davies 

& Stone, 1995), which is different than the usage here. 

 Simulation theories posit a decoupling of sensorimotor 

functions from their original physical inputs and outputs. 

For example, consider the case of counting on one’s fingers. 

In its initial form counting can be done through explicit 

motor behavior where an observer can see the fingers 

moving. However, the motor movement of fingers can 

become gradually more subtle, where at some point it might 

merely seem like twitching to the observer. We can push the 

activity inward even further allowing the use of motor 

programs without any overt behavior. At this point finger 

counting is a motor simulation. This situation exemplifies 

how a motor function, without overt behavior, can be the 

underlying neural mechanism for off-line thinking in the 

very simple case of counting (Wilson, 2002).  

Previous theories focused on how conceptual content is 

represented in the sensorimotor system. Gallese & Lakoff 

(2005) proposed that embodied simulations are the source of 

both structural and semantic content in conceptual 

knowledge. Embodied simulations take place in multimodal 

sensorimotor networks. Unlike the conventional idea of 

distinct sensory and motor areas communicating through 

association areas, multimodality refers to the integration of 

sensory modalities with one another and also with motor 

modalities. Barsalou (1999) argued that during perceptual 

experience association areas in the brain capture bottom-up 

sensory-motor patterns. Later, during the use of perceptual 

symbols association areas facilitate some of the same 

sensory-motor areas in a top down manner. Through 

experience, memories of the same component are stored in a 

schematic manner. The memories implement simulators of 

the perceptual experiences they represent. Simulators can be 

perceptual, proprioceptive, or introspective. Abstract 

concepts are grounded in the combinatorial and recursive 

integration of simulators. 

Mathematics is often characterized as a challenge to 

embodiment (Nunez, 2008). Although it is relatively 

difficult to apply the idea of embodied simulations to 

explain mathematical cognition due to abstract nature of 

mathematics, there is accumulating evidence for how basic 

mathematical processes are grounded in the sensorimotor 

system. In this paper I review different studies on 

mathematical cognition and discuss some of the challenges 

in interpreting findings to create a meaningful image of how 

mathematics can emerge from the embodied mind. 

Embodiment of Mathematical Thinking 

Research on embodiment of mathematics is still in its 

infancy. Mathematical cognition is a big puzzle with many 

pieces, each piece requiring us to draw knowledge from a 

1212



different field. Currently, there are two trends in studying 

embodiment of mathematical cognition: 1) empirical 

investigations of basic number processing skills, for 

example number recognition and comparison, parity 

judgment, arithmetic and to some extent simple algebra 

through behavioral, neuroimaging and neuropsychological 

studies. Another trend, most typically exemplified by Lakoff 

and Johnson’s book on embodied mathematics (Lakoff & 

Nunez, 2000), is the study of conceptual metaphors in 

mathematics to explain how mathematical concepts are 

grounded in bodily processes. Both trends have strengths 

and shortcomings. Empirical studies provide accumulating 

disparate evidence on embodiment of number processing; 

however they do not provide a unified, big picture of how 

number processing is grounded in the sensorimotor system. 

Nevertheless, general theories explaining how number 

processing takes place in the brain exists. One, arguably the 

most well-known, theory is the triple-code model (Dehaene, 

Piazza, Pinel, & Cohen, 2003), which provides a relatively 

disembodied account of number processing. 

The second trend is explanation of mathematical 

cognition based on conceptual metaphors (Lakoff & Nunez, 

2000). The role of conceptual metaphors in language and 

thinking was first studied by Lakoff and Johnson (1980). 

Sfard (1994) incorporated ideas from cognitive linguistics, 

on the use of metaphors in language and thinking (Lakoff & 

Johnson, 1980) to explain how we rely on daily physical 

inferences to make sense of mathematical concepts. Lakoff 

and Nunez (2000) extended this program by inquiring how 

metaphors are used in diverse domains of mathematics, 

including for example algebra, logic, sets and even 

trigonometry. The main argument in this approach is that we 

use inferences from our bodily interactions to understand 

mathematical concepts; a conceptual metaphor links a 

physical source domain to a target abstract domain.  This 

approach is criticized for lacking empirical verification and 

for overextending the claims of embodiment to higher 

domains of mathematics without sufficient support (Goldin, 

2001).  

I believe that there is a need for bridging these two trends 

to have a unified explanation of numerical cognition that is 

supported by empirical findings. Approaching to 

mathematical cognition as embodied simulations might have 

the potential to do that. 

Empirical Evidence 

There are four major sources of evidence supporting the 

relation between bodily processes and mathematical 

cognition. First, studies on neural correlates of hand 

movements and action understanding of hand gestures point 

to an overlapping circuitry in the prefrontal and intraparietal 

regions with number processing (Binkofski et al., 1999; 

Chong, Cunnington, Williams, Kanwisher, & Mattingley, 

2008; Corina & Knapp, 2006; Peltier et al., 2007; Sakata & 

Taira, 1998) . In addition, a separate body of neuroimaging 

research point to a relation between neural correlates of 

hand/finger movement control and number processing 

(Andres, Seron, & Olivier, 2007). Secondly, studies 

conducted with repetitive Transcranial Magnetic 

Stimulation (rTMS) show excitability of hand muscles 

during different number processing tasks (Andres, et al., 

2007; Sato, Cattaneo, Rizzolatti, & Gallese, 2007). Third, 

behavioral studies on math learning provide evidence for a) 

better math learning when instruction is supported with 

hand gestures, b) higher problem solving performance when 

non-communicative hand gestures are allowed, compared to 

when hands are restricted, and c) non-communicative hand 

gestures during problem solving provide clues for 

misconceptions in conceptual understanding of arithmetic 

and algebra (Goldin-Meadow, 1997, 1999, 2006; Goldin-

Meadow, Nusbaum, Kelly, & Wagner, 2001; Goldin-

Meadow & Singer, 2003; Goldin-Meadow & Wagner, 

2005). The fourth major support comes from 

neuropsychological conditions, particularly Gerstmann 

syndrome (Gerstmann, 1940), which is discussed later in 

this paper. 

Conceptual Metaphors and First Person 

Accounts 

The use of conceptual metaphors is characterized by the 

use of a physical, source domain to understand an abstract, 

target domain. First person accounts of mathematical 

experience provide additional insight about how 

metaphorical thinking is involved in mathematical 

processes. In a letter to mathematician Jacques Hadamard, 

Einstein once wrote: 

Thoughts do not come in any verbal formulation. 

Words and language, whether written or spoken, do not 

seem to play any part in my thought processes. The 

psychological entities that serve as building blocks for 

my thought are certain signs or images, more or less 

clear, that I can reproduce and recombine at will…The 

above mentioned elements are, in my case, of visual 

and some of muscular type. Conventional words or 

other signs have to be sought for laboriously only in a 

secondary stage, when the mentioned associative play is 

sufficiently established and can be reproduced at will 

(Hadamard, 1945, pp. 142,143) 

Sfard questioned mathematicians about how they process 

mathematical concepts. In particular, she investigated if they 

process mathematical concepts in a way that is similar to 

physical objects. When Sfard asked how it feels to have a 

deep understanding of a mathematical idea, three 

mathematicians responded by saying, “identify a structure 

[one is] able to grasp somehow”, “to see an image”, and “to 

play with some unclear images of things”. One 

mathematician reported, “In those regions where I feel an 

expert … the concepts, the [mathematical] objects turned 

tangible for me” (Sfard, 1994, p. 48). Another 

mathematician stated: 

To understand a new concept I must create an 

appropriate metaphor. A personification. Or a spatial 

metaphor. A metaphor of structure. Only then can I 

answer questions, solve problems. I may even be able 
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then to perform some manipulations on the concept. 

Only when I have the metaphor. Without the metaphor I 

just can’t do it. (Sfard, 1994, p. 48) 

The same mathematician also reported that the structure 

he uses has to have some spatial elements no matter how 

abstract the mathematical idea is. In the same study, 

mathematicians pointed to personification as another 

strategy for understanding mathematical concepts. 

Similarly, Hadamard (1945) reported mathematicians’ 

tendency to treat mathematical concepts as human faces.  

In a discussion of understanding and meaning in 

mathematical thinking, Sfard (1994) distinguished between 

objectivist and embodied theories of meaning. She 

characterized objectivist claims about knowledge as 

propositional and disembodied. Following the steps of 

Lakoff and Johnson (1980) Sfard defines a metaphor as a 

relation between a bodily and a conceptual domain. 

Metaphors facilitate our use of inferences from physical and 

bodily experiences to understand abstract concepts and 

relations. Lakoff and Johnson (1980) introduce embodied 

schemata to explain how metaphors work. Embodied 

schemata is “the vehicle which carries our experimentally 

constructed knowledge” (Sfard, 1994, p. 46). They are the “ 

. . . structures of an activity by which we organize our 

experience in ways that we can comprehend. They are a 

primary means by which we construct or constitute order 

and are not mere passive receptacles into which experience 

is poured” (Lakoff & Johnson, 1980, pp. 29-30). According 

to Sfard, embodied schemata are non-propositional. They 

are “ . . . image-like and embodied, embodied in the sense 

that they should be viewed as analog reflections of bodily 

experience rather than as factual statements we may wish to 

check for validity. The non-propositional nature of 

embodied schemata makes it difficult, sometimes 

impossible, to describe them in words.” In this sense, 

embodied schemata are preverbal constructs that are 

dynamic, ever changing and shaped by our physical and 

social experiences. However, the nature of embodied 

schemata, how they are shaped in the sensorimotor system 

and how abstract thinking emerges from these preverbal 

constructs is still not clear. Although an embodied schema is 

a preverbal construct shaped in the sensorimotor system, we 

still talk about it like a cognitive construct since we cannot 

explain how it relates to the simple bodily functions and 

sensorimotor interactions.  

Interpretation of mathematical thinking as embodied 

simulations requires a conceptual shift. Mathematical 

thinking is reconceptualized as simulated sensorimotor 

activity. This activity takes place in a temporal and spatial 

stage involving all modalities.  As mathematician Alain 

Connes puts it: “The evolution of our perception of 

mathematical reality causes a new sense to develop, which 

gives us access to a reality that is neither visual nor 

auditory, but something else together” (Dehaene, 1997, p. 

149). The key to understanding the multimodal 

sensorimotor foundations of mathematical might be through 

adopting an embodied perspective in designing studies and 

interpreting data. 

An Embodied Approach to Interpreting 

Neuroimaging Data 

Imaging studies, as well as neuropsychological cases, 

point to the importance of a network of areas consisting of 

prefrontal and parietal regions, particularly angular gyrus 

and IPS (Intraparietal Sulcus). In this section I will revisit 

previous interpretations on the functional contribution of 

angular gyrus and IPS to number processing and propose an 

alternative embodied approach to provide a more connected 

explanation that is also compatible with behavioral and 

neuropsychological findings. The idea here is to provide an 

example for how embodied simulations framework can be 

applied to the interpretation of neuroimaging data in the 

mathematical cognition domain. 

Angular Gyrus 

Angular gyrus is located in the inferior parietal cortex. It 

is situated at a very central location in the cortex, 

neighboring multimodal sensory regions. It was once 

characterized as the “association area of association areas” 

together with the supramarginal gyrus (Geschwind, 1965). 

Angular gyrus activations, particularly left, were found in 

various number processing tasks, for example exact addition 

(Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999), 

multiplication (Lee, 2000) and number recognition (Pesenti, 

Thioux, Seron, & Volder, 2000). Although it is established 

that angular gyrus is an essential part of the number 

processing network, it is role is still not well understood. 

According to the well-known, triple-code model, being part 

of the perisylvian language network, the angular gyrus is 

functional in verbal processing of numbers (Dehaene, et al., 

2003). Nevertheless accumulating behavioral, neuroimaging 

and neuropsychological data tell us a different story about 

the involvement of angular gyrus. 

A relation between angular gyrus and number processing 

was first formulated when, in 1924, Josef Gerstmann 

diagnosed a condition, now named Gerstmann’s syndrome, 

with four co-occurring symptoms: finger agnosia (loss in 

finger sense), acalculia (inability to do simple calculations), 

left-right disorientation and agraphia (inability to write). 

Gerstmann found that the condition was most commonly 

due to a lesion in the left angular gyrus (Gerstmann, 1940). 

He believed that the main symptom was finger agnosia, a 

specific type of body schema impairment (autopagnosia) 

affecting the mental representation of hands and fingers. He 

proposed that the loss of finger sense combined with the 

left-right disorientation caused acalculia, - the inability to 

carry out simple mathematical calculations (Butterworth, 

1999b, p. 219). There have been a number of studies 

reporting data to support Gerstmann’s theory.  For example, 

a study examining patients with tumors in and around the 

angular gyrus found that these patients had impairments in 

writing, calculating, and finger recognition (Roux, Boetto, 

Sacko, Chollet, & Tremoulet, 2003). Also, in a rTMS study 
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of healthy subjects it was found that disruption of the left 

angular gyrus impaired access to the finger schema and 

number processing (Rusconi, Walsh, & Butterworth, 2005).  

These studies support the idea that involvement of angular 

gyrus in number processing is due to a functional relation 

between number processing and finger representations. 

There is also supportive behavioral data for this argument. 

A series of behavioral studies have consistently shown that 

finger gnosia (finger sense) in younger children is a 

predictor of numerical abilities (Noel, 2005; Penner-Wilger, 

et al., 2007). In addition, in our lab we found that finger 

tapping differentially interferes with finger tapping, showing 

use of shared resources between addition and finger 

processing (Soylu & Newman, 2011). 

IPS (Intraparietal Sulcus) and the SNARC Effect 

IPS is another region that has been consistently found 

active in a variety of number processing tasks, for example 

number comparison (Pinel, Piazza, Le Bihan, & Dehaene, 

2004) and simple addition (Pesenti, et al., 2000). In the 

triple-code model it was proposed the IPS, particularly its 

horizontal segment, is responsible from quantity processing 

independent from the number notation, and that its function 

is analogous to one of a “mental number line” (Dehaene, et 

al., 2003).  The mental number line argument is also 

supported by the SNARC (spatial-numerical association of 

response codes) effect, which refers to the finding that in a 

parity judgment test right button responses are faster for 

large numbers and left button responses are faster for small 

numbers. This supports the idea that the comparison of 

numerical quantities takes place on a mental number line 

extending from left to right. (Dehaene, Bossini, & Giraux, 

1993). 

However there is evidence challenging the idea of a 

mental number line for quantity processing. Fischer (2008) 

explored whether finger-counting habits contribute to the 

SNARC effect and found that subjects who are left-starters 

show a SNARC effect significantly more than right-starters. 

In another study subjects were asked to identify Arabic 

digits by pressing one of 10 keys with all 10 fingers. The 

configuration of response buttons varied both in terms of the 

global direction of the hand-digit mapping and the direction 

of the finger-digit mapping within each hand, from small to 

large digits or vice versa. The results showed that subjects 

performed better when there was a congruency between the 

reported finger-counting strategy of the subject and the 

mapping of the response buttons (Di Luca, Grana, Semenza, 

Seron, & Pesenti, 2006).  

Based on the presented evidence it is possible that angular 

gyrus contributes to a finger based representation of 

numbers, while IPS contributes to a multimodal 

representation of numerical quantity. The “mental number 

line” analogy can still be useful in explaining the function of 

IPS, while taking into account that the direction and 

structure of this number line is grounded in bodily 

dynamics, for example handedness and finger counting 

habits. In addition the analogy can be modified in a way that 

we not only talk about a number line but also hands tracing 

it during its use. 

We need further neuroimaging studies investigating the 

relation between bodily and basic mathematical processes to 

clarify the question about the exact roles of angular gyrus 

and IPS, as well as pre-frontal regions in number 

processing. 

Adopting an Evolutionary Perspective 

Since one of the main ideas behind embodiment is the 

exploitation of simple perceptual and motor neural resources 

for higher cognitive functions, adopting an evolutionary 

perspective can help not only in understanding how these 

functions emerged during evolution but also explaining how 

they are currently situated in the sensorimotor system. This 

is also true for mathematics. An evolutionary perspective 

provides a bigger and more connected picture as to why a 

distributed network of brain areas is functional in number 

processing.  

One recent theory on the evolution of higher cognition is 

Anderson’s “massive redeployment theory” (2007). 

Anderson argues that higher cognition is possible through 

redeployment of existing neural systems for new functions. 

By reviewing 135 neuroimaging studies in different 

domains he provided empirical validation for three 

predictions: 1) A single brain region is used for many 

cognitive functions, 2) evolutionarily older brain areas are 

affiliated with more cognitive functions, and 3) newer 

cognitive functions utilize more distributed brain areas.  

Let’s revisit the case of angular gyrus from this perspective. 

We have already covered how interpretation of angular 

gyrus activation as verbal processing  (Dehaene, et al., 

2003) makes it difficult to explain a range of 

neuropsychological (such as Gerstmann’s syndrome), 

neuroimaging and behavioral findings. What we currently 

know about evolution of language can help us in 

understanding the role of angular gyrus. Arbib (2002, 2005) 

proposed that human languages followed an evolutionary 

trajectory including such stages as; the simple grasping 

movement, understanding actions of another individual, 

imitation, a manual based communication, and verbal 

communication, finally yielding to complex human 

languages. Considering the argument that hand/finger 

related sensorimotor areas were redeployed for language 

during evolution, we can expect that verbal processing also 

use neural resources related to the perception and execution 

of hand movements. Studies on verb meaning provide 

support for the proposed relation between the sensorimotor 

system and language processing. Buccino et al. (2005) 

showed  that action-related sentences modulate relevant 

parts of the motor system, especially the mirror neuron 

system. A simulation theory is proposed as one possible 

explanation for this phenomenon: “ . . . the understanding of 

action-related sentences implies an internal simulation of the 

actions expressed in the sentences, mediated by the 

activation of the same motor representation that are 

involved in their execution” (Buccino, et al., 2005, p. 361).  
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This partially supports the idea that angular gyrus activation 

in verbal processing might be due to use of finger 

processing resources, which is shared by number 

processing. Although we do not have empirical data to 

support this claim, the idea here is to show how adopting an 

evolutionary perspective has the potential to provide 

alternative explanations that is more consistent with 

disparate findings on number processing. In this sense, 

interpretation of data requires consideration of not only the 

nature of the task, but also its evolutionary past. 

Criticisms & Alternative Views 

The idea of embodiment of mathematics is not free of 

criticism. The embodied account of mathematics was 

particularly criticized by mathematicians who believe that 

“brain based” mathematics necessarily refuses a 

“transcendent mathematics”. From this perspective 

mathematical embodiment negates mathematical realism; 

that is propositions about embodiment and transcendence 

mathematics are mutually exclusive. The view that 

mathematics cannot be a product of the embodied mind 

since it is transcendent is characterized as “Romance of 

Mathematics” by Lakoff and Nunez (2000).  

However, according to an alternative view the “… fact 

that human mathematics is based in human cognitive 

capacities does not mean that these capacities cannot 

provide recognition of transcendent mathematical truth“ 

(Voorhees, 2004, p. 87). I believe that how we do 

mathematics and what mathematics is should be studied 

separately, since the answer to the former question does not 

inform the latter one. The confusion of these two 

fundamental questions can blur the study of embodied 

mathematics by attracting invalid criticism. 

A different perspective, which shows that the discussion 

about the transcendence of mathematics is more 

philosophical rather than empirical in nature, was proposed 

by Godel. He argued that mathematical concepts are as 

“real” as physical objects: “It seems to me that the 

assumption of [mathematical] objects is quite as legitimate 

as the assumption of physical [ones] and there is quite as 

much reason to believe in their existence” (Longo, 2007, p. 

207). However, the mathematical realism of Gödel is not 

conclusive. He points out that questions that relate to the 

ontology of physical objects are the same as the ontology of 

mathematical concepts: “the objective existence of the 

objects of mathematical intuition … is an exact replica of 

the question of the objective existence of the outside world” 

(Longo, 2007, p. 209). Overall, I believe that studies on 

mathematical cognition inform how we do mathematics and 

not what mathematics is. 

Conclusion 

Mathematics, being one of the most abstract domains of 

human knowledge, is a challenge to embodiment. There are 

two types of approaches to the study of mathematical 

embodiment: 1) Empirical investigation of how bodily 

processes interact with mathematical processes, and 2) study 

of how people use conceptual metaphors to make sense of 

mathematical concepts; by using already existing 

knowledge in a physical domain to understand a more 

complex and abstract mathematical concept. While the 

former approach provides empirical validation for claims, it 

does not provide a unified theory of how mathematics is 

grounded in the sensorimotor systems. The second 

approach, focusing on the role of conceptual metaphors in 

mathematical thinking, provides a general theory, but 

attracts serious criticisms due to lack of empirical 

validation. I propose that approaching to mathematical 

cognition as embodied simulation can make it possible to 

interpret seemingly disparate findings to provide a more 

comprehensive explanation for how people do math. 

I have also reflected on the implications of adopting an 

embodied and evolutionary perspective in interpreting 

neuroimaging data. I proposed that a study of the neural 

underpinnings of mathematical cognition should aim at 

explaining how the processes studied are grounded in the 

complex interactions of sensorimotor networks from an 

evolutionary perspective. Study of the neural underpinnings 

of mathematical thinking is more about understanding how 

a complex network of sensorimotor circuitry interact to 

bring forth mathematical ideas rather than identifying 

rigidly modularized areas that are only specific to 

mathematical thinking. 
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