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Abstract

In this work we build a computational model of several au-
ditory perceptual learning experiments. The modeled experi-
ments show a pattern of learning interference which may help
shed light on the structure of both short and long term stores
of perceptual memory. It is our hypothesis that the observed
interference patterns can be explained by the relationship of
stimuli across tasks and how these relationships interact with
the limits of human memory. We account for the fact that in-
formation is shared across tasks in our model through use of
methodology from the machine learning community on trans-
fer learning. When we introduce a set of plausible limits on
memory, such a model demonstrates the same pattern of learn-
ing interference observed in the human experiments.
Keywords: Perceptual Learning; Perceptual Memory; Con-
solidation; Acquisition; Learning Interference; Transfer
Learning

Introduction
With sufficient practice, human beings are able to enhance the
acuity of their sensory systems. This is known in the literature
as perceptual learning. Recent work in perceptual learning
(e.g. Banai et al., 2009; Yotsumoto et al., 2008), has shown
that learning on one task (which we call the target) may be
prevented when a second task (which we call the distractor)
is practiced either during or shortly after practice of the tar-
get: this is called learning interference. These results suggest
distinct properties of short and long term stores of perceptual
memory because what interfered with learning during prac-
tice was distinct from what interfered after practice (see the
Human Data section for more detail).

Our working hypothesis is that the learning interference
observed in these experiments is a consequence of how infor-
mation is shared across tasks and the limits of human mem-
ory. We have built a computational model in an effort towards
fully specifying and testing this hypothesis (see the Model-
ing section for details). An ideal observer would only benefit
from sharing information across tasks. However, with the in-
troduction of limited memory, sharing information can also
lead to learning interference.

Such sharing of information across tasks is used to accom-
plish transfer learning in the machine learning community.
We call a computational technique intended to accomplish

transfer learning, computational transfer learning. If a sys-
tem (living or machine) can be seen to have better perfor-
mance on one task after experience on some prior task, we
call this observable transfer learning. Prior computational
models of perceptual learning, though they have considered
observable transfer learning, have ignored matters of compu-
tational transfer learning, either by modeling only a single
task (e.g. Jacobs, 2009) or by treating learning across several
tasks as a single monolithic learning problem (e.g. Petrov et
al., 2005). Because of this, none of these models provide an
account of how people appropriately segregate and share in-
formation across tasks. There are computational models con-
cerned with human memory that can be understood to have
some form of computational transfer learning (e.g. McClel-
land et al., 1995; Anderson, 2002), but these systems do not
provide the detail needed to model the current experiments.

In this paper we model one set of learning interference ex-
periments (Wright et al., 2009; Banai et al., 2009) using an
ideal observer (Geisler, 2003). We do this by incorporating
a method used for computational transfer learning (Roy &
Kaelbling, 2007) (see the method section for details). On top
of this ideal observer, we introduce a plausible set of mem-
ory limits. This approach has the merit of avoiding conflation
between task constraints (which both humans and the ideal
observer are subject to) and psychological constraints (which
only humans are subject to). We hypothesize memory lim-
its that a.) affect the number of distinct stimuli that could
be remembered and that b.) introduce a process of consol-
idation, meaning that over a period of time memories move
from a labile, short term form to a stable long term form. We
found that when introducing all (and only all) of our limits,
our model demonstrated the same pattern of learning interfer-
ence observed in humans (see the evaluation for details).

Human Data
The experiments in Banai et al. (2009) and Wright et al.
(2009) suggest two functionally distinct stages of perceptual
learning. The first stage occurs during practice of a task.
We call this stage acquisition. The second stage occurs af-
ter practice is complete and is called consolidation. This is
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(a) The tasks performed by participants. Interval
discrimination at 100 and 350 ms, and frequency
discrimination at 1 kHz. The stimuli surrounded
by a box all consist of the same interval. The other
types of stimuli have distinct intervals.
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(b) A diagram of the results. Blocks represent
number and type of tasks presented on a single
day of practice. T2 only interfered with observable
learning of T1 during acquisition, and F only inter-
fered with observable learning of T1 during con-
solidation.

Figure 1: A summary of the results from Wright et al. (2009)
and Banai et al. (2009)

supported by the way the target task, T1 (see Figure 1(a))
was interfered with. One task (T2) interfered during practice
of the target but not afterwards, and the task (F1) interfered
after practice of the target but not during. This dissociation
between acquisition and consolidation makes the experiments
interesting to model: straightforward interpretations for one
half of the data can lead to contradictory predictions of the
remaining data.

A point of clarity: throughout our work here we use the
word learning to mean that some form of memory (either
human or computational) is updated to reflect a new expe-
rience. When we need to make a distinction we use the term
observable learning to mean a behaviorally observable im-
provement in task performance.

The conditions in this experiment involved three tasks: one
target (T1) and two distractors (T2 and F). The target is an
interval discrimination task. By the term task we mean a spe-

cific set of stimuli, and the responses expected for these stim-
uli (in perceptual learning T1 and T2 would often be referred
to as the same task). In the target task (T1), the participant
had to make a two interval forced choice, indicating which
of the two presented stimuli contains a longer temporal in-
terval: the stimuli for the task are shown on the first row of
Figure 1(a). Participants heard the two stimuli in a random-
ized order and received feedback after each trial. The stimuli
in T1 each contained two short sinusoidal tones at 1000 Hz,
separated by a temporal interval that varied in length. One
stimulus (called the standard) always contained a 100ms in-
terval. The other stimulus (called the comparison) varied in
length. The difference between the standard and the compar-
ison is called the delta. Over the course of a block (60 trials),
the delta was adjusted so that a subject’s threshold was found.
The threshold is the delta at which a person gets 79% of their
responses correct (Levitt, 1971).

The two distracting tasks are related to the target in distinct
ways. Task F (second row of Fig. 1(a)) is a frequency dis-
crimination task meaning that instead of varying the interval
of the comparison its frequency was varied over the course
of learning. Task T2 (last row of Fig. 1(a)) was a second
temporal interval discrimination task, where the standard was
350ms. All stimuli in task F have the same temporal interval
as the standard of T1 (shown on the second row of Fig. 1(a)),
and all stimuli in task T2 contain distinct temporal intervals
from those present in T1. This is shown in Figure 1(a): a box
is drawn around all stimuli that contain a 100ms temporal in-
terval. All other stimuli contain a distinct interval.

There were four conditions in which one of the two dis-
tracting tasks was introduced either during acquisition of
T1—by interleaving practice with T1—or during consolida-
tion of T1—by presenting it in a block after T1 (also called
blocked presentation). Figure 1(b) shows that task T2 inter-
fered with the observable learning of T1 during acquisition
and task F interfered with the observable learning during con-
solidation. Observable learning was said to occur if a subject
showed a significantly greater improvement in their thresh-
old, when compared to controls. Controls perform only a pre-
and post-test. Participants performed a pre-test, at least 6 days
of practice, and then a post-test.

Our hypothesis is that F prevents observable learning on
T1 during consolidation because stimuli in T1 and F contain
the same temporal interval. T2 prevents observable learning
during acquisition because T1 and T2 have distinct temporal
intervals. F1 and T2 place distinct strains on human memory
which manifest as a different pattern of learning interference.

Modeling
Our model provides one explanation for why distinct tempo-
ral intervals across tasks would lead to interference during ac-
quisition, and why having the same temporal intervals would
interfere during consolidation. The idea is that some part of
our memory cares solely about intervals, and this is the lo-
cus of learning. During acquisition having too many distinct
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temporal intervals means that there is too much to keep track
of; during consolidation having the same temporal interval
across tasks prevents consolidation of the first task because
the memories are too similar.

It is certainly possible that features other than temporal in-
terval are relevant to the observed interference. However, our
model is a demonstration that by using a set of plausible lim-
its on human memory, these features are not necessary to ex-
plain the human data. To show this we built an ideal observer
(Geisler, 2003) of our tasks but made use of only the tem-
poral information in the stimuli. An ideal observer defines
what “optimal” behavior is given the same information that
humans have to perform a task. Our observer is ideal in the
sense that it makes optimal use of the temporal information
available in the stimuli. The ideal observer is useful as a base-
line to compare to human performance. It is not intended to
be psychologically plausible. On top of this ideal observer
we introduce a set of memory limits.

Key to the observed learning inteference is our model’s
item limit and recall limit. During acquisition the number
of distinct stimuli that can be represented in memory is lim-
ited (the item limit), this limitation leads to inteference during
acquisition when there are many distinct temporal intervals
in the stimuli. During consolidation stimuli that resemble
each other can cause a memory previously marked for long
term storage to be returned to short term memory (the recall
limit) leading to interference during consolidation when stim-
uli have similar temporal intervals across tasks. More details
of our memory limits, and their justification are discussed in
the subsection Hypothesized Psychological Limits.

We center our discussion of the model around the concept
of a stimulus model. We start by describing the input provided
to our model. We define the meaning of a stimulus model and
how it relates to the input during decision making. Then we
discuss how the model input is used to learn a better stimulus
model, and how the psychological limits affect the results of
learning. For full implementation details of our model we
refer the reader to our technical report (Little et al., 2011).

Model Input
As shown in Figure 2, each auditory stimulus, s, presented
to the model is transformed to an internal representation x by
the function R(s). The ideal observer is meant to find the best
possible decision, given the same information people have.
Thus R(s) should be consistent with our understanding of the
pertinent information people have to make a decision. We
assume for modeling purposes that the data can be explained
solely in terms of the intervals present in a stimulus, so this is
the only information present in R(s).

The input to R(s) is an audio file and the output is a 32
term vector describing the temporal intervals present in the
stimulus1. R(s) applies a windowed auto-correlation function
over the onsets in the audio file s, where the window is always

1Note that for reasons of speed, the number of terms in R(s) (32)
was chosen to be the smallest number that clearly prevented quanti-
zation error from being a limiting factor of model performance.
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Figure 2: The input to and the output from the ideal deci-
sion maker. Arrows towards a box represent input, arrows
away from a box represent output. The decision maker is pre-
sented two stimuli (s1 and s2), transformed according to R(s).
Along the x-axis of each x are the intervals from 10 to 1000ms
on a log scale. Along the y-axis is the correlation of onsets
in the stimulus to a particular interval. The decision maker
is given the distribution of the standard (p(x | t,y = S)) and
the comparison (p(x | t,y = C)) as determined by the ideal
learner. These distribuions are called stimulus models and
are depicted along the same axes as the input.

proportional to the length of the interval in question. The
result of this process is consistent with the model of human
interval perception presented in (Buonomano, 2000), in the
case where the input contains a single interval. The use of this
representation is also supported by the fact that learning on
temporal intervals does not generalize to untrained intervals,
or to other tasks using the same standard (Wright et al., 1997).

A Gaussian random value is added to each term of the rep-
resentation x, with an experimentally determined standard de-
viation σ. This reflects the noise present in sensory systems.

In Figure 2 we represent an observed stimulus with a graph
showing all 32 terms of x. Each term corresponds to a time
interval from 10 to 1000ms along a log scale (shown along the
x-axis of x1 in Fig. 2). The value at each term of the vector
(shown along the y-axis of x1) corresponds to the correlation
in the stimulus to that particular interval: the highest peak
in x1 is near 100ms, because the original stimulus s1 has a
100ms interval in it.

Stimulus Models and Decision Making
Intuitively, a stimulus model can be understood as a percep-
tual template. During decision making, each stimulus (x) is
compared to these templates to determine which observed
stimulus is most like the standard (e.g. the shorter interval
in task T1) and which is most like the comparison (e.g. the
longer interval in task T1). Formally, a stimulus model is a
probability distribution over an internal representation of a
stimulus (x) conditioned on a particular task (t = T1,T2 or F)
and stimulus type (y = Standard(S) or Comparison(C)). Bayes
rule can be applied to these distributions to find the probabil-
ity that the first observation (x1) is the standard. A decision is
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then made by choosing the most probable answer (i.e. “The
standard was first.” or “The comparison was first.”).

Learning Stimulus Models
Each stimulus model is learned by a processes that can be
understood as an averaging over many observations of x. As
more stimuli are observed, this average becomes more accu-
rate, leading to more accurate decisions on the part of the
model. If there have been no observations presented to the
model, then the response given is random. In Figure 2 a stan-
dard and comparison stimulus model are shown. The graphs
of these stimulus models are along the same axes as the input,
and show the mean and variance of the distribution of x for
the given stimulus type.

For the ideal observer, learning occurs after each trial. The
input consists of a series of observations. Each trial of a task
is a two interval forced choice, meaning that there are two
stimuli. Each observation corresponds to one of the two stim-
uli in a trial, and includes the stimulus (x), the correct label
for the stimulus (y)—either standard or comparison—and the
task (t) that the stimulus was presented during—T1, T2 or F.
The correct label is determined by the feedback provided at
the end of a trial. The output of learning is a stimulus model
for each task and stimulus type. The goal of learning is to de-
termine how to update stimulus models such that they accu-
rately reflect future observations, leading to better decisions.

To accomplish computational transfer learning for the ex-
periments in question, our ideal observer learns which stim-
uli are drawn from the same distribution. This appears to
be the only way in which tasks are relevant to each other in
this set of experiments. As noted in the Human Data section,
stimuli in task F have the same 100ms interval that the stan-
dard has in T1. Because only interval information is repre-
sented, our ideal observer represents these three sets of stim-
uli with the same distribution. The remaining types of stimuli
(the standard and comparison for T2 and the comparison for
T1) follow their own distinct distribution. Note that although
the length of the comparison within each task varies over the
course of learning, all comparisons within a task can be rep-
resented with the same stimulus model. In the ideal observer
the sharing of distributions across tasks only improves learn-
ing (at least for the modeled tasks).

Due to considerations of space we do not provide a detailed
explanation of how our model learns which stimuli across
tasks share a distribution (see Little et al., 2011, for more de-
tails). In short we make use of a Dirichlet processes prior to
cluster similar stimuli. This basic approach to transfer learn-
ing has been considered elsewhere (e.g. Roy & Kaelbling,
2007). We assume that observations follow a Dirichlet pro-
cess prior with a base distribution where each input x is dis-
tributed according to a multivariate Normal distribution, t a
Bernoulli distribution and y a Bernoulli conditioned on t.

Prior to observing any trials of a given task humans are ca-
pable of above chance performance on the tasks. To represent
this prior knowledge we initialize our model by presenting it
an experimentally-determined number of trials. Psycholog-

ical limits are not introduced until after these initial trials,
meaning that learning during initialization is optimal. The
trials presented during initialization had a comparison whose
delta varied around a mean m and standard deviation s, both
of which were determined empirically.

Hypothesized Psychological Limits

We hypothesize four limits on top of our ideal observer for
the modeled tasks. To distinguish it from the ideal observer,
we refer to the full model as the Limited Memory Model. All
versions of our model made an ideal decision given the stim-
ulus models they were provided, but the way these stimulus
models were learned was not always optimal.

Our choice to express limits in terms of stimulus models
means that we are assuming people have something like a
stimulus model in their brain: this is a reasonable assumption
because to learn anything about a task, the stimuli from the
task must be remembered, and a stimulus model is simply a
compact representation of previously observed stimuli.

Single Task Limits There are two limits that apply during
the learning of a single task.

The first limit we call the volatility limit. It states that dur-
ing acquisition, trials are represented in a short term store.
Stimulus models in this store are said to be volatile. Volatile
stimulus models decay according to a loss parameter L. Thus,
instead of being an average, a volatile stimulus models is
more like a moving average. Because of this decay the effec-
tive number of trials that a voltile stimulus model represents
will depend on the rate at which stimuli are presented. The
more time that passes without observing more trials, the fewer
effective number of stimuli a volatile stimulus model rep-
resents. There is evidence suggesting a distinction between
short and long term stores of memory and that this short term
store is transient (e.g. Izquierdo, 1999; Cowan, 2008). Recent
work has shown that when trials are separated this appears to
affect the effective number of trials a subject has observed
(Zhang & Wright, 2010).

The second limit we call the consolidation limit. It states
that after a short period of time (15 simulated minutes) dur-
ing which trials for a task have not been observed, all volatile
stimuli with a sufficient effective number of trials T are copied
to a long term store. (In the full model this not an instanta-
neous processes, see the recall limit). Stimulus models in the
long term store are said to be consolidated, and do not decay
anymore. There is evidence both for a period of memory con-
solidation (McGaugh, 2000) and that this consolidation does
not occur unless enough trials within each day are observed
(Wright & Sabin, 2007). During decision making the stimu-
lus models present in the long term store (not the short term
store) are used. The model works this way because there is no
observable learning within a day of practice for the modeled
tasks (Wright & Sabin, 2007).

Multiple Task Limits The third limit we call the item limit.
It limits the effective number of stimulus models (or items)
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allowed in the short term store. Specifically it states that de-
cay (L) is proportional to the total number of volatile stimulus
models. This item limit is consistent with the notion that short
term memory can only effectively store a limited number of
items (e.g. Cowan, 2008). This limit explains why learning
fails during the interleaved practice of T1 and T2, but not
during interleaved practice of T1 and F. There are four distinct
stimulus models when practicing T1 and T2 (the standard and
the comparison for both tasks), all of which are volatile dur-
ing interleaved practice: this means stimulus models decay
too quickly and so the effective number of trials is never large
enough for consolidation to occur. There are only two dis-
tinct stimulus models during interleaved practice of T1 and F
(since there are two distinct intervals across these tasks), and
so much less decay occurs, allowing consolidation.

The fourth limit we call the recall limit. It states that there
is a period of time before models become fully consolidated
when a stimulus model is being moved from the short to long
term store. During this period, in which the model is said to
be transferring, the stimulus models can be recalled, mean-
ing they return to a volatile state. At this point they will only
be consolidated for the same reasons that any volatile stimu-
lus model is consolidated. This recall occurs when a newly
observed stimulus belongs to one of the transferring stimulus
models. In our model stimulus models move from a transfer-
ring to a consolidated state at the end of a simulated day. This
limit is consistent with the idea that consolidation is not an in-
stantaneous process: more permanent memories are formed
over extended periods of time, and before consolidation is
complete, it can be interrupted (e.g. McGaugh, 2000).

The recall limit explains why learning is interfered with
during blocked practice of T1 and F, but not T1 and T2. When
task F begins, T1 begins to be consolidated, and so T1’s stim-
ulus models are transferring. However, task F shared a stimu-
lus model with T1 and so all the transferring stimulus models
are recalled. During blocked practice of T1 and T2, T2 shares
no stimulus models with T1, and so the stimulus models of
T1 can safely transfer from the short to the long term store.
Note that T1 and F must also be consolidated during inter-
leaved practice, and so the reader might view the recall limit
as preventing learning in this case: however, because the con-
solidation limit states that consolidation begins shortly after
a task is complete, and consolidates all stimulus models with
sufficient trials, both tasks’ stimulus models are consolidated
as a single unit in this case.

Evaluation
The purpose of our evaluation was to demonstrate that our
limited memory model qualitatively matched the learning in-
terference patterns observed in Wright et al. (2009) and Banai
et al. (2009) and that this behavior of the model was due to
all of our hypothesized limits.

To evaluate the hypothesized psychological limits we com-
pared six different models: the ideal observer, the limited
memory model—which included all hypothesized limits—

and four more versions, each with one of the limits removed.
If all limits are necessary to explain the data then all but the
full model should fail to predict when learning interference
will occur for humans.

We simulated the experiments from Wright et al. (2009)
and Banai et al. (2009) in the following way. For each task
there were 60 trials per block and 6 blocks per day of prac-
tice. For each condition we ran 11 simulations (to simulate
11 participants). There was noise present in every stimulus,
which meant each simulation of the experiment was differ-
ent. We used 11 simulations for each condition because this
is the maximum number of subjects for any condition used in
Wright et al. (2009) and Banai et al. (2009). For each sim-
ulation we presented the stimuli to the model, following the
same adaptive tracking procedure (to find the model’s thresh-
old). The model provided the response it predicted to most
likely be the correct response. After all 360 trials for each
task were presented for a “day” the model was allowed to
“sleep”. During this period of the simulation the system fin-
ished consolidation of any stimulus models still transferring,
and all volatile stimulus models were fully forgotten if any
decay was present. In this way the simulation of the trained
conditions was made as parallel as possible to the human ex-
periment.

Condition
Interleaved Blocked

Learner T1/F T1/T2 T1/F T1/T2
Human X - - X

Ideal X X X X
LMM X - - X

LMM - volatile X X X X
LMM - consolidated - - - -

LMM - item X X - X
LMM - recall X - X X

Table 1: Qualitative results across all learners. An X in a col-
umn indicates that the given learner showed observable learn-
ing on task T1 when interleaved or blocked with the specified
task. LMM stands for the limited memory model, and LMM
- L indicates that limit L was removed from the LMM model.

We simulated 11 control subjects by running two blocks
(60 trials each), where no learning step was performed. This
differed from the procedure used for control subjects in
Wright et al. (2009) and Banai et al. (2009) in that some learn-
ing may have occurred during the pre- and post-test. This
was because our model only simulated behavior during days
of learning, not the pre- and post-test behavior. Model pa-
rameters (e.g. input noise σ) were held constant across all
computational models.

If there was a significantly greater difference from pre- to
post-test of a model, compared to control subjects, for a given
condition, the model was said to have learned on this condi-
tion. This was determined by performing a two time (day 1
to day 6) by two group (trained vs. control) ANOVA, with
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time as a repeated measure. Table 1 summarizes the results
for all models. For all simulations marked with an X , p val-
ues were below 0.013, and all dashes where above 0.18. The
results for the human data are taken from the prior analysis in
Wright et al. (2009) and Banai et al. (2009). This table shows
that, among the models we tested, only the limited memory
model shows the same pattern of learning interference that
humans showed.

Conclusions
In closing, we have presented a framework from which a va-
riety of learning interference experiments might be modeled
and studied, and have shown that this framework is capable
of predicting the qualitative results of one challenging set
of human data. Our work was grounded in the hypothesis
that learning interference was an effect of how information is
shared across tasks and the limits of human memory.

The model provides concrete predictions concerning future
experiments. It predicts that if two tasks are interleaved they
will interfere if there are many distinct stimuli across tasks.
It predicts that during blocked presentation interference can
occur when there are identical or very similar stimuli used
across tasks. This is a consequence of the item limit, which
limits how many distinct stimuli can be remembered at one
time and the recall limit, which prevents consolidation of one
task when a new task contains similar stimuli. These limits in
turn have implications for the form and function of short and
long term stores of perceptual memory.
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