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Abstract

Speakers refer to objects using terms on various levels of
description. Labeling a poodle, they use the subordinate term
“poodle” or the basic term “dog”. Our model attributes these
effects to visual context, relying on the domain general
mechanism of neural adaptation. Two SOMs represent visual
and auditory categories. Word learning is modeled via
simultaneous presentation of item and word form and the
creation of Hebbian synapses. Neural adaptation causes a
decrease of activation in repeatedly activated nodes. We
predicted that as a result of this, when presented alone or
alongside a distractor from another basic category, an item will
be referred to by its basic term, while the presence of a distractor
from the same basic category will induce a shift to the target’s
subordinate label. Three simulations taking into account the
relative frequency of an item's basic and subordinate level labels
supported this hypothesis.
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Introduction

The language acquisition literature contains much evidence
that children are reluctant to learn multiple labels for objects
(Markman, 1990). They nonetheless grow up to become
adult speakers who competently use multiple terms of
reference for a given item. One group of words that requires
mastering the use of multiple labels for an item are
hierarchical category level terms (“dog” and “poodle”).
They can all describe the same referent (e.g. a poodle), yet,
in most cases, they are not mutually exchangeable — see
Rosch & Mervis’ seminal paper (1975). Research in
language acquisition suggests that context can help children
learn second labels for familiar items (Grassmann &
Tomasello, 2010) and that children can tailor their
utterances to meet the requirements of functional context
(Deutsch & Pechmann, 1982; Matthews, Lieven,
Theakstone & Tomasello, 2006; Matthews, Lieven &
Tomasello, 2007; Bannard, Klinger & Tomasello, under
revision). The present research is also concerned with
adjusting one’s utterance to the requirements of the context,
but focuses on adult speakers. Our hypothesis is that adult
speakers’ use of basic and subordinate terms of reference
(i.e. when to say “dog” or “poodle”) is modulated by visual
context. If a target item is seen alone or among unrelated
items production of a basic level term of reference is
sufficient to unambiguously identify the target. If the target
is seen amidst very similar objects a more precise

description is needed to unambiguously identify the target,
thus a switch to the subordinate level of reference is
expected. This can be modeled via the simple domain-
general mechanism of neural adaptation.

This hypothesis is made explicit through a neuro-
computational model, which simulates a speaker facing the
previously described situation and implements neural
adaptation.
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Figure 1. lllustration of a visual context in which the basic
level term is sufficient to identify a target object (left) and
one in which a shift to a subordinate level term is required

(right).

Modelling background

The model presented here builds on a tradition of
supervised connectionist models of word learning and
production, but is mostly based on Mayor & Plunkett’s
unsupervised account (2010). While word learning itself is
considered a supervised activity, the acquisition of
perceptual categories is not, i.e. does not require a label or a
teacher. Hence Mayor and Plunkett adopted an architecture
using SOMs (self-organizing maps; Kohonen, 1984, also
interpreted in biological terms; Kohonen, 1993), which can
account for taxonomic responding and fast mapping, while
having unsupervised category formation.

Self-organizing maps are topological maps that
extract statistical regularities from input and thereby
effectively cluster objects, which have common properties.
After self-organization is complete, similar objects activate
neighbouring units on the map. Connections between two
SOMs can be modulated by the activity of individual
neurons on each map via Hebbian synapses (Hebb, 1949).

Mayor and Plunkett assumed that pre-lexical
categorization and joint-attention events are crucial factors
in word learning, hence their model consists of two SOMs
(visual and auditory), which are organized by their
respective input before any labelling events takes place.
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After self organization, joint attention is mimicked through
the simultaneous presentation of an object to the visual map
and a word form to the auditory map. Connections between
the activated neurons on each map are strengthened via
Hebbian learning. Due to the topological structure of the
SOMs, many neighbouring units are activated on each map
and Hebbian learning occurs on the synapses connecting
these units as well. This allowed for a single labelling event
to be sufficient to induce taxonomic responding. In addition,
the model also mimicked a typical learning behaviour, e.g. a
vocabulary spurt, a reduction in over-extensions with
increasing vocabulary, etc.

In spite of its accurate account of the above-
mentioned phenomena, Mayor & Plunkett (2010) do not
account for context-dependent use of hierarchical category
terms. The aim of the present model in now to mimic the
modulation of word choice in terms of low-level neural
mechanisms; using the simple domain general mechanism
of neural adaptation. Neural or sensory adaptation (see e.g.
Kaplan, Sontagand & Chown; Grill-Spector, Henson &
Martin, 2006) is a decrease over time in the responsiveness
of the sensory system to a constant stimulus. On a
behavioural level it surfaces as habituation, causing
participants to be less and less sensitive to a repetitive
stimulus. In terms of modelling, it means that a node that
receives activation multiple times within a short period of
time will experience a decrease in activation. Thus, the
mechanism would explain hierarchical word choice in
context as follows: When two items from the same basic
category (e.g. a Poodle and a Labrador) are presented to the
model at the same time, they both activate their basic label
(e.g. “dog” is activated twice) and their respective
subordinate labels (e.g. “Poodle” and “Labrador” both are
activated once). Neural adaptation would then cause the
activation of the twice-activated basic label to decrease,
resulting in a subordinate term winning the competition and
being produced.

Method

Similarly to Mayor & Plunkett (2010), the model consisted
of two separate SOMs, one visual and one auditory, which
received visual and auditory input respectively. We also
assumed that when it comes to word learning, infants have
already acquired the ability to segment objects out of
complex visual scenes (Kellman, Spelke & Short, 1986;
Kaufmann-Hayoz, Kaufmann & Stucki, 1986) as well as
labels from a flow of speech (Jusczyk & Aslin, 1995;
Saffran, Aslin & Newport, 1996). Each SOM was formed
via presentation of the respective set of items. These visual
stimuli were 20-dimensional real-valued vectors, which
were clustered in 2 basic level categories (e.g. “dog” and
“car”), each consisting of 10 subordinate categories (e.g.
“poodle”, “limousine”), which were, in turn, made up out of
20 exemplars each (i.e., for instance, individual poodles or
limousines).

Nested categories in visual stimuli

2 Basic level

categories

Basic level category 1 Basic level category 2

10 Subordinate
categories within basic
category 1

10 Subordinate
categories within basic
category 2

Figure 2. Graphical representation of the nested categories
in the visual data. The large turquoise and red stripes
represent the 2 basic categories, while the little feet on the
bottom of the diagram represent the subordinate categories
within the two basic categories.

In creating the stimuli we wused a simple
randomization algorithm that ensured that subordinate
categories were closest to their respective basic category’s
prototype and that, in turn, exemplars of each subordinate
category were closest to their respective subordinate
prototype and accordingly closer to their respective basic
category prototype than to the other basic category’s
prototype.

The auditory stimuli, in contrast, were not
organized in such a nested fashion. Whereas visual
categories display a hierarchical structure, such that
"Labrador" shares many features with other subordinates of
the broader category "dog", this is not necessarily the case
for auditory categories. Similar sounding words are
clustered together, but there is usually no sound symbolism
such that "car" is a member of a hypothetical broader
category "carpet". It has to be noted though that certain
terms referring to an item on a subordinate level such as
racing-car share parts with their respective basic level label
(in this case "car"). In its current state the model assumed
that such labels have separate entries on the auditory map.
Whether this way of storage reflects reality is a matter of
experimental investigation, but not central to the current
model.

All visual and auditory stimuli were represented as
20-dimensional vectors. Coding the input in this abstract
way, allowed us to remain agnostic to the nature of
attributes involved in category formation. The total number
of 400 visual and 440 auditory items, after excluding
prototypes, was then presented to train the respective SOMs,
mimicking exposure to objects to words. These uni-modal
self-organising maps used the standard Kohonen learning
algorithm (Kohonen, 1984) - Each map consisted of a
hexagonal grid of 64 (8x8) units. Each unit k was
associated with a vector ”%. Upon presentation of each item
x the vectors "™ (like in Mayor & Plunkett, 2010) were
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modified by finding the Best Matching Unit (BMU) C,
defined by the following condition:

Ime(z) 2l < [lm; — 2l Vj

(1

with ‘ ‘ measuring the standard Euclidean distance.
Similarly, the second and third BMU could be identified.

Then the standard weight update rule was applied with a

(£)=005/1+1/200 14 a

distance

learning rate that decayed over time ¢
Gaussian neighbourhood function of the

dibetween units i and k on the map (Equation 2), that
shrinks linearly over time from o0 =4 to O ) =1,

. -di 120°(1)
N(i,k) =e "

( ? ) t (2)
An average quantization error was defined, such that the
Euclidean distance between input patterns and their
respective BMU was:

(-m»)x  ©

where () is the best matching unit for input pattern x and
< « > indicates an averaging over all input patterns. This
quantization error E is not a traditional error teacher signal,
but a global measure of weight alignment to the input in the
map. In forming the SOMs, we used a batch version of
Kohonen's algorithm (1984).

Then associations across SOMs were trained. This
only happened after the maps were entirely formed,
emulating that the speaker had fully formed visual and
auditory categories. Such a simplification was possible,
since the current research did not focus on developmental
aspects. We mimicked joint attention activities (i.e. labelling
events) between caregiver and infant by simultaneously
presenting an item from the visual set to the visual map and
a random exemplar from the respective auditory category to
the auditory map. Each visual stimulus was in this way
associated with both, a subordinate and a basic level label.
Thus, each instance of the visual stimulus "poodle" was
simultaneously presented and therefore associated with a
number of instances of the word form "dog", as well as a
number of instances of the word form "poodle”. This way,
the model was able to learn that two labels can refer to the
respective item.

We built cross-modal connections by learning
Hebbian connections between both maps. The amplitude of
these bidirectional connections is modulated by the activity
of the connection units. We defined the neural activity of a

unit k to be % =e—qm’ where 9« is the quantization error
associated with unit kand =05 was normalization
constant. The amplitudes of those connections were
modulated according to the standard Hebb rule with
saturation, which allows for keeping weights within
physiological range even for high neural activities (Mayor
& Plunkett, 2010). The connections between unit i on the

visual map and unit / on the auditory map was computed as
follows:

wy(n+1) =w,(n)+1-e" @
where n refers to the index of the item-word pairing and
A =03 is the learning rate. It was set to that value, since it
offered a good compromise between quick learning and
establishing many meaningful connections.
Since it was the model's objective to emulate experienced
speakers who knew all the items and their corresponding
hierarchical word forms, the model’s performance was only
tested after cross-modal associations between items and
word forms had been fully established. The frequency ratio
between basic and subordinate labelling events differs from
object to object. We mimicked this change in frequency by
training cross-modal associations with different ratios of
basic and subordinate word forms in each simulation.

Neural adaptation

Neural adaptation was implemented into the auditory map
by making the activation of a unit a function of newly
received and previous activation, such that multiple
activation of a unit within a short period of time leads to a
drastic decrease in activation:

a:]A (s=1)/tau)

a(s)=a,(s)* e

)
where 4 () is the activation of a unit » at presentation

number S, a,(8) s the activation of a unit before adaptation
is applied and rau is a constant determining the strength of
adaptation with a low sau value standing for drastic and a
highrau value standing for mild adaptation. Thus, if a
stimulus has never been presented before, the activity of the
corresponding nodes at time s-1 is virtually 0; adaptation
has no effect on word choice. However, after a number of
presentations, adaptation reduces the activation level for the
nodes subjected to repeated stimulation. Note that neural
adaptation was implemented into the model at the level of
the cross-modal activation flow transferred via Hebbian
connections, and not to activation arising from direct
presentation of stimuli to the maps. While this facilitated
making the model work, it also appears to be plausible,
since quickly-occurring drastic adaptation of visual nodes
that receive activation through the presentation of visual
stimuli seems counter intuitive - when looking at more than
one dog, one certainly still sees the dogs.

Simulation 1

This simulation investigated possible effects of visual
context via the implementation of neural adaptation. The
SOMs were trained according to the previous section;
thereafter associations between SOMs were established. In
this particular simulation, cross-associations were formed
using a ratio of 85% basic level and 15% subordinate level
labelling events for each visual stimulus, thereby
representing items for which caregivers predominantly use
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basic level terms in labelling situations. For example,
imagine an object “poodle”, which would typically be
named “dog” in 85% and “poodle” in 15% of the labelling
events in acquisition.

This simulation attempted to mimic the situation of
a speaker seeing two objects from the same basic, but from
different subordinate categories (e.g. a poodle and a
Labrador, see Figure 1, right image) who named one of
those objects using either a basic or subordinate level term.
Thus, to evaluate the model's performance, 400 pairs of
visual stimuli were presented to the visual map. Each pair
consisted of a distracter (presented first) and the target
(presented one time step after). The distracter was always
from the same basic, but never from the same subordinate
level category, as the target. It was then noted, whether the
model produced a correct target label upon presentation of a
pair of visual stimuli and whether the word produced was a
basic or subordinate level term. In a control condition,
distracter and target belonged to different basic level
categories (see Figure 1, left image), simulating a speaker
wanting to identify a referent presented together with an
unrelated object.

Several simulation runs were undertaken, covering
adaptation rates for tau values from 0.15 (weak adaptation)
to 0.01 (very strong adaptation).

Simulation 1 — Results & Discussion

The results for items with a high frequency of basic level
labelling events (85%) in acquisition suggested that with
only weak adaptation (fau < 0.08) the basic level label is
preferred when a target is shown together with a distracter
from the same basic level category (see Figure 3).

Frequency of use ~ Adaptation
Input: 85% basic, 15% subordinate
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Adaptation (increasing)

Figure 3. Mean frequency of use of an item’s basic and
subordinate level labels for different rates of adaptation
across 100 simulation runs (10 per tau value). The red line
represents the percentage of subordinate, the green line the
percentage of basic terms produced. The blue line indicates
the number of subordinate terms produced in the control
condition.

For tau = 0.15, the model produced 70.07% basic
and 23.95% subordinate level terms. As adaptation rate
increased this ratio shifted towards production of

subordinate level terms. For tau = 0.07 the model produced
an almost equal amount of basic (43.75%) and subordinate
level terms (40.5%). The remaining 20% were mapping
errors. As adaptation became even more powerful,
subordinates were produced more frequently than basic
level terms, e.g. 8.4% basic and 58.75% subordinate terms
for tau = 0.02. While not taking away from the model’s
overall predictions, it still has to be noted that error rate
increased as neural adaptation became stronger, indicating
that adaptation added some noise to the system.

In the control condition, where a target was shown
alongside a distractor from a different basic level category,
almost no subordinate terms were produced, regardless of
power of adaption. The simulation predicted that, given a
sufficiently high rate of adaptation, visual context would
prompt a shift from basic to subordinate level terms used
when labelling an item.

Such a behaviour was produced through neural
adaptation: When a target and a distracter from the same
basic level category were presented to the model’s visual
map, they — via Hebbian connections - both activated the
same basic level term on the auditory map and each their
respective subordinate level term. Neural adaptation then
caused that the units representing the basic level term
(“dog”), due to being activated multiple times, to exhibit a
strong decrease in activation, such that the subordinate level
term (“poodle”) won the competition and was produced. In
the control condition, target and distracter belonged to
different basic level categories, such that no neurons were
activated twice and no adaptation took place, such that the
basic level terms won the competition.

The findings of this simulation hence suggest that a
single domain-general mechanism, like neural adaptation,
would be able to account for adult speakers’ switch from
basic to subordinate level terms of reference when
unambiguously identifying a referent alongside a distracter
from the same basic level category and the absence of such
an effect when both items belong to different basic
categories.

Simulation 2

Unlike the first simulation, this simulation dealt
with items that were mostly labelled with their subordinate
level term during acquisition (e.g. the object “eagle”, which
would be referred to with “bird” less often than with its
subordinate term “eagle”. The SOMs were formed in the
same way as in simulation 1, but trained cross-modal
associations using a ratio of 20% basic and 80% subordinate
level labelling events for each. The models performance was
also evaluated in the same way as in Simulation 1.

Simulation 2 — Results & Discussion

For items that are predominantly associated with
subordinate level terms during labelling events, we observed
a higher amount of subordinate labels (above 60%) in
production, while the frequency of basic level labels was
overall lower, as can be seen in Figure 4.
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Figure 4. Mean frequency of use of an item’s basic and
subordinate level labels for different rates of adaptation. The
red line represents the percentage of subordinate terms
produced, the green line the percentage of basic terms
produced. The blue line indicates the number of subordinate
items produced in the control condition.

Higher rates of adaptation further increased the use
of subordinate level terms, while the use of basic level terms
decreased to a minimum. A slightly higher number of false
labels was produced.

The high percentage of subordinate level terms
produced, even for lower rates of adaptation, suggested that
contextual effects were less pronounced for items that are
referred to mostly by their subordinate term in labelling
events. The lesser increase in use of subordinate terms with
increasing adaptation rate, can be explained in terms of
functional demands of the context: The subordinate level
term is already sufficient to distinguish the item in question
from other members of the same basic level category, such
that context does not require the model or the speaker to
shift to an even more specific term. It is worth noting that in
the control condition, around 55% of subordinate terms
were produced, regardless of adaptation. This suggested that
an item’s frequency of basic and subordinate labels in
production was — independent of context and neural
adaption — a function of the frequency of basic and
subordinate terms used in labelling events for that item in
acquisition. This prediction was further explored in a third
simulation.

Simulation 3

The third simulation set out to investigate the effect
of frequency of basic and subordinate level terms for an
item in acquisition on the frequency of use of the respective
terms in production. After training the SOMs, cross-modal
associations were formed via Hebbian learning upon
simultaneous presentation of visual and auditory stimuli to
the respective SOM. Each item was associated with both a
basic and a subordinate category level term. Thereafter, we
had the model form cross modal associations for a variety of
ratios of basic and subordinate labels for an item. These
ranged from 90% basic and 10% subordinate level labelling
events to the inverse where 10% of the labelling events
associated basic and 90% associated subordinate level

terms. For each ratio, the model was then tested by
presenting each visual stimulus separately and checking
whether the basic or subordinate label was produced. No
adaptation was implemented.

Simulation 3 — Results & Discussion

The findings of simulation 3, visualized in Figure
5, indicated that the ratio of use of basic and subordinate
labels for an item was a function of their frequency ratio in
acquisition. Thus, the simulation predicts that when
disregarding possible effects of context and not
implementing neural adaptation, the model will use
hierarchical category level terms based on their frequency in
acquisition when presented with a single visual stimulus.

Frequency of use ~ Frequency in acquisition

->-subordinate
basic

100;

80,

60

40

20,

Frequency of use (%)

10 20 30 40 50 60 70 80 90
Frequency of subordinates in acquisition (%)

Figure 5. Mean frequency in acquisition plotted against
frequency of use in production across 90 simulation runs.
The green line indicates percentage of use of basic, the red
line percentage of use of subordinate level labels in
production.

As seen in Figure 5, a very low frequency of
subordinate labels (less than 10%) for an item in acquisition
lead to the model not producing the subordinate form in a
neutral context at all. In the cases where the frequency of
subordinates in acquisition is between 15% and 45%,
production frequency of subordinates gradually increased. A
50/50 frequency ratio in production was reached when the
frequency ratio in acquisition was also at around 50/50.
Further shifting this ratio in acquisition towards
subordinates (50% to 90% subordinate labelling events)
reduced the production frequency of basic level terms, while
slightly increasing the frequency of subordinate terms. As
the frequency of subordinates in acquisition rose well over
50%, the model attempted to produce more subordinate
terms, but also started to produce an increasing amount of
errors - with a frequency ratio of 10% basic and 90%
subordinate level terms in acquisition, the model produced
10% basic and 60% subordinate level terms, plus 30%
incorrect subordinates.

The main findings of this third simulation are
plausible both with regards to the model’s architecture as
well as in terms of implications for speakers’ behaviour.
Since the frequency with which an item is associated with a
word during formation of the cross-modal associations has a
direct impact on the strength of the respective connection,
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we expected more frequent labelling events associating
either a basic or subordinate level label with an item to
result in a propensity for referring to that item with the
respective hierarchical term in production. The prediction is
that speakers would display a similar behaviour.

General Discussion & Conclusion

The simulations reported above showed the following:

1) When labelling an item presented together with a
distracter from the same basic level category, the model
shifts from basic to subordinate level terms.

2) A simple domain general mechanism, like neural
adaptation, can account for this shift from basic to
subordinate level labels prompted by visual context.

3) The amplitude of the effect of adaptation is stronger for
items with a higher frequency of basic level labelling events
in acquisition than for those with a lower frequency of basic
level labelling events in acquisition.

4) Frequency ratio between basic and subordinate terms in
production is a function of the frequency of basic and
subordinate labelling events for an item in acquisition.

These predictions can be tested in further
experimental studies. The simplest premise, the switch to
subordinate level terms in the presence of a distracter from
the same basic category, requires a simple picture-naming
task in which participants are required to unambiguously
identify a referent alongside either an item of the same or a
different basic category. To see whether neural adaptation is
a plausible explanation for effects of visual context, one
could contact a very similar study in which participants
always name an item by its basic label. If adaptation
occurrs, a difference in responses should arise if the target is
presented alongside a distracter from the same basic level
category and thus forcing a subordinate label.

In terms of limitations, when presented with two
subordinate items (e.g. two poodles) the current model
would fail to revert to a level of description more specific
than the subordinate. In that situation, humans might use
adjectives to reach a finer level of description, the model
would not. However, this could in principle be
accommodated by training the model with labels at multiple
levels in the hierarchy; adaptation would then cascade down
and naming would become more and more specific as the
context becomes stronger.

In conclusion, we have presented a neuro-
computational model that predicts a shift from basic to
subordinate level terms of reference for items driven by
visual context by relying on the single domain-general
mechanism of neural adaptation. The present research is a
low-level associative account of a phenomenon so far
described on a high socio-pragmatic level, but makes no
claims about the nature of the relationship between such
low-level mechanisms and richer processes, nor is it
concerned with high-level processes such as intention
reading or inferences about goals and mental states of
speakers. It rather attempts to show that high- and low-level

accounts need not be antagonistic, but can complement each
other.
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