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Abstract

Quantitative analysis has usually highlighted the random
nature of linguistic forms (Zipf, 1949). We zoom in on three
structured samples of language (numerals; playing cards;
and a corpus of artificial languages from Kirby, Cornish &
Smith 2008) to quantitative explore and illustrate the idea
that linguistic forms are nonrandom in that their structure
reflects the structure of the meanings they convey. A novel
methodology returns frequency spectra showing the
distribution of character n-gram frequencies in our language
samples. These spectra, purely derived from linguistic form,
clearly reflect the quantitative structure of the underlying
meaning spaces, as verified with a new information
theoretical metric of compositionality. Moreover, analyses
of a diachronic corpus of languages show that linguistic
structure gradually adapts to match the structure of
meanings over cultural transmission.

Keywords: frequency distributions;
systematicity; cultural language evolution.
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Introduction

Linguistic forms are quantitatively structured as illustrated
by the facts that lexical item frequency and regularity are
inversely correlated (e.g. Bybee & Hopper, 2001); that the
frequency of a word is inversely proportional to its
frequency rank following a power law (Zipf, 1949); or that
word type-token ratios and lexical diversity are used to
measure text complexity (Laufer & Nation, 1995). The
structure of linguistic forms has also been shown to reflect,
to small but statistically significant extents, the structure of
the meanings that language conveys. This is most obvious in
morphosyntactic paradigms, where words that share an affix
also share a grammatical meaning such as tense, aspect,
gender or number. However, lexical phonology has also
been shown to reflect semantic structure in phonaesthemes
(Bergen, 2004) or through sound symbolism (Sapir, 1929;
Hinton, Nichols, and Ohala, 1994). Moreover, the
phonology of lexical roots has also been shown to predict
their syntactic categories (Monaghan, Christiansen and
Chater, 2007) and, for the whole language, words that sound
similar tend to have similar distributional (syntactic and
semantic) properties in speech (Shillcock et al.,, 2001,
Tamariz, 2008). The systematic relationship between forms
and meanings means that, given access to the structure of
forms, we can know something about the structure of the
corresponding meanings. The first novel method introduced
in this paper specifically seeks to discover quantitiative

information about meaning spaces by looking at the
frequencies of n-grams in linguistic forms.

The correlation between form and meaning structure is in
many cases compositional in nature. In a compositional
system, the meaning of a complex signal depends on the
meanings of its component simplex signals and the rules
used to combine them, e.g. the meaning impenetrable
depends on the meanings of root penetr and affixes im and
able as well as the way these are put together. Cornish,
Tamariz & Kirby (2010) introduced a method to quantify
the details of compositionality of artificial languages. The
second novel method we introduced is a metric yielding a
single measure of the compositionality of a system. This is
used to quantify, from form and meaning information, the
compositionality of a language.

The two above-mentioned methods are applied to two
samples of natural language and one corpus of artificial
languages where the highly structured meaning space is
known. First, numerals 1-999 and the names of playing
cards are analyzed to illustrate (a) how the distribution of n-
gram frequencies can reveal meaning structure based on
form structure in extant language and (b) the metric of
compositionality. Second, a diachronic corpus of artificial
miniature languages (from Kirby, Cornish & Smith, 2008) is
analyzed to show the process of change of linguistic form
structure to match meaning structure, thus directly testing
the hypothesis that languages adapt to the structure of
meanings over cultural transmission.

1. Spectral and Compositionality analysis
of extant language samples

Methods

The frequency spectrum of a linguistic sample will reveal
quantitative structure in linguistic forms. We obtain the
spectra of numeral types 1-999 and playing card names to
illustrate the method. These samples refer to meanings with
known clear quantitative structure; additionally, in the
samples, certain characters strings occur very frequently,
e.g. “six” or “hundred” in the numerals and “queen” or
“spades” in the card names. Knowing the meaning spaces,
we expect the string “queen” to occur four times in the card
name list, and the string “spades” to occur thirteen times.
Indeed, frequencies four and thirteen should be very
prevalent in the list of playing card names, because in a real
deck of cards there are four suits and thirteen number and
face cards. In contrast, in a matching list of words referring
to 52 random objects we would not expect particular strings
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to recur to the same extent; we would be even more
surprised to find particular string frequencies being
especially prevalent. In fact, for the random list we would
expect low frequencies to be very prevalent (frequent) and
high frequencies to be very rare, and this inverse
relationship should follow a power law (Manning &
Schiitze, 1999). This prediction is tested by looking at the n-
grams (uni-, bi- and tri-grams aggregated) in the words: For
the frequencies of n-gram frequencies of a set of random
words, the resulting spectrum should follow a power law.
But for one of our special samples, the resulting spectrum
should reflect the structure of the meanings that the lexical
set refers to. A Monte Carlo analysis is used to calculate
how different the spectra obtained with our language
samples are from those obtained with random words.
Additionally, we have full knowledge of the meaning
spaces underlying these two samples, and of the mappings
between those meanings and the forms are in use (e.g. the
form “ace of spades” is used to refer to the card depicting a
single spade). We expect that, for these highly structured
meaning spaces, the mappings between forms and meanings
will be compositional in nature. Another Monte Carlo
analysis tells us whether the mappings between signals and
meanings are significantly compositional.
Materials
The first sample comprises English numerals for 1-999,
removing any spaces between words; for instance, 541 is
“fivehundredandfortyone”. For the playing cards, similarly,
the names with no spaces are also used, e.g. “jackofspades”.
The random language samples for the Monte-Carlo
analyses contain the same number of items as the
corresponding target list (numerals or cards). Each item
starts with one word randomly selected from the spoken
section of the British National Corpus'. It continues with the
following word in the corpus, then the next one and so on
until the item has the same number of characters as the
corresponding item in the target list (no spaces here either).
Spectral analysis
For the spectral analysis, all n-grams were extracted from
each sample and their frequencies counted. The frequencies
of frequencies were then computed. First, we examine the fit
to a power law by comparing the fit (R’) and slope (b) of the
power law regressions of the target versus the random
language samples. Regressions are calculated on the set of
n-gram frequencies (x) and their frequencies (y). We expect
significantly lower R® and higher b values for the target
samples, indicating that their frequency structure is different
from those in random linguistic items. Second, we construct
a spectrum based on the n-gram frequency structure of the
sample. For each n-gram frequency, we obtain ands plot its
z-score by comparing its frequency in the sample against
1,000 random samples; (z-scores are used throughout the
paper since all random distributions in the Monte Carlo
analyses were approximately normal). Spectra thus show,
for each n-gram frequency, how divergent it is from what

1 Data extracted from the British National Corpus Online service, managed by Oxford University

Computing Services on behalf of the BNC Consortium. All rights in the texts used are reserved.

would be expected in random linguistic sample. If our
hypothesis is correct, these z-scores should match aspects of
the quantitative structure of the meaning space expressed by
the forms in the sample.

Compositionality analysis

For the compositionality analysis, RegMap (Tamariz &
Smith, 2008; Cornish, Tamariz & Kirby, 2010; Tamariz,
2011) was used. This metric of the Regularity of the
Mappings involves, crucially, segmenting the meanings and
signals. Meanings are segmented into simplex meaning
features (for the numerals, hundreds, tens, units; for the
playing cards, suit and number). Signals are divided into
meaningful segments (numerals are divided into three
segments, one each for units, tens and hundreds, so for
“twentyseven” we have @, twenty and seven; playing card
names are divided into two segments, just before “of”, so
for “queenofhearts” we have queen and ofhearts). Then, we
obtain RegMap for each meaning feature - signal segment
pair.

(1) RegMap = 1- H(sl m) N 1-H(mls)
log(n,) log(n,,)

RegMap (Eq. 1) is based on information theory
conditional entropy H(A|B), which yields the amount of
uncertainty, or surprise, that two features are associated; in
this case, for instance that a form segment s (e.g. the first
segment in the numeral) is associated with a meaning
feature m (e.g. the units), after having seen all the system
(e.g. after having learned the name of all playing cards).
The conditional entropy of signals given meanings and of
meanings given signals are both taken into account, since
they are not symmetrical, they are normalized and
subtracted from 1 to return levels of confidence or reliability
of the association, rather than of uncertainty.

For a language with N meaning features and M signal
segments, we obtain an N x M matrix of RegMap values.
Fig. 1 illustrates this for the numerals. High values indicate
that variants of the segment reliably predict the variants of
the meaning feature. So, for the pair (Segment 1, hundreds)
we obtain the highest value, since the first segment {nil,
onchundred, twohundred, ..., ninehundred} perfectly
predicts the hundreds {0, 1, 2,... 9}. For (Segment 3, units)
RegMap is somewhat lower, reflecting the presence of
exceptions — 11 to 19 are irregular in this respect, the last
segment of the numerals does not express the units. Low
values indicate low predictability.

hundr | tens units
Segm1 | 1.000 | 0.018 | 0.017
Segm2 | 0.000 | 0.959 | 0.175
Segm3 | 0.127 | 0.000 | 0.910

Figure 1. Matrix of RegMap values for the three signal
segments and the three meaning features in the numerals 1-
999. As expected, the first segment reliably predicts the
hundreds, the second the tens and the third the units. While
RegMap is perfect for the hundreds, the values for tens and
units indicate the presence of exceptions there.
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Compositionality is calculated by applying the same
algorithm to the matrix of RegMaps obtained for all
combinations of meaning features and signal segments (e.g.
for the numerals, to the matrix shown in Fig. 1). In a highly
compositional system, each segment is reliably associated
(high RegMap) with one and only one meaning feature, and
badly with the others, and this is reflected in Comp
(Equation. 2).

2 Comp = (I—H(SIM))X(I—H(MIS))
I\ log(ny) log(n,,)

Here S refers to signals and M to meanings in the
language; Comp measures the reliability of the one-to-one
association between the signal segments and the meaning
features in the language overall. The significance Comp

values is assessed with a Monte Carlo analysis.

Results

Table 1. Results of the Monte Carlo analysis, showing the
fit (R?) and beta coefficient (b) of a power law regression
for the n-gram frequency distributions in the numerals and
playing card names.

R’ b
Num Cards Num Cards
Value 0.208 0.372 -0.290 -0.773
Mean (N=1,000) 0.722 0.801 -0.971 -1.365
S.D. (N=1,000) 0.020 0.032 0.022 0.032
z-score -26.395 -13.320 30.394  18.600
p value .000 .000 .000 .000

The frequency-of-frequency distributions both in the
random samples and in our structured samples were best
explained by power law regressions than by linear,
logarithmic, polynomial or exponential regressions. Table 1
shows, however that the distributions in our target samples
are significantly worse fitted by power law regressions than
the random samples and their regressions have also
significantly different b values, indicating that the structured
samples have flatter regression curves, with less frequent
low frequencies (e.g. no n-grams occur only once in the card
name list) and more frequent high frequencies (e.g. the
frequencies of the n-grams in “spades” in the cards) than in
the random samples.

Playing card names

Z-score
5
Z-score

Numerals 1-1000
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Figure 2. Spectra of the numerals and playing card name
samples: Z-scores® of the n-gram frequencies.

% Absolute z-score values greater than 1.96 correspond to a 0.95
confidence level and greater than 3.29, to a 0.999 confidence level.

The spectra in Fig. 2 shows that, in the playing card list, n-
gram frequency values 13, 4, 73, 21, 52, 12, 70, 60 and 8
return significantly positive z-scores. These values are
clearly related to the underlying meaning space. Inspection
of the n-grams with frequency 13, for instance, illustrate
their significance in the meaning set of playing cards: (ofs,
15, fsp, sp, p, spa, pa, pad, ad, ade, d, de, des, es, es); (ofc,
fe, fel, cl, ¢, clu, lu, lub, ub, b, bs, bs); (ofh, fh, fhe, he, hea,
ea, ear, ar, art, rts, rt, ts, ts); (ofd, fd, fdi, di, dia, ia, iam,
am, amo, m, mo, mon, on, ond, nd, nds, ds, ds). The
spectrum of the numerals is analyzed in Table 2.

Table 2. N-gram frequencies with significant positive z-
scores in the numerals.

Freq z Freq z Freq z Freq z

891 3162 ] 400 1436 | 108 9.16 | 680 5.89
900 3162 ] 490 13.79 | 112 8.87 | 180 5.79
300 29.27 ] 200 13.75] 160 8.33 | 710 5.59
800 21.07 ] 110 13.71] 310 8.03 | 224 5.36
100 19.33 80 1257 | 216 8.00 | 210 4.14

190 19.28 | 1090 1191 ] 2256 7.61 | 370 3.82
1500 19.06 | 1100 11.91 ] 600 7.39 | 260 2.89
1310 18.23 ] 510 11.00 | 90 735 220 1.99

A first glance at Table 2 shows the abundance of
multiples of 10, indicating a reflection of the decimal
system. However, a closer inspection reveals subtleties
relating to the precise structure of the sample, including the
fact that it goes up to three levels (units, tens and hundreds).
At the top of the rank we find n-gram frequencies 900, 891
and 300. A closer look at the precise n-grams that have
these frequencies illustrate their significance. Nine n-grams
have frequency 900 (hu, hun, un, und, ndr, dr, dre, red, ed);,
six n-grams have frequency 891 (eda, da, dan, a, an, and);
and 22 n-grams have frequency 300 (tw, w, fo; fi; so, six, ix,
X, se, sev; ei, eig, g, igh, ig, gh, ght, th, ni, nin, in, ine). This
tells, us, for example, that exactly one word, “hundred”
occurs precisely 900 times in the numeral sample; the
sequence “edand”, a subset of “hundred and” occurs 891
times; and the unique digit roots for 2, 4, 5, 6, 7, 8 and 9
occur 300 times each (100 times as units plus 100 times as
tens plus 100 times as hundreds).

Table3. Compositionality values for the numerals and
playing card names and their significance values.

Num Cards
Comp 0.672 1.000
Mean (N=1,000) 0.035 0.154
S.D. (N=1,000) 0.031 0.049
z-score 20.581 17.271
p value 0.000 0.000

Table 3 shows the results of the RegMap-
Compositionality study. As expected, these two samples
return much higher compositionality levels than chance
would predict.
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Discussion

These results show how the structure of meanings in highly
organized, closed semantic sets can be detected in the
quantitative structure of the linguistic items that refer to
them. Significant departures from a power law distribution
of the frequencies of character n-gram frequencies indicate
structure in the samples, and this is confirmed by their
highly significant compositionality values. Finally,
inspection of the n-grams with high-frequency frequencies
in the spectra confirms that the structure found in the
linguistic form samples corresponds to structural features of
the meaning space.

The frequency analyses of the two language samples
share three features. First, the most salient frequencies in the
spectra give us an idea of the quantitative structure of the
underlying meaning space. Second, we find few low
frequency n-grams, in fact a lot fewer than expected by
chance in random samples. This indicates that existing n-
grams tend to be reused. A structured meaning space, by
definition, is organized along features (such as number, suit,
but also tense, case etc) that are shared by several items.
Correspondingly, the forms associated to such a meaning
space contain many repetitions of the n-grams expressing
the common features. Third, the language samples tend to
be efficiently structured. We find little ambiguity, with
many of the n-grams corresponding to meaning features
being unique to them, suggesting that the systems are
adapted to allow maximal distinction between variants of
the same feature (e.g. numerals for 0-9 are maximally
distinct). On the other hand we find n-grams occurring
exactly once in every item in the list, such as “of” or final s
in the card names. These may help identify members of the
meaning space: the template “x of xs” in the appropriate
context signals the name of a card — any card.

Our samples are admittedly extreme cases unequivocally
quantitatively structured meaning sets. Nevertheless, these
results suggest an avenue to explore form-meaning
correspondence quantitatively. The methods can arguably be
adapted, refined and extended to detect subtler correlations
in larger, less organized language samples.

We now turn to the question of how this correspondence
could have come about.

2. The evolution of meaning-form
compositionality

The previous studies provided evidence for a measurable
match between linguistic form and meaning structure. Such
nonrandom, efficient and economical correlations are likely
to be the product of either intentional design or a selection
process. We cannot rule out intentional design in the two
analyzed samples. We can, however, investigate whether a
process of selection and adaptation could result, over time,
in such well matched form-meaning systems.

Materials

The novel methods described above were applied to data
collected by Kirby, Cornish and Smith (2008) (henceforth,
KCS). They carried out an artificial language learning study
involving a highly structured meaning space. In the
experiments reported in that paper, participants had to learn
artificial languages used to name 27 objects, which
combined three shapes, three colours and three motions. The
initial names for those objects were randomly constructed
out of CV syllables, and consequently there was no strong
match between the structure of forms (names) and the
structure of meanings (objects). One participant was trained
with 14 items out of this “random” system and then tested in
the following way: when presented with each of the 27
objects they had to type the name they thought corresponded
to it. Importantly, each participant would be trained on half
of the items produced by the previous one. The languages
change and, after ten such iterations, the names are no
longer random but their structure reflects the structure of the
meanings. They collected in this way eight language chains
which constitute a perfect corpus to track the process of
adaptation of linguistic forms to the structure of the
meanings. The output languages produced by each of the
participants (at each “generation”) are analyzed.

KCS reported two experiments, the second of which
introduced an extra manipulation. The selection of the 14
items of a language to go in the next participant’s training
set was not random, but explicitly excluded homonyms, that
is, items that had been given the same name. The four
language chains in the first experiment evolved to display
“structured underspecification”, with high degrees of
homonymy (in the extreme, a couple of language chains
ended up with only two words to name all 27 objects). The
four language chains in the second experiment, having
undergone the “homonymy filter”, evolved to display
compositionality. Our n-gram analyses were applied to all
eight languages chains; the Comp analyses, for reasons
explained in the following section, were only carried out on
the four language chains in the filtered condition.

Methods

We performed a spectral analysis (see page 2 above) on all
languages in KCS’s studies. The fit to a power law
regression is expected to decrease over generations,
reflecting a progressive departure from randomness. Given
the structure of the meaning space, where each feature (each
of the three colours, motions and shapes) is present in nine
objects, n-gram frequency 9 is predicted to be the most
salient in the spectrum for the final, more adapted
languages. For the Monte Carlo analysis, we compare the n-
gram frequencies in the language at each generation with
those in 5,000 random languages, generated in the same way
as KCS created their initial, random languages.

The RegMap-Comp analysis is carried out only for the
languages in the filtered condition of KCS’s studies to
quantitatively reveal the process of gradual adaptation of the
language structure to the meaning space structure. The 27
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words in each language are segmented into three meaningful
chunks following the methods set up in in Cornish, Tamariz
and Kirby (2010); three meaning space dimensions (colour,
shape and motion) are considered. RegMap analyses are run
to measure the regularity of the mappings between each
segment and each meaning dimension at each generation.
Comp is then calculated at each language-generation to
reveal the evolution of compositionality. The four language
chains in KCS’s unfiltered condition were not used for these
analyses because words were not amenable to any
meaningful segmentation. The significance of Comp is
assessed, as before, with a Monte Carlo analysis involving
1,000 randomisations of the target language. Random
languages were constructed by scrambling the mappings
between the signals and meanings.

Results

The results in Fig. 3 (left) indicate that the frequency of
frequency distributions in the initial, random languages have
good fits to power law regressions, with R? values close to 1
(indicating that they are indeed random). As expected, these
values decrease as the languages are learned and reproduced
by successive participants (generations), suggesting that
they become more structured. In Fig. 3 (right) it is apparent
that the slopes of these regressions tend to flatten out in the
later generations, indicating as before that there are less n-
grams with lower frequencies and/or more with higher
frequencies than in the early languages. Paired #-tests return
significant differences between the R* and b values in the
initial and final generations (for R2, =7.54, p=0.000; for the
slopes =7.30, p=0.000).

Fit of power law regression

Slope of power law regression

0

——FITERED
02 N
PR = UNFILETERED

06
08

slope (b)
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14
16
0 1 2 3 4 5 6 7 8 g 10 0 1 2 3 4 5 6 7 8 g 10
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0.1 1= = =UNFILETERED
0

Generation
Figure 3. R* and b values for the power law regressions of
the n-gram frequency of frequency distributions in the eight
languages from KCS.
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Figure 4. Three spectra illustrate evolution of form structure
over time: Average Z-scores of the n-gram frequencies from
all eight languages in Cornish, Kirby and Smith (2008) at
generations 0 (initial languages), 5 and 10.

Fig. 4 shows how the spectra based on n-gram frequency
distributions in KCS’s languages change over the
generations. Initial spectra show no significant departures
from chance (no z-score has an absolute value greater than
1.96). At later generations, lower n-gram frequencies
become significantly lower than expected by chance, while
a few higher frequencies (namely 18, 9 27 and 26) have
significantly positive z-scores. This result confirms the
expectation that frequency 9 would be the most salient for
these forms because each meaning feature appears in 9 items
in the language. It also indicates high re-use of units and,
more importantly, a gradual process of adaptation of the
language from randomness towards a good match of the
meaning space structure.

—&—Chainl —#—Chain2 —O—Chain3 —X—Chain4

z-score of Comp

0 1 2 3 4 5 6 7 8 9 10
Generations

Figure 6. Z-scores of Comp values at each generation of the
four language chains from Kirby, Cornish and Smith (2008),
(filtered condition).

Fig. 6 shows that Comp tends to increase over time to
reach significantly high levels. Initially random, the
mappings between features of form and features of meaning
become more one-to-one as the languages are repeatedly
learned and produced. This strongly suggests that the
linguistic form structure in the later generations revealed in
the fit to power-law regressions and the spectra is actually
related to meaning structure.

Discussion

The spectral analysis of the KCS data reveals how initial,
randomly constructed lexical items gradually acquire a
quantitative structure that matches the structure of the
meanings that those lexical items denoted. This happens
progresssively, as the language is repeatedly transmitted to
new participants. By generation 10 the spectra share the
three features observed in the numeral and playing-card
names spectra. First, the relationship between the most
salient frequencies and the meaning space: KCS’s meaning
space is comparable to playing cards in the sense that it
comprises all possible items given the three colours, shapes
and motions. The most significant frequencies, 18, 9, 27 and
26, reflect on the one hand the fact that there were nine
items of each colour, shape and motion and that sometimes
only one of those values was expressed in the language,
with e.g. the 9 red objects denoted by a name starting with
“po” and all other 18 denoted by a name strating with “wa”.
On the other hand, frequencies 27 and 26 indicate that
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(nearly) all 27 names in a language shared some n-grams.
For instance, in language chain 1, which attained a high
degree of compositionality, the penultimate character was
“k” in all words. This character could be said to have taken
on the function of identifying membership of the language.

Second, the final languages have significantly fewer low-
frequency n-grams than expected by chance, again
indicating repetition of a small number of n-gram types.
Third, efficient structure: repeated n-grams are not
randomly distributed. At generation 10, languages tend to
have a unique n-gram devoted to each meaning feature, and
these n-grams are re-used and recombined according to the
features of the object to be named.

Discussion and conclusions

Frequency analyses of large linguistic corpora have stressed
the random, unpredictable nature of language structure, as
reflected in power-law distributions (Zipf, 1949). By
zooming in on small language samples whose associated
meanings are very structured, we asked: Does the frequency
distribution of sublexical units in a word sample reflect
quantitative properties of the meaning space associated with
those words? In our selected samples, as expected, this
seemed to be the case. Discovering quantitative regularities
in linguistic forms may therefore indicate that the
corresponding meanings are quantitatively structured.
Conversely, we can predict that when a quantitatively
structured meaning space is expressed linguistically, traces
of that quantitative structure should be detectable in the
linguistic forms.

Adding an evolutionary dimension, we asked: How did
linguistic form-meaning mappings become compositional?
Our analyses of diachronic samples of artificial language
chains suggest that the strong correlation between form and
meaning structure is, at least in part, the result of a process
of adaptation of forms to the structure of the meaning space.

This highlights meanings as a causal factor in linguistic
structure and emphasizes the interplay between meaning and
form structure during language learning and evolution. The
information-theoretical basis of the RegMap and
Compositionality metrics indicates the important role of
learning principles such as efficiency and economy in the
adaptation process. The resulting languages tend to be
optimally compressible: they contain the minimum number
of distinct meaningful units and recombination rules
required to express all the meanings.

The evidence presented also highlights the fact that
inference of linguistic structure by learners is driven by
regularities in their input. Structure in the forms, such as
repetition of the same n-gram in all words and a nonrandom
n-gram spectrum, and structure in the form-meaning
mappings, such as consistent cooccurrence between n-grams
and meaning dimensions, seem to be especially salient to
learners. Regularities are then not only well remembered
and employed to name learned items, but also generalized to
name novel items.

Finally, one word on the methodology. Spectral analyses
capture and can help visualize frequency structure in
linguistic forms not just with character n-grams, but at any
level. RegMap and Compositionality metrics are also able to
capture meaning-form regularity at any degree of analysis,
by defining the form segments and meaning features
relevant to our research questions.
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