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Abstract

Converging  evidence  from  anatomical  studies  (Maunsell, 
1983) and functional analyses (Hubel & Wisesel, 1968) of 
the nervous system suggests that the feed-forward pathway 
of  the  mammalian  perceptual  system  follows  a  largely 
hierarchic  organization  scheme.  This  may  be  because 
hierarchic structures are intrinsically more viable and thus 
more likely to  evolve (Simon,  2002).  But it  may also be 
because  objects  in  our  environment  have  a  hierarchic 
structure and the perceptual system has evolved to match it. 
We  conducted  a  behavioral  experiment  to  investigate  the 
effect  of  the  degree  of  hierarchy  of  the  generative 
probabilistic structure in categorization. We generated one 
set  of  stimuli  using  a  hierarchic  underlying  probability 
distribution, and another set according to a non-hierarchic 
one. Participants were instructed to categorize these images 
into one of the two possible categories a. Our results suggest 
that  participants  perform  more  accurately  in  the  case  of 
hierarchically structured stimuli.

Keywords: Hierarchy,  Statistical  Learning,  Vision,  Bayes, 
Probabilistic.

Regarding hierarchies
The anatomy of the primate visual system suggests that the 
retinal input progresses through several stages of processing 
that form an approximate hierarchy. In the visual system, a 
large number of photoreceptors project to one ganglion cell, 
several  of  which  converge  onto  a  single  LGN cell;  then 
come the cortical areas V1, V2, IT, etc. (Kaiser & Hilgetag, 
2010;  Kandel, 2000; Modha & Singh, 2010).   

The  impression  of  hierarchy  is  further  strengthened  by 
evidence from functional analysis of the neuronal circuits. 
For instance, in V1 several simple cells send their axons to 
one complex cell whose preferred stimulus is constructed by 
the  preferred  stimuli  of  its  input  simple  cells  (Hubel  & 
Wiesel, 1968). Moreover, starting from the retina and going 
up to higher cortical areas,  the complexity of the features 
that each stage of this hierarchy responds best to increases 
(Gross, 1972).  

There exist at least three different definitions of hierarchy 
in  the  literature.  According  to  the  most  parsimonious  of 
them, a hierarchy is any system of items where no item is 
superior  to  itself.  Furthermore,  there  needs  to  be  one 
hierarch,  an  item  which  is  superior  to  all  other  items 
(Dawkins, 1976). This definition emphasizes that aspect of 
hierarchy  that  differentiates  it  from  a  heterarchy 
(McCulloch, 1945). According to McCulloch, heterarchy is 
a structure with a certain circularity. This circularity results 
in the possibility of members of the system being superior to 
themselves. Because of the paradoxes that it may engender, 
heterarchy  is  an  unlikely  structure  to  be  observed  in  our 
everyday  lives,  hence  the  name  (heterarchy  is  Greek  for 
“under  the  governance  of  an  alien”;  Goldammer,  2003). 
Another definition of hierarchy comes from algebra, where 
hierarchies  are  defined  in  terms  of  partially  ordered  sets 
(posets;  Lehmann,  1996).  The  third  definition  is  the  one 
advocated by Herbert Simon (1974 ), the pioneering figure 
of hierarchy theory. While the three definitions are not in 
disagreement with each other, the third one seems to be best 
suited for the present discussion.
   According to Simon, a hierarchy is a nested collection of 
items  where  each  item  contains  another  set  of 
subcollections.  He uses  the analogy of  Chinese  boxes,  in 
which each box contains several  smaller boxes while it is 
itself contained, together with other boxes, in a larger one. 
Graphically,  this  resembles  the  structure  of  a  tree  where 
vertices represent items and edges indicate containment. At 
least since the mid twentieth century, hierarchies have been 
believed to be the appropriate structure for the organization 
of complex systems in various domains including sociology, 
biology,  computer  science,  and cognitive science  (Simon, 
1974;  Hirtle, 1985; Holling, 2001).

In cognitive science, neuroanatomical data are one source 
of  the  evidence  for  the  hierarchic  structure  of  the  visual 
system. Another line of evidence come from computational 
considerations.  The  problem  of  inferring  the  state  of  the 
environment from the sensory input is an ill posed problem 
(Chater,  Tenenbaum,  and  Yuille,  2006;  Edelman,  2008). 
The normative approach to this problem is to rely on the 
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environmental  statistics  that  have  been  acquired  via  past 
experience.  A cognitive system that relies on the statistics 
of its environment to perform its tasks will soon run out of 
resources  as  the  computational  cost  of  keeping  the  joint 
statistics of the environmental variables grows exponentially 
in the number of variables that the system is keeping track 
of (an issue known as the curse of dimensionality; Bishop, 
2006). By employing a hierarchic structure in recording the 
statistics, the system can bring the computational cost of the 
task  under  control.  In  addition  to  this  computational 
advantage, hierarchic systems have been shown to be more 
stable  and  evolve  faster  than  their  alternatives  (Simon, 
2002). 

While  on  the  one  hand  it  is  inherently  beneficial  for 
systems to have a hierarchic structure,  on the other hand, 
specifically in the case of perception, it is beneficial for a 
system  to  employ  a  hierarchic  structure  to  represent  its 
environment. Indeed, in the visual domain objects seem to 
present themselves to us in a hierarchic way. For example, a 
face is composed of two eyes, one nose, one mouth etc.; an 
eye is in turn composed of the iris, pupil, eyelashes etc. Is 
this  hierarchy  merely  apparent,  simply  because  of  the 
hierarchic structure of our own perceptual system, or is it 
truly “out there”?. 

In  this  paper  we  address  this  question  indirectly,  by 
evaluating  the  effect  of  the  interaction  between  the 
probabilistic hierarchic structure that we build into a family 
of stimuli  and the ability of human subjects to categorize 
those  stimuli.  In  a  series  of  related  studies  Aslin  and 
colleagues  have  investigated  learning  of  visual  scenes  in 
human subjects where higher level features are formed, in a 
hierarchical way, by chunking lower level features together. 
(e.g. Aslin et al., 2008). Here, we present participants with 
two sets of patterns composed of simple objects. In one of 
these  sets,  the  scenes  are  drawn  from  a  hierarchically 
structured probability distribution, while in the other one the 
dependencies are not strictly hierarchic. The subjects’ task is 
to  categorize  the  patterns  into  one  of  the  two  possible 
categories.  If  hierarchies  are  an  important  aspect  of  the 
structure  of  the environmental  systems, to  which subjects 
are attuned, it should be more difficult for the participants to 
correctly categorize the non-hierarchic objects. 

The experiment
Participants were presented with images formed by twelve 
geometric  shapes  (figure  1)  and  were  instructed  to 
categorize them as either food or poison. Whether a certain 
image pattern is truly food or poison was initially unknown 
to participants, so that they needed to learn the diagnostic 
features  by  trial  and  error.   Every  time  they  responded 
“food”  they  were  given  auditory  feedback  (“correct”  or 
“incorrect”  tone).  There  was  no  feedback  when  they 
responded  “poison.”  Image  patterns  were  sampled  from 
probabilistic graphical models (a graphical representation of 
the  joint  distribution  of  the  features  in  the  image), 
specifically directed acyclic graphs (i.e. Bayes nets; Pearl, 
2000; Bishop, 2008), designed to meet certain criteria. The 

Figure 1: participants were instructed to categorize image 
stimuli into one of the two possible categories, “food” or 
“poison.” In one condition. The stimuli were generated 
according to a hierarchic structure. On the top two example 
images from this condition are presented which were 
designated as food items. In the other condition, images 
were generated according to a non-hierarchic structure. On 
the bottom two example food images from this condition are 
presented.

Bayes  nets  had  12  visible  nodes,  comprising  the  image 
stimuli, and 10 hidden nodes (figure 2). 

These  hidden  nodes  represented  the  collection  of 
contingencies  upon which the nature of the image pattern 
(food or poison) relied. For example, one hidden node may 
denote the climate in which a certain fruit  is  grown,  and 
another hidden node may denote the toxicity of the soil. In 
our  experiment,  the  individual  hidden  nodes  do  not 
specifically stand for any such condition, rather  the entire 
network  of  hidden  nodes  represents  a  typical  network  of 
causations, the end result of which makes the image a food 
or a poison.  There were two sets of images:  one sampled 
from a  hierarchic  Bayes  net  and  the  other  from a   non-
hierarchic  Bayes  net.  The  non-hierarchic  Bayes  network 
was  constructed  in  such  a  way  that  the  image  patterns 
sampled from its twelve visible nodes looked similar to the 
image patterns sampled from the hierarchic network. Note 
that in this setting, hierarchy is not an all or none property, 
and  the  non-hierarchic  network   still  resembles,  to  some 
extent,  a  hierarchic  structure  (see  concluding  remarks  for 
discussion).
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Figure 2: Graphical representation of the statistical
dependencies in the hierarchic (top) and non-hierarchic
(bottom) conditions.

The Non-Hierarchic Case
For  stimuli  that  are  generated  by  a  set  of  non-hierarchic 
causes,  several  factors  may  impair  participants' 
performance. First, in the environment that participants are 
familiar with (the real world), causal structures are usually 
hierarchic.  For  instance,  toxicity  of  the  fruit  is  a  feature 
formed by several lower level features (lower level merely 
in the hierarchic sense), such as the molecular structure of 
the soil, acidity of precipitation, ripeness (fruits that are too 
ripe  are  more  prone  to  corruption),  etc.  We  expected, 
therefore, that participants would try to utilize their existing 
hierarchic   representation of the environment in learning the 
patterns,  and  that  the  mismatch  between  those 
representations and the causal structure behind the patterns 
would  impair  their  performance.  At  the  same  time,  non-
hierarchic representations are more expensive to compute, 
and should add to the impairment of learning.

Furthermore, following the premise of statistical learning, 
participants are trying to learn the probability of a certain 
image pattern being associated with either food or poison: 
Pr{F=food | I}, where  F denotes the nutrition content (i.e., 
food  or  poison)  and  I is  the  image  pattern.  The  pattern 
consisted of twelve elements (the geometric shapes). Let us 
call them e_i. Therefore, I=(e_1,...,e_12). 
Keep  in  mind  that  even  though  the  category  of  I is 
determined  by nodes that  are  not  directly  observable,  the 
effect of those hidden nodes must be accessible through the 
visible nodes,  I itself. In fact, if  the hidden nodes had no 
visible manifestation, learning the diagnostic features would 
be impossible. Therefore, observing that a subset of  I, say, 
(e_k,...,e_n) has a particular value (e.g. 'star', 'star', 

'triangle',...)  counts as evidence in inferring the value of a 
certain  hidden  node.  Ultimately  it  is  the  values  of  these 
hidden nodes that make the fruit food or poison. 

In the hierarchic condition, e_i are related to each other in 
groups  that  interact  locally  (figure  4,  top).  For  example, 
(e_1,e_2) are grouped together under the same hidden node; 
a  hidden  node from the  second  level  of  hierarchy,  e_13. 
Similarly,  two neighboring hidden nodes from the second 
level,  e_13 and e_14,  are grouped together under a hidden 
node from the third level, e_19, and so on. In this situation, 
the  values  of  the  hidden  nodes  can  be  inferred  in  a 
straightforward manner by observing neighborhood clusters 
of the visible nodes. For instance, suppose participants have 

e_1 e_2 e_3 e_4

e_13

e_19

e_14

Figure 3: Images are sampled from the visible nodes (red 
dashed line) of the Directed Acyclic Graphs. Hidden nodes 
(green dashed line) represent the network of causes that 
determine whether the image is a food or a poison.

e_14 e_15

e_20

e_5 e_6 e_7 e_8

Figure 4: In the hierarchic condition proximal nodes' 
values are related locally (top) and their causal structure is 
more straightforward. In contrast, in the non-hierarchic 
condition (bottom) proximal nodes do not necessarily 
interact locally, and their causal structure is more complex.
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learned that the nutrition content of image patterns can be 
inferred based on the value of the first hidden node in the 
third level of hierarchy,  e_19. The value of this particular 
node  is  reflected  in  the  visible  nodes  e_1 through  e_4. 
Therefore, learning the required diagnostic feature amounts 
to  learning  the  values  of  these  four  nodes.  (Note  that 
participants  need  not  have  explicit  knowledge  of  the 
hierarchy. All they need to do is learn implicitly that certain 
configurations of  e_1 through  e_4 have a high correlation 
with poison or food).

In contrast, there is no such straightforward relationship 
in the non-hierarchic condition. First of all, visible nodes do 
not interact locally. For example, even though e_5 through 
e_8 are  located  close  to  each  other,  their  features  are 
contingent on hidden nodes which do not directly interact 
(figure 4, bottom). Furthermore, the statistical dependence 
may have a complicated structure: whereas in the hierarchic 
condition e_5 through e_8 ultimately depend on one hidden 
node, e_19, in the non-hierarchic condition e_6 and e_7 are 
governed by both e_20 and e_22, while e_8 depends on e_5, 
and e_5 is conditionally independent of other nodes (i.e., its 
values do not depend on the values of the other nodes). The 
point  is  that  even  though  there  still  exists  a  network  of 
hidden causes  that  could in principle be used to infer the 
category of the stimuli, the more complicated structure of 
dependencies  makes  such  inference  more  difficult  to 
perform.

Procedures
Eight participants  (4 male and 4 female)  took part  in the 
experiment. Each participant  performed both the hierarchic 
and  the  non-hierarchic  conditions  in  a  randomized  order. 

Each  condition  consisted  of  200  trials.  It  took  each 
participant between fifteen to thirty minutes to complete the 
experiment.  Images were  presented  on a computer  screen 
using the Psychophysics tool box (Brainard, 1997)  running 
under Matlab. In each trial, an image pattern was presented 
on the screen and participants had to respond by pressing 
either “Y”, meaning they believed the stimulus was a food 
item, or “N” otherwise. There was no time constraint. The 
next stimulus appeared on the screen immediately after the 
participants' response. For each condition of the experiment, 
the  participants  initially  started  with  100  points  –  their 
remaining  “life.”  For  every  “poison”  item accepted,  they 
lost 5 points; for every “food” item they gained 5 points. 
The last five “food” items that were correctly categorized 
were displayed at the bottom of the screen. Thus, feedback 
on  the  participants’  choice  was  provided  in  the  form  of 
correct or incorrect only when they responded “Y”.

Figure 5: Comparison of performance in the hierarchic (white bars) versus non-hierarchic (black bars) over 200 trials. Error 
bars represent 95% confidence limits. Y axis shows mean accuracy of categorization over blocks of 10 trials.
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Results
Performance  was  measured  as  the  percentage  of  correct 
classifications  for  each  participant  in  each  condition.  On 
average,  participants  performed  ~79%  correct  in  the 
hierarchic condition compared to ~63% correct in the non-
hierarchy  condition  (figure  6).  This  difference  in 
performance is statistically significant as confirmed by the 
nonparametric Kruskal–Wallis rank sum test (χ2 = 104.91, 
df = 1, p < 2.2e-16). We also fit a linear mixed model to the 
data,  to  ensure  that  even  when  ll  the  random effects  are 
considered  jointly,  significance  is  still  reliable  (Baayen, 
2006), using the lmer procedure (Bates, 2005). A binomial 
logit-link  linear  mixed  model  fit  to  the  scores  yielded  a 
significant effect  of condition (z = 9.85 p < 2.2e-16).  To 
explore  the  effect  of  gradual  learning,  we  added  trial 
number (in increments of 10) as an independent variable to 
the linear mixed model. In this analysis, the main effect of 
condition became n.s.,  the  effect  of  trial  number  and  the 
interaction between trial  number and condition were  both 
highly significant (z = 17.96, p < 2e-16, and z = 7.267, p < 
3.67e-13, respectively; see figure 5).  

Concluding Remarks
There are several ways in which a structure can differ from 
a  hierarchy.  For  example,  links  can  skip  levels,  or  the 
direction  of  the causation can  be  reversed.  Consequently, 
further experiments are required to pin down the effect of 
each  of  them.  Furthermore,  the  distinction  between  a 
hierarchy and a non-hierarchy is not all or none; rather it is a 
graded property, with perfect hierarchy at one extreme and 
heterarchy  at  the  other  extreme.  We  have  been  unable, 
however,  to  find  a  standard  measure  of  the  degree  of 
hierarchicality  in  the  existing  literature.  Developing  and 
motivating such a measure is a topic for future work.  

Another  issue  for  future  research  is  the  possibility  that 
subjects performed worse in the non-hierarchic condition of 
our experiment because the patterns in that condition were 
more  complex.  We  plan  to  use  the  information  entropy 
(Shannon,  1949)  of  the  two  graphs,  as  well  as  other 
measures of pattern generator  complexity, in investigating 
this  possibility.  In  the  present  study,  we  controlled  for 
pattern complexity at the level of the leaves of the graph, by 
using  stimuli  that  have  the  same  appearance  in  both 
conditions.
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