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Abstract 
Speakers refer to objects using terms on various levels of 
description. Labeling a poodle, they use the subordinate term 
“poodle” or the basic term “dog”. Our model attributes these 
effects to visual context, relying on the domain general 
mechanism of neural adaptation. Two SOMs represent visual 
and auditory categories. Word learning is modeled via 
simultaneous presentation of item and word form and the 
creation of Hebbian synapses. Neural adaptation causes a 
decrease of activation in repeatedly activated nodes. We 
predicted that as a result of this, when presented alone or 
alongside a distractor from another basic category, an item will 
be referred to by its basic term, while the presence of a distractor 
from the same basic category will induce a shift to the target’s 
subordinate label. Three simulations taking into account the 
relative frequency of an item's basic and subordinate level labels 
supported this hypothesis.  

Keywords: Self-Organizing Maps; Neural Adaptation; 
Language Production. 

Introduction 
The language acquisition literature contains much evidence 
that children are reluctant to learn multiple labels for objects 
(Markman, 1990). They nonetheless grow up to become 
adult speakers who competently use multiple terms of 
reference for a given item. One group of words that requires 
mastering the use of multiple labels for an item are 
hierarchical category level terms (“dog” and “poodle”). 
They can all describe the same referent (e.g. a poodle), yet, 
in most cases, they are not mutually exchangeable – see 
Rosch & Mervis’ seminal paper (1975). Research in 
language acquisition suggests that context can help children 
learn second labels for familiar items (Grassmann & 
Tomasello, 2010) and that children can tailor their 
utterances to meet the requirements of functional context 
(Deutsch & Pechmann, 1982; Matthews, Lieven, 
Theakstone & Tomasello, 2006; Matthews, Lieven & 
Tomasello, 2007; Bannard, Klinger & Tomasello, under 
revision). The present research is also concerned with 
adjusting one’s utterance to the requirements of the context, 
but focuses on adult speakers. Our hypothesis is that adult 
speakers’ use of basic and subordinate terms of reference 
(i.e. when to say “dog” or “poodle”) is modulated by visual 
context. If a target item is seen alone or among unrelated 
items production of a basic level term of reference is 
sufficient to unambiguously identify the target. If the target 
is seen amidst very similar objects a more precise 

description is needed to unambiguously identify the target, 
thus a switch to the subordinate level of reference is 
expected. This can be modeled via the simple domain-
general mechanism of neural adaptation. 
 This hypothesis is made explicit through a neuro-
computational model, which simulates a speaker facing the 
previously described situation and implements neural 
adaptation. 

 
Figure 1. Illustration of a visual context in which the basic 
level term is sufficient to identify a target object (left) and 
one in which a shift to a subordinate level term is required 
(right). 

 
Modelling background 

 The model presented here builds on a tradition of 
supervised connectionist models of word learning and 
production, but is mostly based on Mayor & Plunkett’s 
unsupervised account (2010). While word learning itself is 
considered a supervised activity, the acquisition of 
perceptual categories is not, i.e. does not require a label or a 
teacher. Hence Mayor and Plunkett adopted an architecture 
using SOMs (self-organizing maps; Kohonen, 1984, also 
interpreted in biological terms; Kohonen, 1993), which can 
account for taxonomic responding and fast mapping, while 
having unsupervised category formation. 
 Self-organizing maps are topological maps that 
extract statistical regularities from input and thereby 
effectively cluster objects, which have common properties. 
After self-organization is complete, similar objects activate 
neighbouring units on the map. Connections between two 
SOMs can be modulated by the activity of individual 
neurons on each map via Hebbian synapses (Hebb, 1949). 
 Mayor and Plunkett assumed that pre-lexical 
categorization and joint-attention events are crucial factors 
in word learning, hence their model consists of two SOMs 
(visual and auditory), which are organized by their 
respective input before any labelling events takes place. 
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After self organization, joint attention is mimicked through 
the simultaneous presentation of an object to the visual map 
and a word form to the auditory map. Connections between 
the activated neurons on each map are strengthened via 
Hebbian learning. Due to the topological structure of the 
SOMs, many neighbouring units are activated on each map 
and Hebbian learning occurs on the synapses connecting 
these units as well. This allowed for a single labelling event 
to be sufficient to induce taxonomic responding. In addition, 
the model also mimicked a typical learning behaviour, e.g. a 
vocabulary spurt, a reduction in over-extensions with 
increasing vocabulary, etc.  
 In spite of its accurate account of the above-
mentioned phenomena, Mayor & Plunkett (2010) do not 
account for context-dependent use of hierarchical category 
terms. The aim of the present model in now to mimic the 
modulation of word choice in terms of low-level neural 
mechanisms; using the simple domain general mechanism 
of neural adaptation. Neural or sensory adaptation (see e.g. 
Kaplan, Sontagand & Chown; Grill-Spector, Henson & 
Martin, 2006) is a decrease over time in the responsiveness 
of the sensory system to a constant stimulus. On a 
behavioural level it surfaces as habituation, causing 
participants to be less and less sensitive to a repetitive 
stimulus. In terms of modelling, it means that a node that 
receives activation multiple times within a short period of 
time will experience a decrease in activation. Thus, the 
mechanism would explain hierarchical word choice in 
context as follows: When two items from the same basic 
category (e.g. a Poodle and a Labrador) are presented to the 
model at the same time, they both activate their basic label 
(e.g. “dog” is activated twice) and their respective 
subordinate labels (e.g. “Poodle” and “Labrador” both are 
activated once). Neural adaptation would then cause the 
activation of the twice-activated basic label to decrease, 
resulting in a subordinate term winning the competition and 
being produced. 
 

Method 
Similarly to Mayor & Plunkett (2010), the model consisted 
of two separate SOMs, one visual and one auditory, which 
received visual and auditory input respectively. We also 
assumed that when it comes to word learning, infants have 
already acquired the ability to segment objects out of 
complex visual scenes (Kellman, Spelke & Short, 1986; 
Kaufmann-Hayoz, Kaufmann & Stucki, 1986) as well as 
labels from a flow of speech (Jusczyk & Aslin, 1995; 
Saffran, Aslin & Newport, 1996). Each SOM was formed 
via presentation of the respective set of items. These visual 
stimuli were 20-dimensional real-valued vectors, which 
were clustered in 2 basic level categories (e.g. “dog” and 
“car”), each consisting of 10 subordinate categories (e.g. 
“poodle”, “limousine”), which were, in turn, made up out of 
20 exemplars each (i.e., for instance, individual poodles or 
limousines). 
 

 
 
Figure 2. Graphical representation of the nested categories 
in the visual data. The large turquoise and red stripes 
represent the 2 basic categories, while the little feet on the 
bottom of the diagram represent the subordinate categories 
within the two basic categories. 

 
 In creating the stimuli we used a simple 
randomization algorithm that ensured that subordinate 
categories were closest to their respective basic category’s 
prototype and that, in turn, exemplars of each subordinate 
category were closest to their respective subordinate 
prototype and accordingly closer to their respective basic 
category prototype than to the other basic category’s 
prototype. 
 The auditory stimuli, in contrast, were not 
organized in such a nested fashion. Whereas visual 
categories display a hierarchical structure, such that 
"Labrador" shares many features with other subordinates of 
the broader category "dog", this is not necessarily the case 
for auditory categories. Similar sounding words are 
clustered together, but there is usually no sound symbolism 
such that "car" is a member of a hypothetical broader 
category "carpet". It has to be noted though that certain 
terms referring to an item on a subordinate level such as 
racing-car share parts with their respective basic level label 
(in this case "car"). In its current state the model assumed 
that such labels have separate entries on the auditory map. 
Whether this way of storage reflects reality is a matter of 
experimental investigation, but not central to the current 
model. 

All visual and auditory stimuli were represented as 
20-dimensional vectors. Coding the input in this abstract 
way, allowed us to remain agnostic to the nature of 
attributes involved in category formation. The total number 
of 400 visual and 440 auditory items, after excluding 
prototypes, was then presented to train the respective SOMs, 
mimicking exposure to objects to words. These uni-modal 
self-organising maps used the standard Kohonen learning 
algorithm (Kohonen, 1984) - Each map consisted of a 
hexagonal grid of 64 (8x8) units. Each unit 

€ 

k  was 
associated with a vector 

€ 

mk. Upon presentation of each item 

€ 

x  the vectors 

€ 

mk (like in Mayor & Plunkett, 2010) were 
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modified by finding the Best Matching Unit (BMU) 

€ 

c , 
defined by the following condition: 

 (1) 

with 

€ 
€ 

•

€ 

 measuring the standard Euclidean distance. 
Similarly, the second and third BMU could be identified. 
Then the standard weight update rule was applied with a 
learning rate that decayed over time 

€ 

a t( ) = 0.05 /1+ t /200 and a 
Gaussian neighbourhood function of the distance 

€ 

dikbetween units 

€ 

i  and 

€ 

k  on the map (Equation 2), that 
shrinks linearly over time from 

€ 

σ(0) = 4 to 

€ 

σ(Tmax ) =1. 

€ 

N i,k( )t = e−d ik
2 / 2σ 2 ( t )

    (2) 

An average quantization error was defined, such that the 
Euclidean distance between input patterns and their 
respective BMU was:  

€ 

x −mc (x)  x  (3) 

where 

€ 

mc (x) is the best matching unit for input pattern 

€ 

x  and 

€ 

< 

€ 

• 

€ 

> indicates an averaging over all input patterns. This 
quantization error 

€ 

E  is not a traditional error teacher signal, 
but a global measure of weight alignment to the input in the 
map. In forming the SOMs, we used a batch version of 
Kohonen's algorithm (1984). 
 Then associations across SOMs were trained. This 
only happened after the maps were entirely formed, 
emulating that the speaker had fully formed visual and 
auditory categories. Such a simplification was possible, 
since the current research did not focus on developmental 
aspects. We mimicked joint attention activities (i.e. labelling 
events) between caregiver and infant by simultaneously 
presenting an item from the visual set to the visual map and 
a random exemplar from the respective auditory category to 
the auditory map. Each visual stimulus was in this way 
associated with both, a subordinate and a basic level label. 
Thus, each instance of the visual stimulus "poodle" was 
simultaneously presented and therefore associated with a 
number of instances of the word form "dog", as well as a 
number of instances of the word form "poodle”. This way, 
the model was able to learn that two labels can refer to the 
respective item. 
 We built cross-modal connections by learning 
Hebbian connections between both maps. The amplitude of 
these bidirectional connections is modulated by the activity 
of the connection units. We defined the neural activity of a 
unit 

€ 

k  to be 

€ 

ak = e−qk / r , where 

€ 

qk  is the quantization error 
associated with unit 

€ 

kand 

€ 

r = 0.5  was normalization 
constant. The amplitudes of those connections were 
modulated according to the standard Hebb rule with 
saturation, which allows for keeping weights within 
physiological range even for high neural activities (Mayor 
& Plunkett, 2010). The connections between unit 

€ 

i  on the 

visual map and unit 

€ 

j on the auditory map was computed as 
follows: 

€ 

wij (n +1) = wij (n) +1− e−λai a j

 (4) 

where 

€ 

n refers to the index of the item-word pairing and 

€ 

λ = 0.3 is the learning rate. It was set to that value, since it 
offered a good compromise between quick learning and 
establishing many meaningful connections. 
Since it was the model's objective to emulate experienced 
speakers who knew all the items and their corresponding 
hierarchical word forms, the model’s performance was only 
tested after cross-modal associations between items and 
word forms had been fully established. The frequency ratio 
between basic and subordinate labelling events differs from 
object to object. We mimicked this change in frequency by 
training cross-modal associations with different ratios of 
basic and subordinate word forms in each simulation. 

Neural adaptation 
Neural adaptation was implemented into the auditory map 
by making the activation of a unit a function of newly 
received and previous activation, such that multiple 
activation of a unit within a short period of time leads to a 
drastic decrease in activation: 

€ 

an
NA (s) = an (s) *e

(−a n
NA (s−1)/ tau)

 (5) 

where 

€ 

an (s)  is the activation of a unit 

€ 

n at presentation 
number

€ 

s, 

€ 

an (s)  is the activation of a unit before adaptation 
is applied and 

€ 

tau is a constant determining the strength of 
adaptation with a low 

€ 

tau value standing for drastic and a 
high

€ 

tau value standing for mild adaptation. Thus, if a 
stimulus has never been presented before, the activity of the 
corresponding nodes at time s-1 is virtually 0; adaptation 
has no effect on word choice. However, after a number of 
presentations, adaptation reduces the activation level for the 
nodes subjected to repeated stimulation. Note that neural 
adaptation was implemented into the model at the level of 
the cross-modal activation flow transferred via Hebbian 
connections, and not to activation arising from direct 
presentation of stimuli to the maps. While this facilitated 
making the model work, it also appears to be plausible, 
since quickly-occurring drastic adaptation of visual nodes 
that receive activation through the presentation of visual 
stimuli seems counter intuitive - when looking at more than 
one dog, one certainly still sees the dogs. 

Simulation 1 
This simulation investigated possible effects of visual 
context via the implementation of neural adaptation. The 
SOMs were trained according to the previous section; 
thereafter associations between SOMs were established. In 
this particular simulation, cross-associations were formed 
using a ratio of 85% basic level and 15% subordinate level 
labelling events for each visual stimulus, thereby 
representing items for which caregivers predominantly use 
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basic level terms in labelling situations. For example, 
imagine an object “poodle”, which would typically be 
named “dog” in 85% and “poodle” in 15% of the labelling 
events in acquisition. 
 This simulation attempted to mimic the situation of 
a speaker seeing two objects from the same basic, but from 
different subordinate categories (e.g. a poodle and a 
Labrador, see Figure 1, right image) who named one of 
those objects using either a basic or subordinate level term. 
Thus, to evaluate the model's performance, 400 pairs of 
visual stimuli were presented to the visual map. Each pair 
consisted of a distracter (presented first) and the target 
(presented one time step after). The distracter was always 
from the same basic, but never from the same subordinate 
level category, as the target. It was then noted, whether the 
model produced a correct target label upon presentation of a 
pair of visual stimuli and whether the word produced was a 
basic or subordinate level term. In a control condition, 
distracter and target belonged to different basic level 
categories (see Figure 1, left image), simulating a speaker 
wanting to identify a referent presented together with an 
unrelated object.  
 Several simulation runs were undertaken, covering 
adaptation rates for tau values from 0.15 (weak adaptation) 
to 0.01 (very strong adaptation).  

Simulation 1 – Results & Discussion 

The results for items with a high frequency of basic level 
labelling events (85%) in acquisition suggested that with 
only weak adaptation (tau < 0.08) the basic level label is 
preferred when a target is shown together with a distracter 
from the same basic level category (see Figure 3). 
 

 
 
Figure 3. Mean frequency of use of an item’s basic and 
subordinate level labels for different rates of adaptation 
across 100 simulation runs (10 per tau value). The red line 
represents the percentage of subordinate, the green line the 
percentage of basic terms produced. The blue line indicates 
the number of subordinate terms produced in the control 
condition. 

 
 For tau = 0.15, the model produced 70.07% basic 
and 23.95% subordinate level terms. As adaptation rate 
increased this ratio shifted towards production of 

subordinate level terms. For tau = 0.07 the model produced 
an almost equal amount of basic (43.75%) and subordinate 
level terms (40.5%). The remaining 20% were mapping 
errors. As adaptation became even more powerful, 
subordinates were produced more frequently than basic 
level terms, e.g. 8.4% basic and 58.75% subordinate terms 
for tau = 0.02. While not taking away from the model’s 
overall predictions, it still has to be noted that error rate 
increased as neural adaptation became stronger, indicating 
that adaptation added some noise to the system.  
 In the control condition, where a target was shown 
alongside a distractor from a different basic level category, 
almost no subordinate terms were produced, regardless of 
power of adaption. The simulation predicted that, given a 
sufficiently high rate of adaptation, visual context would 
prompt a shift from basic to subordinate level terms used 
when labelling an item. 
 Such a behaviour was produced through neural 
adaptation: When a target and a distracter from the same 
basic level category were presented to the model’s visual 
map, they – via Hebbian connections - both activated the 
same basic level term on the auditory map and each their 
respective subordinate level term. Neural adaptation then 
caused that the units representing the basic level term 
(“dog”), due to being activated multiple times, to exhibit a 
strong decrease in activation, such that the subordinate level 
term (“poodle”) won the competition and was produced. In 
the control condition, target and distracter belonged to 
different basic level categories, such that no neurons were 
activated twice and no adaptation took place, such that the 
basic level terms won the competition. 
 The findings of this simulation hence suggest that a 
single domain-general mechanism, like neural adaptation, 
would be able to account for adult speakers’ switch from 
basic to subordinate level terms of reference when 
unambiguously identifying a referent alongside a distracter 
from the same basic level category and the absence of such 
an effect when both items belong to different basic 
categories. 

Simulation 2 
Unlike the first simulation, this simulation dealt 

with items that were mostly labelled with their subordinate 
level term during acquisition (e.g. the object “eagle”, which 
would be referred to with “bird” less often than with its 
subordinate term “eagle”. The SOMs were formed in the 
same way as in simulation 1, but trained cross-modal 
associations using a ratio of 20% basic and 80% subordinate 
level labelling events for each. The models performance was 
also evaluated in the same way as in Simulation 1. 

Simulation 2 – Results & Discussion 
 For items that are predominantly associated with 

subordinate level terms during labelling events, we observed 
a higher amount of subordinate labels (above 60%) in 
production, while the frequency of basic level labels was 
overall lower, as can be seen in Figure 4. 
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Figure 4. Mean frequency of use of an item’s basic and 

subordinate level labels for different rates of adaptation. The 
red line represents the percentage of subordinate terms 
produced, the green line the percentage of basic terms 
produced. The blue line indicates the number of subordinate 
items produced in the control condition. 

 
 Higher rates of adaptation further increased the use 

of subordinate level terms, while the use of basic level terms 
decreased to a minimum. A slightly higher number of false 
labels was produced.  

 The high percentage of subordinate level terms 
produced, even for lower rates of adaptation, suggested that 
contextual effects were less pronounced for items that are 
referred to mostly by their subordinate term in labelling 
events. The lesser increase in use of subordinate terms with 
increasing adaptation rate, can be explained in terms of 
functional demands of the context: The subordinate level 
term is already sufficient to distinguish the item in question 
from other members of the same basic level category, such 
that context does not require the model or the speaker to 
shift to an even more specific term. It is worth noting that in 
the control condition, around 55% of subordinate terms 
were produced, regardless of adaptation. This suggested that 
an item’s frequency of basic and subordinate labels in 
production was – independent of context and neural 
adaption – a function of the frequency of basic and 
subordinate terms used in labelling events for that item in 
acquisition. This prediction was further explored in a third 
simulation. 

Simulation 3 
 The third simulation set out to investigate the effect 

of frequency of basic and subordinate level terms for an 
item in acquisition on the frequency of use of the respective 
terms in production. After training the SOMs, cross-modal 
associations were formed via Hebbian learning upon 
simultaneous presentation of visual and auditory stimuli to 
the respective SOM. Each item was associated with both a 
basic and a subordinate category level term. Thereafter, we 
had the model form cross modal associations for a variety of 
ratios of basic and subordinate labels for an item. These 
ranged from 90% basic and 10% subordinate level labelling 
events to the inverse where 10% of the labelling events 
associated basic and 90% associated subordinate level 

terms. For each ratio, the model was then tested by 
presenting each visual stimulus separately and checking 
whether the basic or subordinate label was produced. No 
adaptation was implemented. 

 

Simulation 3 – Results & Discussion 
 The findings of simulation 3, visualized in Figure 

5, indicated that the ratio of use of basic and subordinate 
labels for an item was a function of their frequency ratio in 
acquisition. Thus, the simulation predicts that when 
disregarding possible effects of context and not 
implementing neural adaptation, the model will use 
hierarchical category level terms based on their frequency in 
acquisition when presented with a single visual stimulus.  

 

 
 
Figure 5. Mean frequency in acquisition plotted against 

frequency of use in production across 90 simulation runs. 
The green line indicates percentage of use of basic, the red 
line percentage of use of subordinate level labels in 
production. 

 
 As seen in Figure 5, a very low frequency of 

subordinate labels (less than 10%) for an item in acquisition 
lead to the model not producing the subordinate form in a 
neutral context at all. In the cases where the frequency of 
subordinates in acquisition is between 15% and 45%, 
production frequency of subordinates gradually increased. A 
50/50 frequency ratio in production was reached when the 
frequency ratio in acquisition was also at around 50/50. 
Further shifting this ratio in acquisition towards 
subordinates (50% to 90% subordinate labelling events) 
reduced the production frequency of basic level terms, while 
slightly increasing the frequency of subordinate terms. As 
the frequency of subordinates in acquisition rose well over 
50%, the model attempted to produce more subordinate 
terms, but also started to produce an increasing amount of 
errors - with a frequency ratio of 10% basic and 90% 
subordinate level terms in acquisition, the model produced 
10% basic and 60% subordinate level terms, plus 30% 
incorrect subordinates. 

 The main findings of this third simulation are 
plausible both with regards to the model’s architecture as 
well as in terms of implications for speakers’ behaviour. 
Since the frequency with which an item is associated with a 
word during formation of the cross-modal associations has a 
direct impact on the strength of the respective connection, 

1010



we expected more frequent labelling events associating 
either a basic or subordinate level label with an item to 
result in a propensity for referring to that item with the 
respective hierarchical term in production. The prediction is 
that speakers would display a similar behaviour. 

 

General Discussion & Conclusion 
The simulations reported above showed the following: 
1) When labelling an item presented together with a 
distracter from the same basic level category, the model 
shifts from basic to subordinate level terms. 
2) A simple domain general mechanism, like neural 
adaptation, can account for this shift from basic to 
subordinate level labels prompted by visual context.  
3) The amplitude of the effect of adaptation is stronger for 
items with a higher frequency of basic level labelling events 
in acquisition than for those with a lower frequency of basic 
level labelling events in acquisition. 
4) Frequency ratio between basic and subordinate terms in 
production is a function of the frequency of basic and 
subordinate labelling events for an item in acquisition. 

These predictions can be tested in further 
experimental studies. The simplest premise, the switch to 
subordinate level terms in the presence of a distracter from 
the same basic category, requires a simple picture-naming 
task in which participants are required to unambiguously 
identify a referent alongside either an item of the same or a 
different basic category. To see whether neural adaptation is 
a plausible explanation for effects of visual context, one 
could contact a very similar study in which participants 
always name an item by its basic label. If adaptation 
occurrs, a difference in responses should arise if the target is 
presented alongside a distracter from the same basic level 
category and thus forcing a subordinate label.  

In terms of limitations, when presented with two 
subordinate items (e.g. two poodles) the current model 
would fail to revert to a level of description more specific 
than the subordinate. In that situation, humans might use 
adjectives to reach a finer level of description, the model 
would not. However, this could in principle be 
accommodated by training the model with labels at multiple 
levels in the hierarchy; adaptation would then cascade down 
and naming would become more and more specific as the 
context becomes stronger.  

In conclusion, we have presented a neuro-
computational model that predicts a shift from basic to 
subordinate level terms of reference for items driven by 
visual context by relying on the single domain-general 
mechanism of neural adaptation. The present research is a 
low-level associative account of a phenomenon so far 
described on a high socio-pragmatic level, but makes no 
claims about the nature of the relationship between such 
low-level mechanisms and richer processes, nor is it 
concerned with high-level processes such as intention 
reading or inferences about goals and mental states of 
speakers. It rather attempts to show that high- and low-level 

accounts need not be antagonistic, but can complement each 
other. 
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