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Abstract

Converging evidence from anatomical studies (Maunsell,
1983) and functional analyses (Hubel & Wisesel, 1968) of
the nervous system suggests that the feed-forward pathway
of the mammalian perceptual system follows a largely
hierarchic organization scheme. This may be because
hierarchic structures are intrinsically more viable and thus
more likely to evolve (Simon, 2002). But it may also be
because objects in our environment have a hierarchic
structure and the perceptual system has evolved to match it.
We conducted a behavioral experiment to investigate the
effect of the degree of hierarchy of the generative
probabilistic structure in categorization. We generated one
set of stimuli using a hierarchic underlying probability
distribution, and another set according to a non-hierarchic
one. Participants were instructed to categorize these images
into one of the two possible categories a. Our results suggest
that participants perform more accurately in the case of
hierarchically structured stimuli.

Keywords: Hierarchy, Statistical Learning, Vision, Bayes,
Probabilistic.

Regarding hierarchies

The anatomy of the primate visual system suggests that the
retinal input progresses through several stages of processing
that form an approximate hierarchy. In the visual system, a
large number of photoreceptors project to one ganglion cell,
several of which converge onto a single LGN cell; then
come the cortical areas V1, V2, IT, etc. (Kaiser & Hilgetag,
2010; Kandel, 2000; Modha & Singh, 2010).

The impression of hierarchy is further strengthened by
evidence from functional analysis of the neuronal circuits.
For instance, in V1 several simple cells send their axons to
one complex cell whose preferred stimulus is constructed by
the preferred stimuli of its input simple cells (Hubel &
Wiesel, 1968). Moreover, starting from the retina and going
up to higher cortical areas, the complexity of the features
that each stage of this hierarchy responds best to increases
(Gross, 1972).

There exist at least three different definitions of hierarchy
in the literature. According to the most parsimonious of
them, a hierarchy is any system of items where no item is
superior to itself. Furthermore, there needs to be one
hierarch, an item which is superior to all other items
(Dawkins, 1976). This definition emphasizes that aspect of
hierarchy that differentiates it from a heterarchy
(McCulloch, 1945). According to McCulloch, heterarchy is
a structure with a certain circularity. This circularity results
in the possibility of members of the system being superior to
themselves. Because of the paradoxes that it may engender,
heterarchy is an unlikely structure to be observed in our
everyday lives, hence the name (heterarchy is Greek for
“under the governance of an alien”; Goldammer, 2003).
Another definition of hierarchy comes from algebra, where
hierarchies are defined in terms of partially ordered sets
(posets; Lehmann, 1996). The third definition is the one
advocated by Herbert Simon (1974 ), the pioneering figure
of hierarchy theory. While the three definitions are not in
disagreement with each other, the third one seems to be best
suited for the present discussion.

According to Simon, a hierarchy is a nested collection of
items where each item contains another set of
subcollections. He uses the analogy of Chinese boxes, in
which each box contains several smaller boxes while it is
itself contained, together with other boxes, in a larger one.
Graphically, this resembles the structure of a tree where
vertices represent items and edges indicate containment. At
least since the mid twentieth century, hierarchies have been
believed to be the appropriate structure for the organization
of complex systems in various domains including sociology,
biology, computer science, and cognitive science (Simon,
1974; Hirtle, 1985; Holling, 2001).

In cognitive science, neuroanatomical data are one source
of the evidence for the hierarchic structure of the visual
system. Another line of evidence come from computational
considerations. The problem of inferring the state of the
environment from the sensory input is an ill posed problem
(Chater, Tenenbaum, and Yuille, 2006; Edelman, 2008).
The normative approach to this problem is to rely on the
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environmental statistics that have been acquired via past
experience. A cognitive system that relies on the statistics
of its environment to perform its tasks will soon run out of
resources as the computational cost of keeping the joint
statistics of the environmental variables grows exponentially
in the number of variables that the system is keeping track
of (an issue known as the curse of dimensionality; Bishop,
2006). By employing a hierarchic structure in recording the
statistics, the system can bring the computational cost of the
task under control. In addition to this computational
advantage, hierarchic systems have been shown to be more
stable and evolve faster than their alternatives (Simon,
2002).

While on the one hand it is inherently beneficial for
systems to have a hierarchic structure, on the other hand,
specifically in the case of perception, it is beneficial for a
system to employ a hierarchic structure to represent its
environment. Indeed, in the visual domain objects seem to
present themselves to us in a hierarchic way. For example, a
face is composed of two eyes, one nose, one mouth etc.; an
eye is in turn composed of the iris, pupil, eyelashes etc. Is
this hierarchy merely apparent, simply because of the
hierarchic structure of our own perceptual system, or is it
truly “out there”?.

In this paper we address this question indirectly, by
evaluating the effect of the interaction between the
probabilistic hierarchic structure that we build into a family
of stimuli and the ability of human subjects to categorize
those stimuli. In a series of related studies Aslin and
colleagues have investigated learning of visual scenes in
human subjects where higher level features are formed, in a
hierarchical way, by chunking lower level features together.
(e.g. Aslin et al., 2008). Here, we present participants with
two sets of patterns composed of simple objects. In one of
these sets, the scenes are drawn from a hierarchically
structured probability distribution, while in the other one the
dependencies are not strictly hierarchic. The subjects’ task is
to categorize the patterns into one of the two possible
categories. If hierarchies are an important aspect of the
structure of the environmental systems, to which subjects
are attuned, it should be more difficult for the participants to
correctly categorize the non-hierarchic objects.

The experiment

Participants were presented with images formed by twelve
geometric shapes (figure 1) and were instructed to
categorize them as either food or poison. Whether a certain
image pattern is truly food or poison was initially unknown
to participants, so that they needed to learn the diagnostic
features by trial and error. Every time they responded
“food” they were given auditory feedback (“correct” or
“incorrect” tone). There was no feedback when they
responded “poison.” Image patterns were sampled from
probabilistic graphical models (a graphical representation of
the joint distribution of the features in the image),
specifically directed acyclic graphs (i.e. Bayes nets; Pearl,
2000; Bishop, 2008), designed to meet certain criteria. The
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Figure 1: participants were instructed to categorize image
stimuli into one of the two possible categories, “food” or
“poison.” In one condition. The stimuli were generated
according to a hierarchic structure. On the top two example
images from this condition are presented which were
designated as food items. In the other condition, images
were generated according to a non-hierarchic structure. On
the bottom two example food images from this condition are
presented.

Bayes nets had 12 visible nodes, comprising the image
stimuli, and 10 hidden nodes (figure 2).

These hidden nodes represented the collection of
contingencies upon which the nature of the image pattern
(food or poison) relied. For example, one hidden node may
denote the climate in which a certain fruit is grown, and
another hidden node may denote the toxicity of the soil. In
our experiment, the individual hidden nodes do not
specifically stand for any such condition, rather the entire
network of hidden nodes represents a typical network of
causations, the end result of which makes the image a food
or a poison. There were two sets of images: one sampled
from a hierarchic Bayes net and the other from a non-
hierarchic Bayes net. The non-hierarchic Bayes network
was constructed in such a way that the image patterns
sampled from its twelve visible nodes looked similar to the
image patterns sampled from the hierarchic network. Note
that in this setting, hierarchy is not an all or none property,
and the non-hierarchic network still resembles, to some
extent, a hierarchic structure (see concluding remarks for
discussion).
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Figure 2: Graphical representation of the statistical
dependencies in the hierarchic (top) and non-hierarchic
(bottom) conditions.

The Non-Hierarchic Case

For stimuli that are generated by a set of non-hierarchic
causes, several factors may impair participants'
performance. First, in the environment that participants are
familiar with (the real world), causal structures are usually
hierarchic. For instance, toxicity of the fruit is a feature
formed by several lower level features (lower level merely
in the hierarchic sense), such as the molecular structure of
the soil, acidity of precipitation, ripeness (fruits that are too
ripe are more prone to corruption), etc. We expected,
therefore, that participants would try to utilize their existing
hierarchic representation of the environment in learning the
patterns, and that the mismatch between those
representations and the causal structure behind the patterns
would impair their performance. At the same time, non-
hierarchic representations are more expensive to compute,
and should add to the impairment of learning.

Furthermore, following the premise of statistical learning,

participants are trying to learn the probability of a certain
image pattern being associated with either food or poison:
Pr{F=food | I}, where F denotes the nutrition content (i.e.,
food or poison) and I is the image pattern. The pattern
consisted of twelve elements (the geometric shapes). Let us
call them e_i. Therefore, I=(e_1,...,e_12).
Keep in mind that even though the category of I is
determined by nodes that are not directly observable, the
effect of those hidden nodes must be accessible through the
visible nodes, I itself. In fact, if the hidden nodes had no
visible manifestation, learning the diagnostic features would
be impossible. Therefore, observing that a subset of I, say,
(e_k...,e_n) has a particular value (e.g. 'star’, 'star’,

Figure 3: Images are sampled from the visible nodes (red
dashed line) of the Directed Acyclic Graphs. Hidden nodes
(green dashed line) represent the network of causes that
determine whether the image is a food or a poison.

el e 2 e 3 e 4 nunm
HENR HENR
EENR ‘ EENR
e 5 e 6 e’ e 8

Figure 4: In the hierarchic condition proximal nodes'
values are related locally (top) and their causal structure is
more straightforward. In contrast, in the non-hierarchic
condition (bottom) proximal nodes do not necessarily
interact locally, and their causal structure is more complex.

'triangle’,...) counts as evidence in inferring the value of a
certain hidden node. Ultimately it is the values of these
hidden nodes that make the fruit food or poison.

In the hierarchic condition, e_i are related to each other in
groups that interact locally (figure 4, top). For example,
(e_1,e_2) are grouped together under the same hidden node;
a hidden node from the second level of hierarchy, e_13.
Similarly, two neighboring hidden nodes from the second
level, e_13 and e_14, are grouped together under a hidden
node from the third level, e_19, and so on. In this situation,
the values of the hidden nodes can be inferred in a
straightforward manner by observing neighborhood clusters
of the visible nodes. For instance, suppose participants have
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learned that the nutrition content of image patterns can be
inferred based on the value of the first hidden node in the
third level of hierarchy, e_19. The value of this particular
node is reflected in the visible nodes e_1 through e_4.
Therefore, learning the required diagnostic feature amounts
to learning the values of these four nodes. (Note that
participants need not have explicit knowledge of the
hierarchy. All they need to do is learn implicitly that certain
configurations of e_1 through e_4 have a high correlation
with poison or food).

In contrast, there is no such straightforward relationship
in the non-hierarchic condition. First of all, visible nodes do
not interact locally. For example, even though e_5 through
e_8 are located close to each other, their features are
contingent on hidden nodes which do not directly interact
(figure 4, bottom). Furthermore, the statistical dependence
may have a complicated structure: whereas in the hierarchic
condition e_5 through e_8 ultimately depend on one hidden
node, e_19, in the non-hierarchic condition e_6 and e_7 are
governed by both e_20 and e_22, while e_8 depends on e_5,
and e_5 is conditionally independent of other nodes (i.e., its
values do not depend on the values of the other nodes). The
point is that even though there still exists a network of
hidden causes that could in principle be used to infer the
category of the stimuli, the more complicated structure of
dependencies makes such inference more difficult to
perform.

Procedures

Eight participants (4 male and 4 female) took part in the
experiment. Each participant performed both the hierarchic
and the non-hierarchic conditions in a randomized order.
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Each condition consisted of 200 trials. It took each
participant between fifteen to thirty minutes to complete the
experiment. Images were presented on a computer screen
using the Psychophysics tool box (Brainard, 1997) running
under Matlab. In each trial, an image pattern was presented
on the screen and participants had to respond by pressing
either “Y”, meaning they believed the stimulus was a food
item, or “N” otherwise. There was no time constraint. The
next stimulus appeared on the screen immediately after the
participants' response. For each condition of the experiment,
the participants initially started with 100 points — their
remaining “life.” For every “poison” item accepted, they
lost 5 points; for every “food” item they gained 5 points.
The last five “food” items that were correctly categorized
were displayed at the bottom of the screen. Thus, feedback
on the participants’ choice was provided in the form of
correct or incorrect only when they responded “Y”.

10 12 14 16 18 20

Figure 5: Comparison of performance in the hierarchic (white bars) versus non-hierarchic (black bars) over 200 trials. Error
bars represent 95% confidence limits. Y axis shows mean accuracy of categorization over blocks of 10 trials.
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Figure 6: participants' performance measured as the
mean percentage of correct classifications in each
condition. H: Hierarchy, N: Non-Hierarchy.

Results

Performance was measured as the percentage of correct
classifications for each participant in each condition. On
average, participants performed ~79% correct in the
hierarchic condition compared to ~63% correct in the non-
hierarchy condition (figure 6). This difference in
performance is statistically significant as confirmed by the
nonparametric Kruskal-Wallis rank sum test (x> = 104.91,
df = 1, p < 2.2e-16). We also fit a linear mixed model to the
data, to ensure that even when Il the random effects are
considered jointly, significance is still reliable (Baayen,
2006), using the Imer procedure (Bates, 2005). A binomial
logit-link linear mixed model fit to the scores yielded a
significant effect of condition (z = 9.85 p < 2.2e-16). To
explore the effect of gradual learning, we added trial
number (in increments of 10) as an independent variable to
the linear mixed model. In this analysis, the main effect of
condition became n.s., the effect of trial number and the
interaction between trial number and condition were both
highly significant (z = 17.96, p < 2e-16, and z = 7.267, p <
3.67e-13, respectively; see figure 5).

Concluding Remarks

There are several ways in which a structure can differ from
a hierarchy. For example, links can skip levels, or the
direction of the causation can be reversed. Consequently,
further experiments are required to pin down the effect of
each of them. Furthermore, the distinction between a
hierarchy and a non-hierarchy is not all or none; rather it is a
graded property, with perfect hierarchy at one extreme and
heterarchy at the other extreme. We have been unable,
however, to find a standard measure of the degree of
hierarchicality in the existing literature. Developing and
motivating such a measure is a topic for future work.

Another issue for future research is the possibility that
subjects performed worse in the non-hierarchic condition of
our experiment because the patterns in that condition were
more complex. We plan to use the information entropy
(Shannon, 1949) of the two graphs, as well as other
measures of pattern generator complexity, in investigating
this possibility. In the present study, we controlled for
pattern complexity at the level of the leaves of the graph, by
using stimuli that have the same appearance in both
conditions.

References

Baayen, R. H.(2006). Analyzing linguistic data: a practical
introduction to statistics using R. Cambridge University
Press, New York

Bates, D. (2005). Fitting linear mixed models in R. R.
News5:27-30

Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer, New York

1041



Brainard, D. H. (1997) The Psychophysics Toolbox, Spatial
Vision 10:433-436.

Chater, N. & Tenenbaum, J. B.,& Yuille, A. (2006).
Probabilistic models of cognition: Conceptual foundations.
Trends in Cognitive Sciences. 10:287-291

Dawkins, R. & Bateson, P. & Gordon, P. (1976) Growing
points in ethology. Cambridge University Press, New York

Edelman, S.(2008). Computing the mind, Oxford University
Press, New York

Goldammer, E. & Newbury P. J. (2003). Hierarchy and
Heterarchy. Vordenker. Retrieved from
www.vordenker.de/heterarchy/a_heterarchy-e.pdf

Gross, C. G., & Rocha-Miranda, C. E. & Bender, D. B.
(1972). Visual properties of neurons in inferotemporal
cortex of the Macaque. J. Neurophysiol. 35, 96-111.

Kaiser M., Hilgetag C. C., Kotter R. (2010). Hierarchy and
dynamics of neural networks. Front. Neuroinform. 4112.
doi: 10.3389/fninf.2010.00112.

Hirtle, S. C. (1985). Evidence of hierarchies in cognitive
maps. Memory & Cognition. Psychonomic Society

Holling, C.S., (2001). Understanding the complexity of
economic, ecological, and social systems. Ecosystems
4:390-405

Hubel, D.H. & Wiesel, T. N., (1968). Receptive fields and
functional architecture of monkey striate cortex. J
Physiol, 195 (1) 215-243

Kaehr, R., & Goldammer, E. (1989) Poly-contextural
modelling of heterarchies in brain functions, Models of
Brain Functions

Kandel, E. R., & Jessell, T. M., & Sanes, J. R. (2000),
Principles of Neural Science. McGraw-Hill, New York

Lehmann, F. (1996). Big Posets of Participatings and
Thematic Roles. knowledge representation as interlingua
—A4th International Conference on Conceptual Structures

Maunsell, J.H., van Essen, D.C . (1983). The connections
of the middle temporal visual area (MT) and their
relationship to a cortical hierarchy in the macaque
monkey. J Neurosci 3(12):2563-2586.

McCulloch, W. (1945). A Heterarchy of Values Determined
by the Topology of Nervous Nets. Bulletin of
Mathematical Biophysics

Modha, D., Singh, R. (2010). Network architecture of the
long-distance pathways in the macaque brain

. Orban, G., Fiser, J., Aslin, R. N., and Lengyel, M. (2008).
Bayesian learning of visual chunks by human
observers. Proceedings of the National Academy of
Sciences, 105, 2745-2750. vol. 107 no. 3013485-13490

Orban, G., Fiser, J., Aslin, R. N., and Lengyel, M. (2008).
Bayesian learning of visual chunks by human
observers. Proceedings of the National Academy of
Sciences, 105, 2745-2750, 105, 2745-2750

Pearl, J. (2000). Causality. Cambridge University Press,
New York

Simon, H. A. (1974). Hierarchy theory: the challenge of
complex systems. George Braziller, New York

Simon, H. A. (2002). Near decomposability and the speed
of evolution. ICC. 11(3): 587-599.

Shannon, C.E. & Weaver, W., (1949). The mathematical
theory of information. , University of Illinois Press,
Chicago.

1042



