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Abstract

We explore the ability to distinguish random from non-random
events without invoking the randomness concept. Random-
ness is defined in terms of radioactive decay whereas non-
randomness is quantified by excess repetitions (i.e., repeat)
or alternations between successive bits (i.e., switch). In four
experiments, participants completed tasks including identify-
ing the boundary between random and non-random textures,
distinguishing random from non-random movement, learning
to classify patterns, and tracking changes in successive matri-
ces. Importantly, in task instructions, no mention was made of
randomness, probability, or related concepts. We found supe-
rior performance in distinguishing random stimuli from repeat
stimuli compared to switch stimuli. Moreover, memory for re-
peat stimuli declined as stimuli became more random, whereas
memory for switch stimuli did not vary with the degree of non-
randomness.
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Introduction

Random processes are fundamental and ubiquitous in na-
ture. While the definition of randomness remains contro-
versial among philosophers and mathematicians, psycholo-
gists have been interested in people’s subjective intuitions of
randomness. The concept of randomness has been typically
examined in two ways. In one method, participants are pre-
sented with a sequence of binary events and are asked to judge
how random the sequence appears. It has been found that se-
quences of bits that alternate more than expected on the basis
of random generation are more likely to be labeled as random
(Lopes & Oden, 1987; Bar-Hillel & Wagenaar, 1991; Falk &
Konold, 1997; Nickerson, 2002). In the other method, par-
ticipants are instructed to produce a sequence as if it is pro-
duced by a random process such as a fair coin. The results
from these studies demonstrate that sequences produced as
random tend to result in too many alternations, thus, in runs
that are too short (Wagenaar, 1972; Kahneman & Tversky,
1972; Baddeley, 1966).

These studies have greatly illuminated the ordinary con-
ception of “random” but leave unexplored the perceptual con-
sequences of deviations from randomness in the absence of
explicit reference to the randomness concept. In this paper,
we will perform four critical experiments to assess the abil-
ity to distinguish random from non-random stimuli without
any explicit mention of randomness, probability, or their cog-
nates. In Experiment 1, we will examine the ability to dis-
tinguish random from non-random bit matrices. This is fol-
lowed by Experiment 2 where we will examine the ability to

distinguish random from non-random events when they are
temporally presented. In Experiment 3, we will look at the
ability to learn to classify random vs. non-random matrices.
Finally, in Experiment 4, we investigate the ability to encode
random vs. non-random matrices.

To produce random bits (each with equal probability of
being 0 or 1), we exploit the on-line service Hotbits that
generates them from radioactive decay; see Walker (2006).
Reliance on this prototypically random process allows us to
avoid difficult questions about the definition of “random.”
(Even the most popular theories of “infinite random se-
quence” are open to objection; see Lieb, Osherson, and We-
instein (2006); Osherson and Weinstein (2008).) Regarding
“non-random,” there are many ways to distort a random pro-
cess. We rely on two of the simplest. Assume the existence
of an unlimited source of random bits (i.e., hotbits).

Definition of a repeat(x) sequence: Let x € [0,1] be
given (x is a probability). Then a repeat(x) sequence
S is constructed via the following algorithm. The first
bit is set equal to the next hotbit. Suppose that the nth
bit of S has been constructed. Then with probability x
the n + 1st bit of S is the next hotbit; with probability
1 —x the n+ 1st bit of S is set equal to the nth bit. The
sequence S may be carried out to any length.

Thus a repeat(1) sequence is fully random (namely, a string
of hotbits), and a repeat(0) sequence is all 1’s or all 0’s de-
pending on the hotbit drawn for the first bit. Note that in con-
structing repeat(x) sequences, the probability x is also com-
puted using hotbits. (For example, three hotbits are used for
the 1/8 probability of repeating the last bit.) The same re-
marks apply to the second distortion of randomness.

Definition of a switch(x) sequence: For x € [0,1], a
switch(x) sequence S is constructed as follows. The first
bit is set equal to the next hotbit. Suppose that the nth bit
of § has been constructed. Then with probability x the
n+ 1st bit of S is the next hotbit; with probability 1 —x
the n+ 1st bit of S is set equal to the opposite of the nth
bit.

It can be seen that for x < 1, repeat(x) have longer runs
than expected from a random source, whereas the runs in a
switch(x) are too short. In both cases we expect the string
to be more compressible than a (fully) random string, in
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the sense of being generated by shorter programs in an in-
tuitively reasonable programming language (Li & Vitanyi,
2008). There is no guarantee, of course, that such differences
in compressibility can be detected or put to use by human ob-
servers. Indeed, the experiments described below probe the
psychological boundary between full and partial randomness,
asking in each case:

What is the greatest x € [0,1] such that repeat(x) se-
quences are treated differently from random sequences,
and similarly for switch(x) sequences?

We begin with the elementary task of distinguishing bit ma-
trices created from random versus repeat(x) or switch(x) se-
quences.

Experiment 1
Participants

Sixty undergraduates (43 female, mean age = 19.8 years)
from Princeton University participated for course credit.

Materials

Stimuli were 60 x 60 matrices made up of green and blue
dots. Each could be divided either horizontally or vertically
into equal halves (the orientation was randomly determined).
One of the halves was filled with hotbits (i.e., it was fully
random) whereas the other was created from either a repeat(x)
sequence or a switch(x) sequence; the sequence was used to
populate either successive rows or successive columns of the
half-matrix (counterbalanced). Each matrix subtended 14.2 x
14.2 degrees of visual angle. All matrices were generated
separately (“on the fly”). Figure 1 provides two examples.

Figure 1: The matrix on the left can be divided vertically into
a random half-matrix (right) and a repeat(0.7) half-matrix
(left). The latter half-matrix was created from a repeat(0.7)
sequence by traversing columns. The matrix on the right can
be divided horizontally into a random half-matrix (top) and a
switch(0.7) half-matrix (bottom). The latter half-matrix was
created from a switch(0.7) sequence by traversing columns.

Procedure

Thirty participants (17 female) took part in the study. Each
participant served in two conditions (order counterbalanced).

In the repeat condition only repeat(x) sequences were used
to compose non-random halves of matrices whereas in the
switch condition only switch(x) sequences were used. In each
condition a total of 100 matrices were presented. The par-
ticipant was informed that the two halves were different and
was asked to guess the orientation (horizontal versus vertical)
of the boundary between the two halves. Matrices appeared
on the screen for 4000 ms. following which the participant
guessed the boundary. Preliminary practice trials included
clear cases based on low values of x. There was no mention
of randomness. Feedback regarding judgment accuracy was
provided after every trial. By receiving feedback participants
could learn to distinguish the difference between random and
non-random matrices. A cleaner way to assess discrimina-
tion ability could involve no feedback. Thus, a new set of 30
participants took part in the “no feedback™ version, same as
above but without feedback.

For every participant, the first matrix was generated with x
at 0.7 since pilot studies indicated near perfect discrimination
up to x =0.7. Subsequent matrices were generated contingent
on performance with the previous one. Specifically, for every
incorrect answer x decreased by 0.01, whereas x increased by
0.01 in case of two successive correct answers; otherwise, x
was left unchanged.

Results and Discussion

For each participant, we identified the highest x value at
which the participant could reliably discriminate between the
random and repeat(x) or switch(x) halves of matrices. Specif-
ically, for a given x we tallied the numbers of correct and
incorrect trials at or above x, then determined via a binomial
test whether the difference is significant in the direction of
accuracy. The greatest such x was retained. This calculation
was carried out separately for repeat and switch trials, yield-
ing repeat and switch thresholds.

With feedback, the average repeat threshold was 0.85
(SD = 0.05, median = 0.85) and the average switch threshold
was 0.82 (SD = 0.04, median = 0.82), N = 30 in both cases.
The difference was reliable via a paired z-test [¢(29) = 2.36,
p < .05] and via Wilcoxon test [p < .05]. Without feedback,
the average repeat and switch thresholds were 0.85 (SD =
0.05, median = 0.85) and 0.78 (SD = 0.05, median = 0.80),
respectively. The difference was again reliable [£(29) = 5.42,
p < .01, Wilcoxon p < .01]. These results suggest that par-
ticipants were better at discriminating random matrices from
matrices biased towards repeats compared to switches.

Experiment 2

Since events can also occur in a sequential order (e.g., bas-
ketball shoots), in this experiment we examined the ability to
distinguish random from non-random stimuli that were tem-
porally presented.

Participants

Forty undergraduates (24 female, mean age = 20.1 years)
from Princeton University participated for course credit.
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Materials

A horizontal line was presented in each quadrant of a com-
puter screen. Each line could rotate clockwise or counter-
clockwise with respect to its fixed left end (like an hour hand
started at 3 o’clock). The direction of the rotation was deter-
mined by the next member of a given bit-string (10° clock-
wise versus 10° counterclockwise). See Figure 2. The new
position of the line was presented for 100 ms. followed by a
50 ms. inter-movement interval. The movements in a given
quadrant will be called its “walk.” The walk in one quadrant
(the “oddball”) followed a repeat(x) or a switch(x) sequence,
whereas the walks in the three others were (fully) random. A
walk consisted of 100 successive movements; they occurred
simultaneously in the four quadrants.

Figure 2: Every line starts horizontally and rotates according
to its bit string. One line follows a repeat(x) or a switch(x)
sequence, while the others move randomly. Dashed lines (not
present in the stimuli) show possible first movements. The
four buttons (left and right margins) registered the partici-
pant’s guess about the oddball.

Procedure

Forty participants took part in the study; twenty were ran-
domly assigned to the repeat condition, and twenty to switch.
Each condition consisted of 100 trials. A given trial in the
repeat condition presented random walks in three quadrants
and a repeat(x) walk in the other; for the switch condition,
the latter quadrant presented a switch(x) walk. The choice
of oddball quadrant was determined randomly for each trial.
The participant was informed that one line would move in a
distinctive way compared to the other lines. After viewing the
walks, the participant was invited to choose the oddball quad-
rant by clicking its button. There was no mention of random-
ness. Feedback regarding judgment accuracy was provided
after every trial.

The first trial started with the easy value x = 0.3 (the value
was determined from pilot studies). Subsequent trials were
generated as in Experiment 1: for every incorrect answer x
decreased by 0.05 whereas it increased by 0.05 in case of two
successive correct answers; otherwise, x was left unchanged.

Results and Discussion

Just as in Experiment 1, we identified repeat and switch
thresholds for every participant. The average repeat thresh-
old was 0.80 (SD = 0.10, median = 0.83) and the aver-
age switch threshold was 0.63 (SD = 0.20, median = 0.67).
The difference was reliable via an independent-samples #-
test [#(38) = 3.32, p < .01] and via Mann-Whitney U test
[p < .01]. It thus seems easier to discriminate repeat-biased
walks from random walks than to discriminate switch-based
walks. The results are congruent with the findings of Experi-
ment 1 except that both repeat and switch thresholds are lower
in the temporal compared to the spatial context [0.80 vs.
0.85, 1(48) = 2.29, p < .05 and 0.63 vs. 0.82, (48) = 5.02,
p < .01, respectively]. The difference may be due to the
smaller number of bits exploited in creating four walks com-
pared to a matrix (400 vs. 1800). Alternatively, it may hinge
on the temporal character of the walks, or the need for divided
attention in viewing them.

Experiment 3

Whereas the preceding experiments involved discriminating
random from non-random stimuli, the third experiment ex-
amined the ability to learn distinct responses to each. With
the help of feedback, participants attempted to press one but-
ton when presented with a random matrix and another button
in response to repeat(x) or switch(x) matrices. There was no
mention of randomness or related notions.

Participants

Thirty-five undergraduates (22 female, mean age = 20.3
years) from Princeton University participated for course
credit.

Materials

Stimuli were the half-matrices used in Experiment 1, gener-
ated anew in the present setting. Each was either 30 x 60 or
60 x 30, randomly determined for each trial.

Procedure

Thirty-five participants served in both repeat and switch con-
ditions (order counterbalanced). Each condition consisted of
200 trials. A given trial in the repeat condition presented ei-
ther a random or a repeat(x) matrix (the choice was randomly
determined); likewise, in the switch condition, either a ran-
dom or a switch(x) matrix was presented. The participant was
informed that each matrix was drawn from one of two distinct
categories. The image was projected for 1000 ms. following
which the participant guessed the category to which it be-
longed. The categories were represented by two unlabeled
buttons below the image, left and right. One was meant for
random matrices and the other for non-random (consistently
for a given participant, determined randomly across partic-
ipants). Feedback was provided after every trial indicating
whether the correct button was selected.

At the start of the experiment every participant sampled
five matrices from the random, repeat (or switch) categories,
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and the associated buttons were indicated. Then the first trial
started with the easy value x = 0.55 (the value was determined
from pilot studies). Subsequent trials were generated accord-
ing to the usual schedule: for every incorrect answer x de-
creased by 0.01 whereas it increased by 0.01 in case of two
successive correct answers; otherwise, x was left unchanged.

Results and Discussion

We identified repeat and switch thresholds for every partici-
pant as in Experiment 1. The average repeat threshold was
0.90 (SD = 0.03, median = 0.91) and the average switch
threshold was 0.86 (SD = 0.07, median = 0.87). The dif-
ference is reliable via a paired #-test [¢(34) = 2.94, p < .01]
and via Wilcoxon test [p < .01]. Thus, comparably to the first
two experiments, classification was easier in the repeat con-
text compared to switch. In turn, this implies greater facility
in discriminating repeat-biased than switch-biased matrices
from random ones.

At the same time, both the repeat and the switch thresh-
olds were reliably higher than those in Experiment 1 (.90 vs.
.85 and .86 vs. .82; t > 2.73, p < .01 in both cases). The
difference between the two experiments, however, might be
due to the greater number of trials in the present setting (200
vs. 100). If thresholds are calculated using the just the first
hundred trials of Experiment 3, they are the same as in Ex-
periment 1 (.85 for repeat and .82 for switch).

Experiment 4

Performance in the preceding experiments was better with re-
peat compared to switch stimuli (except for the variant pro-
cedure in Experiment 2). Does the difference reflect easier
encoding of repeats compared to switches? This study was
motivated by the finding that the encoding difficulty of a bit
sequence increases with its degree of randomness (Falk &
Konold, 1997). The present experiment examines this issue
by requesting participants to detect changes in serially pre-
sented matrices.

Participants

Forty undergraduates (20 female, mean age = 19.7 years)
from Princeton University participated for course credit.

Materials

Stimuli were 11 x 11 matrices made up of black and white
dots. Each matrix was created from a repeat(x) sequence or a
switch(x) sequence by traversing rows or columns (counter-
balanced). All matrices were generated on the fly.

Procedure

Forty participants completed the experiment individually.
There were nine kinds of trial corresponding to (a) repeat lev-
els 0.2, 0.4, 0.6, and 0.8, (b) the same switch levels, and (c)
full randomness. In a given trial, a black-and-white matrix
was constructed for one of the nine levels. A second matrix
was constructed as follows. With 50% probability the second
matrix was identical to the first, and with 50% probability the

second matrix differed at five randomly chosen cells (whose
colors were reversed). The first matrix was presented for 200
ms. followed by a 500 ms. gap (no mask); then the second
matrix was presented for 200 ms. See Figure 3. At the end of
a trial, the participant judged whether the two matrices were
the same or different. There were 30 trials for each of the
nine levels. The resulting set of 270 trials were presented in
individualized random order to each participant.

200 ms

500 ms
Time "su"H um uE
e

el ™ 200 ms

response:
same or different

Figure 3: Sample trial in Experiment 4.

Results and Discussion

For each participant and each of the nine levels, we tabulated
the number correct out of 30 trials. The means (over forty
participants) are shown in Table 1. For example, the mean
accuracy for repeat(.2) matrices is 91% whereas it is just 70%
for switch. For each level, repeat accuracy was compared
to switch accuracy via paired 7-test, also summarized in the
table. Repeat accuracy was reliably higher than switch only
for levels 0.2 and 0.4.

Table 1: Mean percent accuracy (and SD) in Experiment 4.
p-values reflect repeat/switch differences in accuracy.

X Repeat  Switch  sig.

02 91(7) 70(10) p<.01
04 77(10) 68(10) p<.01
06 71(10) 69(9) p=.32
0.8 70(10) 70(10) p=1
1.0 65 (10)

A one-way repeated measure ANOVA was performed on
the four repeat levels plus full randomness as a fifth level;
the same ANOVA was performed for switch. There was a
significant difference among the levels in the repeat condi-
tion [F(4,191) = 8.14, p < .01], but not in the switch condi-
tion [F(4,191) = 0.40, p = 0.81]. Post-hoc Tukey HSD tests
revealed that accuracy for x = 0.2 and x = 0.4 was reliably
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higher than for the other levels, whereas accuracy for x = 1.0
(full randomness) was reliably lower (r > 2.69, p < .01 in
all cases). These results suggest that participants were better
at encoding repeats than switches but only for highly non-
random sequences (x = 0.4 and below). Moreover for re-
peat, participants showed weaker encoding as matrices be-
came more random. For switch, performance seemed not to
vary with degree of non-randomness. One potential explana-
tion for the difference in encoding ability between repeat and
switch matrices could be that it is easier to extract streaks than
alternations (Brady & Tenenbaum, 2010). Alternations may
require more visual working memory resources compared to
repeats.

General Discussion

In four experiments, we examined the ability to distinguish
genuine random from non-random stimuli without invoking
randomness or related concepts in task instructions. Using
different stimuli and a range of methods, we found superior
performance in distinguishing random stimuli from stimuli
that are biased towards repeats compared to switches. In Ex-
periment 1, the ability to distinguish repeat matrices from
random matrices was slightly but reliably better than the abil-
ity to distinguish switch matrices from random. Participants
were likewise better at detecting non-random walks biased
towards repeat in a field of random walks (Experiment 2).
When learning to classify matrices into nominal categories
(Experiment 3), participants were better at classifying repeat
versus random matrices compared to switch versus random;
the thresholds were close to those seen in Experiment 1. Fi-
nally, participants were better at perceiving changes embed-
ded in non-random matrices biased towards repeats compared
to switches (Experiment 4); moreover, memory for repeat
matrices declined as matrices became more random whereas
memory for switch matrices did not vary with the degree of
non-randomness.

Across experiments, we have consistently observed that
repeat thresholds are higher than switch thresholds. To ex-
plain the gap it is tempting to invoke the perceptual differ-
ence between streaks and alternations/checkerboards. The
former, thought of as contours, are central to object recogni-
tion whereas the latter seem less common to our visual ex-
perience. The perceptual system might therefore be more
sensitive to streaks, able to process them better, and de-
tect their relative absence from random stimuli. To test this
idea, we examined whether streaks are more common in our
visual environment. We collected 2800 natural scene im-
ages [http://cvcl.mit.edu/database.htm]. Each image was con-
verted to a black-white (binary) scale with the boundary at
the mean brightness value. (The images remain remarkably
interpretable in the face of such alteration.) Switch rate was
computed by traversing horizontally through columns or ver-
tically through rows. The average switch rates for horizontal
and vertical traversals were 0.07 and 0.08, resulting in cor-
responding repeat(x) values of 0.14 and 0.16, respectively.

Such values support the claim that our visual environment
is highly streaky. This line of explanation, however, is in-
sufficient in view of the results of Experiment 2 (random vs.
non-random walks) whose stimuli were presented temporally.
Further investigation is plainly needed.

The higher discrimination threshold with repeat stimuli
compared to switches could in part be explained by the su-
perior ability to encode repeat stimuli compared to switches.
This result is consistent with the encoding hypothesis (Falk
& Konold, 1997). In their study, participants were presented
with binary bit sequences and were asked to copy the se-
quence from memory. It was found that the difficulty of
encoding the sequence increased with its degree of random-
ness. We found similar results for repeat stimuli but not for
switch since performance did not vary with degree of non-
randomness.

There were several limitations of the current studies. The
discrimination threshold could vary depending on a number
of parameters, such as the size of the matrix, the presenta-
tion duration, the number of trials, the starting point of x, and
whether the current bit was dependent on the previous bit or
the second last bit. However, despite these possible varia-
tions, we expect that the difference between repeat threshold
and switch threshold remains. Another limitation was that the
current tasks were very abstract. Future study could use more
real-world stimuli in order to generalize the current results.

Finally, further investigation could compare performance
on perceptual discrimination with conceptual identification of
random vs. non-random stimuli. For example, one could ask
participants to identify which matrix looks more random in
Experiment 1 and see whether their performance is consistent
with their perceptual ability to distinguish. In addition, the
following question also strikes us as meriting inquiry.

What is the relationship between (a) the threshold dif-
ference for repeat and switch stimuli when discriminat-
ing them from randomness, and (b) the well-documented
finding that over-alternating stimuli are more likely to be
labeled as “random”?
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