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Abstract

Many cognitive processes appear to incorporate threshold
criteria, but when criteria are know to be random their use
may appear irrational. For example, when people’s estimates
are influenced by random anchors (Tversky & Kahneman,
1974). However Cover (1987) showed that choosing whether
a seen or unseen number was greater is improved by using a
random number as a criterion. Such Cover functions are also
the basis for solving the two-envelope problem. This solution
suggests that people’s responses should be influenced by
where a value falls in its distribution, a hypothesis supported
empirically. The anchoring and adjustment heuristic can also
be seen as application of a Cover function. Simulation can
demonstrate that adjustment towards a random anchor from
an initial random estimate will on average improve the final
estimate. Anchoring and adjustment is an example of how
Cover functions can contribute to understanding cognitive
phenomena, and may have wide applicability.

Keywords: Bayesian reasoning; anchoring and adjustment;
two-envelope problem; decision making.

Introduction

It is axiomatic that a random number cannot provide
information about another number. Unless generating
unpredictability is crucial, it therefore seems obvious that
basing a decision on a number known to be random is at
best a mistake, and at worst evidence of irrationality in
human thinking. However this is not necessarily true, and
this fact may have interesting implications for cognitive
phenomena. This can be demonstrated by considering three
problems that on the surface are quite different.

Starting with the pick the largest number problem (Cover,
1987) the concept of a Cover function has been developed: a
probabilistic decision function based on a random number.
Abbott, Davis, and Parrondo (2010) used this concept to
produce a novel solution to the two-envelope problem.
Anchoring and adjustment heuristics are of wider
psychological interest, but the same tools can be used to
demonstrate that adjusting towards a random anchor can
improve an estimate.

Demonstrating that Cover functions are a tool that can
lead to new insights into phenomena opens up the potential
for wide application. Many models of cognitive processes
involve comparisons, and under appropriate conditions
some of these may be seen as involving Cover functions.

Chater and Oaksford (2007) describe the Bayesian
approach to reasoning as proposing that it is inherently
probabilistic, although this does not necessarily imply that
the mind is a probabilistic calculating machine (p. 92).
Cover functions may in this way contribute to cognition.
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Pick the largest number

Cover (1987) presented the pick the largest number
problem in which two numbers are written on slips of paper,
Slip A and Slip B. No information is provided about the
distribution of numbers on these slips. The solver then
randomly chooses Slip A and reads the number written on
it, and then must decide whether that number is higher or
lower than the number written on the unseen Slip B. It
appears that this task cannot be done with greater than 50%
success, however Cover asserts that there is a strategy that
raises the expected rate of success above 50%.

Cover (1987) proposes that the solver randomly selects a
splitting number N according to the density function f(n),
f(n) > 0, for n e (-00,00). If the number on Slip A is less than
N then decide it is the lower number, and if greater than N
then decide it (A) is the higher number. That this will yield
expected success greater than 50% is illustrated in Table 1.
Essentially the problem concerns three random numbers A,
B, and N. The critical issue is the ordering of these three
numbers from smallest to largest, and there are six orders of
three numbers.

Table 1: Description of the six different orders of numbers
A, B, and N with the decision regarding Slip A for each case
and whether the outcome of that decision was correct or
incorrect.

Cases | Order from Decision Outcome
smallest to largest | for Slip A

1 NAB Higher Incorrect
2 NBA Higher Correct
3 ABN Lower Correct
4 BAN Lower Incorrect
5 ANB Lower Correct
6 BNA Higher Correct

In four of the six cases the solver makes the correct
decision. If A, B, and N were all selected from the same
uniform distribution then each case would be equally likely,
and thus the solver would be expected to be correct 66.67%
of the time. However the distributions of A and B do not
have to be known, all that is required to produce an
expected success rate of above 50% is that Cases 5 and 6 are
possible. When N is less than both A and B (Cases 1 and 2)
there is a 50% chance of success; when N is greater than



both A and B (Cases 3 and 4) there is also a 50% chance of
success; but when N splits the two numbers (Cases 5 and 6)
then the correct choice is made 100% of time. Therefore if
N has a distribution such that it is possible for it to split A
and B, the overall expected rate of success must be greater
than 50%. Of course if nothing is known about the
distribution of A and B, the widest possible distribution is
required for N, thus Cover proposed that it could be any real
number. Alternatively if something is known about the
distributions of A and B then a function for maximizing
success could be derived. Functions proposing decision
rules based on random criterion have been referred to as
Cover functions (McDonnell & Abbott, 2009).

Note that whereas the criterion value is random, the
decision rule that utilizes this value is not. The rule has to
specify the appropriate direction for the decision.
Essentially this solution works because it provides the
decider with a way to utilize the information content of the
seen number. There is a monotonic function between the
magnitude of a number and its probability of being the
higher number, though the shape of this function depends on
the distribution. Using a random number as input to the
decision rule provides an appropriate monotonic function
regardless of the distribution of the numbers, as long as the
distribution of N guarantees that it is possible for values of
N to be between the two numbers (i.e., Cases 5 and 6 from
Table 1 are possible). N could also be an arbitrary rather
than a truly random number, if enough is known about the
possible values of A and B an arbitrary number could be
chosen that might split them. As long as Cases 5 and 6 have
a nonzero probability, then the expected outcome will be
greater than 50%.

Informally, it is clear why the Cover function succeeds for
the largest number problem: it provides a way to exploit the
fact that the higher a number is the more likely it is to be
greater than another number. However it is hard to say how
high a given number has to be in order to decide it is higher
than an unknown number. In this way the Cover function is
a heuristic in the sense that Kahneman and Frederick (2002)
define it: it is a way of substituting an answerable question
for an unanswerable question. As long as the answerable
question is consistent with a regularity of the world, then
that heuristic should be adaptive.

The two-envelope problem

The two-envelope problem has a long history as a
mathematical puzzle. Versions were proposed by Kaitchik
(1953, pp. 133-134), but these were not the earliest.
Although he does not claim authorship of it, Zabell (1988)
stated a two-envelope version with the following
characteristics: 1) the contents of the two envelopes are X
and 2x; 2) no distribution or limit is given for X; 3) the
reasoner is randomly handfed one of the envelopes and
opens it; 4) then the reasoner is given a choice: keep the
amount observed, or trade it for the contents of the other
envelope. Before the envelope is opened the expected
outcome is:

(1) E=%X+2x)=3x2

Opening an envelope cannot change the amounts in the
envelopes so it should not matter whether you keep or trade
envelopes because to trade is equivalent to changing your
initial random choice. However, opening an envelope
containing y means that trading yields either 2y or '4y. If
each possibility has a 50% possibility then trading results in
an expected outcome equal to 5y/4. Thus, if the two
envelopes were held by two different people (as proposed
by Zabell, 1988), then it might appear that after opening
their own envelopes both people would expect to gain from
trading. This cannot be true so the problem has sometimes
been called a paradox. As Zabell and others have pointed
out, the resolution of this paradox is that the envelopes
contain two possible pairs of amounts [2y, y] or [y, 1/2y] but
they are not equally likely. The p(y|pair) is not equal to
p(pairly); the first probability is known but it is the second
that the reasoner needs. Analyzing what that probability is,
and thus what the reasoner should do, was considered to
have defied a satisfactory mathematical solution (Albers,
Kooi, & Schaafsma, 2005). So the paradox was resolved but
the problem of whether to trade remained.

Finding a solution to this problem may well be more than
just puzzle solving. McDonnell and Abbott (2009) point out
that the envelope problem has attracted wide interest in
game theory and probability theory, and that it is
paradigmatic of recent problems in physics, engineering and
economics which involve probabilistic switching between
two states. For example, it has been shown in stochastic
control theory that random switching between two unstable
states can result in a stable state (Allison & Abbott, 2001).

There is only one published paper on how people respond
to the envelope problem. Butler and Nickerson (2008)
presented participants with six different versions of the
problem. They found that participants were largely
insensitive to the logical structure of the problem. They
concluded that instead participants applied simple heuristics
or forms of folk wisdom.

A solution

Recently McDonnell and Abbott (2009) and Abbott, et al
(2010) propose a strategy that can increase the expected
outcome above that in Equation 1. The key to their approach
is to recognize that once an envelope is opened the
information regarding what it contains breaks the symmetry
that leads to Equation 1. Their starting points were Cover’s
(1987) solution to the pick the largest number problem, and
the analysis of Parrondo’s games in which two losing
strategies can be combined to produce a winning strategy if
the current state of the problem is used as a criterion
(Harmer & Abbott, 1999). Solving these types of problems
requires probabilistic switching between states.

Abbott et al (2010) supposed that opening the envelope
reveals y dollars, and the player then trades envelopes with a
probability P(y) € [0,1]. Figure 1 illustrates their analysis
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with a Markov model. From the model it can be seen that
their analysis shows that the expected return (E) when X
represents the smaller of the two amounts and 2x the larger,
will be:

E = Y%[2X P(X) + X [1-P(X)] + XP(2X) + 2X[1-P(2X)]]
= 15[3x + XP(X) — XxP(2x)]
= 3x/2 + X/2[P(X) — P(2X)]

2

Figure 1: A Markov model based on Abbott el al’s (2010) analysis. P(X) representing the probability of trading if
the value in the opened envelope is X, and P(2X) representing the probability of trading if the observed value is 2x.

Revealed amount Decision

P(x)

Open x

0.5

0.5

Open 2x

Equation 2 shows that probabilistic trading as a function
of X can raise the expected value above that expected from
either trading or keeping regardless of the observed amount
(i.e., Equation 1). Returns can only be improved if P(X) >
P(2x), that is, when the trading function is such that trading
is less likely the higher X is. Abbott, et al. (2010) show that a
monotonically decreasing function will increase the
expected outcome, and that this does not presuppose any
particular probability density function for X. Calculating the
optimal trading function requires knowing the probability
density function for X, but their analysis demonstrates that a
tendency to trade that is a negative monotonic of observed
amount can increase expected outcomes.

Thus the two-envelope problem can be seen as a variation
of the largest number problem, except now instead of the
two numbers having no specified relationship to each other
one number is twice the other. A third random criterion
number N could be proposed resulting in three numbers
with the same six possible orders as in Table 1. So a Cover
function in which the envelope is only swapped if the
observed contents are less than the random number will be a
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Outcome Expected outcome
2x La[P(x)]2x
X Ya[1-P(x)]x
X La[P(2x)]x
2x 14[1-P(2x)]2x

monotonic function that yields better expected outcomes
than Equation 1.

An empirical prediction

Abbott, et al’s (2010) model shows that the higher an
observed amount sits within the distribution of amounts, the
less likely trading should be. Thus adaptive behavior for
people faced with the two-envelope problem would be to be
less likely to trade the higher the observed is within the
distribution of possibilities. This prediction was tested by
specifying a range so that it could be said with some
confidence that participants saw an amount as high in the
distribution.

An Experiment

Where the observed contents of an envelope sit in a
distribution of possible amounts depends both on what the
amount is and what are the upper and lower limits of
possible amounts. So in Experiment 1 both the observed
amount ($10 or $100) and the limit ($200 or no limit) were



manipulated. It was predicted that the extent to which
people traded would depend on the interaction of the
observed and limit factors, such that they would be least
likely to trade when the observed was $100 and the upper
limit was $200.

Method

Participants. A total of 160 senior psychology students at
the University of Sydney participated during a practical
class focussed on reasoning.

Procedure & Materials. Participants read and responded to
the following scenario on paper (the italicized text in the
squared brackets replaced the underlined text in the relevant
condition):

Imagine that you given a choice between two envelopes
each containing a sum of money. You are told that
neither envelope could hold more than $200 [You are
told that the envelopes could contain any amount of
money], but one envelope contains exactly twice as
much money as the other. You randomly choose one of
the envelopes and open it, revealing that it contains $100
[$10]. You are told that you can either keep the $100
[$10] or take whatever is in the other envelope. What
would you do?

Participants circled whether they would keep the $100 [$10]
or trade it for whatever was in the other envelope.

Results & Discussion

Table 2 presents the proportion of participants choosing to
trade in each condition. Given that choices were
dichotomous, a logistic regression analysis was performed
on choice (0=keep, 1=trade) entering the factors of limit,
observed amount, and their interaction. The parameter for
limit was not statistically significant, Wald y*(1) = 0.525, p
= 469, but that for observed was, Wald x*(1) = 16.224, p <
.001, as was the interaction, Wald x*(1) = 3.885, p = .049.

Table 2: Proportion of participants in each condition of
Experiment 1 choosing to trade (with sample sizes).

$10 in opened $100 in opened
envelope envelope
$200 limit .80 (n=39) .32 (n=38)
unlimited .73 (n=40) .56 (n=43)

As predicted, these results showed that participants’
choices were affected by what they observed in the
envelope, in that overall there was a strong effect of amount
observed. However there was also a significant interaction
in that trading was least likely if the highest and observed
amounts were such that the largest amount possible was at
the limit. This suggests that people’s responses were
affected by where they saw the possible amounts as falling
in the distribution of amounts.
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The results of this single experiment are not definitive,
but they are consistent with the prediction derived from
Abbott, et al’s (2010) model. Thus the application of Cover
functions to problems can lead to testable predictions about
human behavior.

Anchoring and Adjustment

A phenomenon of wider interest to researchers into
cognition than the two-envelope problem is anchoring and
adjustment. This heuristic was one of the three that Tversky
and Kahneman (1974) presented in their canonical paper on
biases in human judgement. They proposed that people
often make estimates by starting from an initial value and
adjusting it to yield a final answer. Such initial values may
be suggested by the formulation of the problem or
preliminary calculations, but different starting points would
yield different estimates biased by the initial values. They
called this called anchoring.

Anchoring might occur because the anchor is considered a
reasonable estimate, so the strongest demonstrations of
anchoring as a heuristic are those in which the anchor is
explicitly random. For example, Tversky and Kahneman
(1974) describe a study in which participants were asked to
estimate various quantities such as the percentage of African
countries in the United Nations. For each quantity a number
between 0 and 100 was determined by spinning a wheel in
the presence of the participants. Participants first indicated
whether the random number was higher or lower than the
correct answer and then they estimated the quantity. When
the wheel indicated 10 the median estimates for percentage
of African countries was 25%, but when the wheel indicated
65 the median was 45%. Thus participants’ estimates were
heavily influenced by a number they knew to be random.

There is a substantial body of research on anchoring and it
is of wide interest because as Wilson, Houston, Brekke, and
Etling (1996) pointed out “it is rare to find a single,
relatively simple process that explains such diverse
phenomena.” (p. 387) By showing that people are
influenced by information that they know to be random and
arbitrary, such anchoring has been seen as an example of
human irrationality (e.g., Ariely, 2008). However there
appears to have been no analysis of whether ignoring
randomly generated anchors is in fact optimal, it has simply
been assumed.

Adjustment as a Cover function

The most impressive demonstrations of anchoring are
when a randomly selected anchor influences people’s final
estimates. These demonstrations usually involve questions
for which the participant has little idea regarding the right
answers, thus effectively any initial guess is a random
number (specific factors may determine guesses for a
particular question, but across questions guesses are
effectively random). In such cases the true answer does not
really matter and thus across questions the true answer can
also be thought of as a random number. Therefore
demonstrations of the effect of random anchors can be



thought of as analogous to the pick the greatest number
problem, with two random numbers that may be split by a
third random number. However instead of using the splitting
number to decide which of the other two numbers are
higher, the question is whether shifting the initial guess
towards the splitting number yields an estimate closer to the
true number than was the initial guess. Thus adjustment can
be seen as a type of Cover function.

I will refer to the three numbers as T (true answer), G
(initial guess), and A (anchor). As in Table 1, these three
numbers can have six different orderings. Table 3 shows
which orders would be expected to yield better estimates.
As in Table 1, four of the six cases usually yield a better
estimate when the rule “shift the guess towards the anchor”
is followed. However whereas Cases 2 and 3 are likely to
yield better estimates they are not guaranteed to because an
guess adjusted towards the anchor may leap-frog the true
value and end up further away from it than the initial guess.

Table 3: Description of the six different orders for numbers
A (anchor), G (guess), and T (true value) with for each case
the direction of adjustment from the G, and whether that
adjustment would lead to a better of worse outcome relative
to the true value.

Cases | Order from Direction of Outcome
smallest to movement of relative to
largest initial guess true value

1 TGA Higher Worse

2 GTA Higher Better
(probably)

3 ATG Lower Better
(probably)

4 AGT Lower Worse

5 TAG Lower Better

6 GAT Higher Better

Simulations

Simulation can be used to explore when adjustment
towards an anchor would be expected to improve estimates.
These simulations are not intended as being for a single
question, for which T would be fixed, but a population of
questions. In each simulation three random numbers T, G
and A were selected. To simplify these simulations all three
numbers were selected from the same uniform distribution:
integers between 1 and 1 million. A new estimate is then
calculated using the following formula:

(3) estimate = guess + S(anchor — guess)

How much to adjust the guess is not clear, so this was
determined by a parameter S (with range [0.0, 1.0]) that
determines the proportion of the distance between the
anchor and the guess that the guess is adjusted by. If S=0
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there is no adjustment, if S = 1.0 then the estimate becomes
the anchor (note that the simulations are neutral with regard
to whether the adjustment is from the guess to the anchor, or
the anchor to the estimate). Table 4 shows the results of 1
million simulations for each of a range of values of S. There
are two outcome measures: percentage of the trials in which
the adjustment moves guesses in the right direction; and the
mean size of all the adjustments (positive adjustments are
towards the true answer, negative are from the true answer).

Table 4: Results of simulations with different values of the S
parameter with percent of trials in which adjustment was in
the right direction and the mean size of all adjustments.

Value of S Adjust in right Mean adjustment
direction

.01 66.49% 1650.1
.10 65.02% 14988.4
.20 63.37% 26740.1
.30 61.67% 34916.6
40 60.12% 40217.2
.50 58.28% 41413.6
.60 56.68% 40012.5
.70 55.04% 35079.0
.80 53.41% 26889.8
.90 51.64% 14664.4
1.0 49.97% 381.5

Table 4 shows that for all levels of S up to 1.0, adjustment
is expected to improve the final estimate. The highest
percentages of adjustments in the correct direction are for
the smallest values of S. Small adjustments minimize the
chance that the adjustment will overshoot the true value
when Cases 2 or 3 in Table 3 represent the order. The
smaller S was, the closer the percentage should approach to
two-thirds (of course if S = 0 then no adjustment is made
and it cannot be in the right direction). However in terms of
the size of the improvement, the largest mean adjustment
was when S = .50. An adjustment of 41413.6 represents
4.1% of the maximum value (1 million) but given that the
average guess will be 500,000 this indicates an 8.2%
improvement in the average estimate. Thus a substantial
expected improvement can result from adjusting towards a
random anchor. Informally, it is clear that adjustment works
for the same reason the solutions to the greater number and
two-envelope problems work: they provide people with a
way to exploit the fact that high numbers tend to be high.
Thus improvement in each can result from applying a Cover
function as an adaptive heuristic

This result is not dependant on G, T and A having the
same distributions, however once this assumption is relaxed



it is possible to give them distributions in which adjustment
will not be expected to yield a better estimate (e.g., when A
has a higher mean than G, and T a lower mean that G, and
these discrepancies are large). Also adjustment will be less
effective when G and T are positively correlated. The aim of
these simulations is not to show that adjustment is an
effective heuristic under all conditions, but instead to show
that it is false to assume that adjusting towards a random
anchor is inherently irrational.

General Discussion

This analysis has implications both for the particular
phenomena considered and more generally for reasoning
and decision making.

This analysis is not intended to address most of the issues
examined by the large literature on anchoring and
adjustment. However an assumption of this literature is that
any influence of a random anchor on people’s decisions
must be an error, and it is this assumption that the analysis
demonstrates is incorrect. Seeing such anchoring and
adjustment as beneficial may suggest new directions for
research. For example, the analysis suggests there are
parameters for which adjustment towards an anchor would
not be expected to improve estimates, examination of such
parameters could be the basis of predictions regarding when
people will be most influenced by anchors. The results of
the experiment on the two-envelope problem illustrate how
Cover function solutions can lead to empirically testable
predictions. In my own work on how belief in the hot hand
is adaptive (Burns, 2004) I showed how such an approach
can change the sorts of questions asked about it.

However this paper is intended to be only a demonstration
of how the concept of Cover functions could apply to
psychologically interesting phenomena. That decisions can
be improved by utilizing a random criterion, is a result that
could have implications for understanding a number of
phenomena. In both perception and decision making,
criteria with little validity might be used with adaptive
success, especially initially. Cover functions suggest that
criteria do not necessarily need to be based on any
knowledge in order to be useful, even if only for
bootstrapping a system.

To the extent that phenomena such as anchoring may
show that people utilize Cover functions, they support a
Bayesian approach to reasoning, even if they are not
Bayesian models themselves. As Oaksford and Chater
(2007) show, when reasoning is seen as probabilistic and
based on taking advantage of the distribution of information
in the environment then behavior previously regarded as in
error can be shown to be rational. The analyses presented
here are consistent with the claim that people may be
making decisions consistent with sensitivity to the
distributions of the numbers representing anchors and the
numbers they are asked to estimate. Stanovich (1999)
pointed out that the rationality of human reasoning has often
been judged by how close that reasoning has been to what
was considered normatively correct. However often little
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analysis has informed declarations of what is normative, and
Bayesian approaches have the potential to correct this.
Cover functions support such analyses and provide a
potentially useful tool for modeling a range of cognitive
functons.
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