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Abstract 

Many cognitive processes appear to incorporate threshold 
criteria, but when criteria are know to be random their use 
may appear irrational. For example, when people’s estimates 
are influenced by random anchors (Tversky & Kahneman, 
1974). However Cover (1987) showed that choosing whether 
a seen or unseen number was greater is improved by using a 
random number as a criterion. Such Cover functions are also 
the basis for solving the two-envelope problem. This solution 
suggests that people’s responses should be influenced by 
where a value falls in its distribution, a hypothesis supported 
empirically. The anchoring and adjustment heuristic can also 
be seen as application of a Cover function. Simulation can 
demonstrate that adjustment towards a random anchor from 
an initial random estimate will on average improve the final 
estimate. Anchoring and adjustment is an example of how 
Cover functions can contribute to understanding cognitive 
phenomena, and may have wide applicability.  

Keywords: Bayesian reasoning; anchoring and adjustment; 
two-envelope problem; decision making. 

Introduction 
It is axiomatic that a random number cannot provide 

information about another number. Unless generating 
unpredictability is crucial, it therefore seems obvious that 
basing a decision on a number known to be random is at 
best a mistake, and at worst evidence of irrationality in 
human thinking. However this is not necessarily true, and 
this fact may have interesting implications for cognitive 
phenomena. This can be demonstrated by considering three 
problems that on the surface are quite different.  

Starting with the pick the largest number problem (Cover, 
1987) the concept of a Cover function has been developed: a 
probabilistic decision function based on a random number. 
Abbott, Davis, and Parrondo (2010) used this concept to 
produce a novel solution to the two-envelope problem. 
Anchoring and adjustment heuristics are of wider 
psychological interest, but the same tools can be used to 
demonstrate that adjusting towards a random anchor can 
improve an estimate.  

Demonstrating that Cover functions are a tool that can 
lead to new insights into phenomena opens up the potential 
for wide application. Many models of cognitive processes 
involve comparisons, and under appropriate conditions 
some of these may be seen as involving Cover functions.  

Chater and Oaksford (2007) describe the Bayesian 
approach to reasoning as proposing that it is inherently 
probabilistic, although this does not necessarily imply that 
the mind is a probabilistic calculating machine (p. 92). 
Cover functions may in this way contribute to cognition. 

Pick the largest number 
Cover (1987) presented the pick the largest number 

problem in which two numbers are written on slips of paper, 
Slip A and Slip B. No information is provided about the 
distribution of numbers on these slips. The solver then 
randomly chooses Slip A and reads the number written on 
it, and then must decide whether that number is higher or 
lower than the number written on the unseen Slip B. It 
appears that this task cannot be done with greater than 50% 
success, however Cover asserts that there is a strategy that 
raises the expected rate of success above 50%.  

Cover (1987) proposes that the solver randomly selects a 
splitting number N according to the density function f(n), 
f(n) > 0, for n є (-∞,∞). If the number on Slip A is less than 
N then decide it is the lower number, and if greater than N 
then decide it (A) is the higher number. That this will yield 
expected success greater than 50% is illustrated in Table 1. 
Essentially the problem concerns three random numbers A, 
B, and N. The critical issue is the ordering of these three 
numbers from smallest to largest, and there are six orders of 
three numbers. 

 
Table 1: Description of the six different orders of numbers 
A, B, and N with the decision regarding Slip A for each case 
and whether the outcome of that decision was correct or 
incorrect. 

Cases Order from 

smallest to largest 

Decision 

for Slip A 

Outcome 

1 N A B Higher Incorrect 

2 N B A Higher Correct 

3 A B N Lower Correct 

4 B A N Lower Incorrect 

5 A N B Lower Correct 

6 B N A Higher Correct 

 
In four of the six cases the solver makes the correct 

decision. If A, B, and N were all selected from the same 
uniform distribution then each case would be equally likely, 
and thus the solver would be expected to be correct 66.67% 
of the time. However the distributions of A and B do not 
have to be known, all that is required to produce an 
expected success rate of above 50% is that Cases 5 and 6 are 
possible. When N is less than both A and B (Cases 1 and 2) 
there is a 50% chance of success; when N is greater than 
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both A and B (Cases 3 and 4) there is also a 50% chance of 
success; but when N splits the two numbers (Cases 5 and 6) 
then the correct choice is made 100% of time. Therefore if 
N has a distribution such that it is possible for it to split A 
and B, the overall expected rate of success must be greater 
than 50%. Of course if nothing is known about the 
distribution of A and B, the widest possible distribution is 
required for N, thus Cover proposed that it could be any real 
number. Alternatively if something is known about the 
distributions of A and B then a function for maximizing 
success could be derived. Functions proposing decision 
rules based on random criterion have been referred to as 
Cover functions (McDonnell & Abbott, 2009). 

Note that whereas the criterion value is random, the 
decision rule that utilizes this value is not. The rule has to 
specify the appropriate direction for the decision. 
Essentially this solution works because it provides the 
decider with a way to utilize the information content of the 
seen number. There is a monotonic function between the 
magnitude of a number and its probability of being the 
higher number, though the shape of this function depends on 
the distribution. Using a random number as input to the 
decision rule provides an appropriate monotonic function 
regardless of the distribution of the numbers, as long as the 
distribution of N guarantees that it is possible for values of 
N to be between the two numbers (i.e., Cases 5 and 6 from 
Table 1 are possible). N could also be an arbitrary rather 
than a truly random number, if enough is known about the 
possible values of A and B an arbitrary number could be 
chosen that might split them. As long as Cases 5 and 6 have 
a nonzero probability, then the expected outcome will be 
greater than 50%. 

Informally, it is clear why the Cover function succeeds for 
the largest number problem: it provides a way to exploit the 
fact that the higher a number is the more likely it is to be 
greater than another number. However it is hard to say how 
high a given number has to be in order to decide it is higher 
than an unknown number. In this way the Cover function is 
a heuristic in the sense that Kahneman and Frederick (2002) 
define it: it is a way of substituting an answerable question 
for an unanswerable question. As long as the answerable 
question is consistent with a regularity of the world, then 
that heuristic should be adaptive.  

The two-envelope problem 
The two-envelope problem has a long history as a 

mathematical puzzle. Versions were proposed by Kaitchik 
(1953, pp. 133-134), but these were not the earliest. 
Although he does not claim authorship of it, Zabell (1988) 
stated a two-envelope version with the following 
characteristics: 1) the contents of the two envelopes are x 
and 2x; 2) no distribution or limit is given for x; 3) the 
reasoner is randomly handfed one of the envelopes and 
opens it; 4) then the reasoner is given a choice: keep the 
amount observed, or trade it for the contents of the other 
envelope. Before the envelope is opened the expected 
outcome is: 

 
(1) E = ½(x + 2x) = 3x/2 
 
Opening an envelope cannot change the amounts in the 

envelopes so it should not matter whether you keep or trade 
envelopes because to trade is equivalent to changing your 
initial random choice. However, opening an envelope 
containing y means that trading yields either 2y or ½y. If 
each possibility has a 50% possibility then trading results in 
an expected outcome equal to 5y/4. Thus, if the two 
envelopes were held by two different people (as proposed 
by Zabell, 1988), then it might appear that after opening 
their own envelopes both people would expect to gain from 
trading. This cannot be true so the problem has sometimes 
been called a paradox. As Zabell and others have pointed 
out, the resolution of this paradox is that the envelopes 
contain two possible pairs of amounts [2y, y] or [y, 1/2y] but 
they are not equally likely. The p(y|pair) is not equal to 
p(pair|y); the first probability is known but it is the second 
that the reasoner needs. Analyzing what that probability is, 
and thus what the reasoner should do, was considered to 
have defied a satisfactory mathematical solution (Albers, 
Kooi, & Schaafsma, 2005). So the paradox was resolved but 
the problem of whether to trade remained.  

Finding a solution to this problem may well be more than 
just puzzle solving. McDonnell and Abbott (2009) point out 
that the envelope problem has attracted wide interest in 
game theory and probability theory, and that it is 
paradigmatic of recent problems in physics, engineering and 
economics which involve probabilistic switching between 
two states. For example, it has been shown in stochastic 
control theory that random switching between two unstable 
states can result in a stable state (Allison & Abbott, 2001).  

There is only one published paper on how people respond 
to the envelope problem. Butler and Nickerson (2008) 
presented participants with six different versions of the 
problem. They found that participants were largely 
insensitive to the logical structure of the problem. They 
concluded that instead participants applied simple heuristics 
or forms of folk wisdom. 

A solution 
Recently McDonnell and Abbott (2009) and Abbott, et al 

(2010) propose a strategy that can increase the expected 
outcome above that in Equation 1. The key to their approach 
is to recognize that once an envelope is opened the 
information regarding what it contains breaks the symmetry 
that leads to Equation 1. Their starting points were Cover’s 
(1987) solution to the pick the largest number problem, and 
the analysis of Parrondo’s games in which two losing 
strategies can be combined to produce a winning strategy if 
the current state of the problem is used as a criterion 
(Harmer & Abbott, 1999). Solving these types of problems 
requires probabilistic switching between states. 

Abbott et al (2010) supposed that opening the envelope 
reveals y dollars, and the player then trades envelopes with a 
probability P(y) є [0,1]. Figure 1 illustrates their analysis 
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(2) E = ½[2x P(x) + x [1-P(x)] + xP(2x) + 2x[1-P(2x)]] with a Markov model. From the model it can be seen that 
their analysis shows that the expected return (E) when x 
represents the smaller of the two amounts and 2x the larger, 
will be: 

  = ½[3x + xP(x) – xP(2x)] 
  = 3x/2 + x/2[P(x) – P(2x)] 
 

 
 
Figure 1: A Markov model based on Abbott el al’s (2010) analysis. P(x) representing the probability of trading if 
the value in the opened envelope is x, and P(2x) representing the probability of trading if the observed value is 2x. 
 

 
Equation 2 shows that probabilistic trading as a function 

of x can raise the expected value above that expected from 
either trading or keeping regardless of the observed amount 
(i.e., Equation 1). Returns can only be improved if P(x) > 
P(2x), that is, when the trading function is such that trading 
is less likely the higher x is. Abbott, et al. (2010) show that a 
monotonically decreasing function will increase the 
expected outcome, and that this does not presuppose any 
particular probability density function for x. Calculating the 
optimal trading function requires knowing the probability 
density function for x, but their analysis demonstrates that a 
tendency to trade that is a negative monotonic of observed 
amount can increase expected outcomes.  

Thus the two-envelope problem can be seen as a variation 
of the largest number problem, except now instead of the 
two numbers having no specified relationship to each other 
one number is twice the other. A third random criterion 
number N could be proposed resulting in three numbers 
with the same six possible orders as in Table 1. So a Cover 
function in which the envelope is only swapped if the 
observed contents are less than the random number will be a 

monotonic function that yields better expected outcomes 
than Equation 1.    

An empirical prediction 
Abbott, et al’s (2010) model shows that the higher an 

observed amount sits within the distribution of amounts, the 
less likely trading should be. Thus adaptive behavior for 
people faced with the two-envelope problem would be to be 
less likely to trade the higher the observed is within the 
distribution of possibilities. This prediction was tested by 
specifying a range so that it could be said with some 
confidence that participants saw an amount as high in the 
distribution. 

An Experiment 
Where the observed contents of an envelope sit in a 
distribution of possible amounts depends both on what the 
amount is and what are the upper and lower limits of 
possible amounts. So in Experiment 1 both the observed 
amount ($10 or $100) and the limit ($200 or no limit) were 
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manipulated. It was predicted that the extent to which 
people traded would depend on the interaction of the 
observed and limit factors, such that they would be least 
likely to trade when the observed was $100 and the upper 
limit was $200. 

Method 
Participants. A total of 160 senior psychology students at 
the University of Sydney participated during a practical 
class focussed on reasoning.  
Procedure & Materials. Participants read and responded to 
the following scenario on paper (the italicized text in the 
squared brackets replaced the underlined text in the relevant 
condition): 
 

Imagine that you given a choice between two envelopes 
each containing a sum of money. You are told that 
neither envelope could hold more than $200 [You are 
told that the envelopes could contain any amount of 
money], but one envelope contains exactly twice as 
much money as the other. You randomly choose one of 
the envelopes and open it, revealing that it contains $100 
[$10]. You are told that you can either keep the $100 
[$10] or take whatever is in the other envelope. What 
would you do? 
 

Participants circled whether they would keep the $100 [$10] 
or trade it for whatever was in the other envelope. 

Results & Discussion 
Table 2 presents the proportion of participants choosing to 
trade in each condition. Given that choices were 
dichotomous, a logistic regression analysis was performed 
on choice (0=keep, 1=trade) entering the factors of limit, 
observed amount, and their interaction. The parameter for 
limit was not statistically significant, Wald χ2(1) = 0.525, p 
= .469, but that for observed was, Wald χ2(1) = 16.224, p < 
.001, as was the interaction, Wald χ2(1) = 3.885, p = .049. 

 
Table 2: Proportion of participants in each condition of 
Experiment 1 choosing to trade (with sample sizes). 

 $10 in opened 

envelope 

$100 in opened 

envelope 

$200 limit .80 (n=39) .32 (n=38) 

unlimited .73 (n=40) .56 (n=43) 

 
As predicted, these results showed that participants’ 

choices were affected by what they observed in the 
envelope, in that overall there was a strong effect of amount 
observed. However there was also a significant interaction 
in that trading was least likely if the highest and observed 
amounts were such that the largest amount possible was at 
the limit. This suggests that people’s responses were 
affected by where they saw the possible amounts as falling 
in the distribution of amounts.  

The results of this single experiment are not definitive, 
but they are consistent with the prediction derived from 
Abbott, et al’s (2010) model. Thus the application of Cover 
functions to problems can lead to testable predictions about 
human behavior. 

Anchoring and Adjustment 
A phenomenon of wider interest to researchers into 

cognition than the two-envelope problem is anchoring and 
adjustment. This heuristic was one of the three that Tversky 
and Kahneman (1974) presented in their canonical paper on 
biases in human judgement. They proposed that people 
often make estimates by starting from an initial value and 
adjusting it to yield a final answer. Such initial values may 
be suggested by the formulation of the problem or 
preliminary calculations, but different starting points would 
yield different estimates biased by the initial values. They 
called this called anchoring. 

Anchoring might occur because the anchor is considered a 
reasonable estimate, so the strongest demonstrations of 
anchoring as a heuristic are those in which the anchor is 
explicitly random. For example, Tversky and Kahneman 
(1974) describe a study in which participants were asked to 
estimate various quantities such as the percentage of African 
countries in the United Nations. For each quantity a number 
between 0 and 100 was determined by spinning a wheel in 
the presence of the participants. Participants first indicated 
whether the random number was higher or lower than the 
correct answer and then they estimated the quantity. When 
the wheel indicated 10 the median estimates for percentage 
of African countries was 25%, but when the wheel indicated 
65 the median was 45%.  Thus participants’ estimates were 
heavily influenced by a number they knew to be random.   

There is a substantial body of research on anchoring and it 
is of wide interest because as Wilson, Houston, Brekke, and 
Etling (1996) pointed out “it is rare to find a single, 
relatively simple process that explains such diverse 
phenomena.” (p. 387) By showing that people are 
influenced by information that they know to be random and 
arbitrary, such anchoring has been seen as an example of 
human irrationality (e.g., Ariely, 2008). However there 
appears to have been no analysis of whether ignoring 
randomly generated anchors is in fact optimal, it has simply 
been assumed. 

Adjustment as a Cover function 
The most impressive demonstrations of anchoring are 

when a randomly selected anchor influences people’s final 
estimates. These demonstrations usually involve questions 
for which the participant has little idea regarding the right 
answers, thus effectively any initial guess is a random 
number (specific factors may determine guesses for a 
particular question, but across questions guesses are 
effectively random). In such cases the true answer does not 
really matter and thus across questions the true answer can 
also be thought of as a random number. Therefore 
demonstrations of the effect of random anchors can be 
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thought of as analogous to the pick the greatest number 
problem, with two random numbers that may be split by a 
third random number. However instead of using the splitting 
number to decide which of the other two numbers are 
higher, the question is whether shifting the initial guess 
towards the splitting number yields an estimate closer to the 
true number than was the initial guess. Thus adjustment can 
be seen as a type of Cover function. 

I will refer to the three numbers as T (true answer), G 
(initial guess), and A (anchor). As in Table 1, these three 
numbers can have six different orderings. Table 3 shows 
which orders would be expected to yield better estimates. 
As in Table 1, four of the six cases usually yield a better 
estimate when the rule “shift the guess towards the anchor” 
is followed. However whereas Cases 2 and 3 are likely to 
yield better estimates they are not guaranteed to because an 
guess adjusted towards the anchor may leap-frog the true 
value and end up further away from it than the initial guess.  

 
Table 3: Description of the six different orders for numbers 
A (anchor), G (guess), and T (true value) with for each case 
the direction of adjustment from the G, and whether that 
adjustment would lead to a better of worse outcome relative 
to the true value. 

Cases Order from 
smallest to 
largest 

Direction of 
movement of 
initial guess 

Outcome 
relative to 
true value 

1 T G A Higher Worse 

2 G T A Higher Better 
(probably) 

3 A T G  Lower Better 
(probably) 

4 A G T  Lower Worse 

5 T A G Lower Better 

6 G A T  Higher Better 

Simulations 
Simulation can be used to explore when adjustment 

towards an anchor would be expected to improve estimates. 
These simulations are not intended as being for a single 
question, for which T would be fixed, but a population of 
questions. In each simulation three random numbers T, G 
and A were selected. To simplify these simulations all three 
numbers were selected from the same uniform distribution: 
integers between 1 and 1 million. A new estimate is then 
calculated using the following formula: 

 
(3)     estimate = guess + S(anchor – guess) 
 

How much to adjust the guess is not clear, so this was 
determined by a parameter S (with range [0.0, 1.0]) that 
determines the proportion of the distance between the 
anchor and the guess that the guess is adjusted by. If S = 0 

there is no adjustment, if S = 1.0 then the estimate becomes 
the anchor (note that the simulations are neutral with regard 
to whether the adjustment is from the guess to the anchor, or 
the anchor to the estimate). Table 4 shows the results of 1 
million simulations for each of a range of values of S. There 
are two outcome measures: percentage of the trials in which 
the adjustment moves guesses in the right direction; and the 
mean size of all the adjustments (positive adjustments are 
towards the true answer, negative are from the true answer).  

 
Table 4: Results of simulations with different values of the S 
parameter with percent of trials in which adjustment was in 
the right direction and the mean size of all adjustments. 

Value of S Adjust in right 

direction 

Mean adjustment 

.01 66.49% 1650.1 

.10 65.02% 14988.4 

.20 63.37% 26740.1 

.30 61.67% 34916.6 

.40 60.12% 40217.2 

.50 58.28% 41413.6 

.60 56.68% 40012.5 

.70 55.04% 35079.0 

.80 53.41% 26889.8 

.90 51.64% 14664.4 

1.0 49.97% 381.5 

 
Table 4 shows that for all levels of S up to 1.0, adjustment 

is expected to improve the final estimate. The highest 
percentages of adjustments in the correct direction are for 
the smallest values of S. Small adjustments minimize the 
chance that the adjustment will overshoot the true value 
when Cases 2 or 3 in Table 3 represent the order. The 
smaller S was, the closer the percentage should approach to 
two-thirds (of course if S = 0 then no adjustment is made 
and it cannot be in the right direction). However in terms of 
the size of the improvement, the largest mean adjustment 
was when S = .50. An adjustment of 41413.6 represents 
4.1% of the maximum value (1 million) but given that the 
average guess will be 500,000 this indicates an 8.2% 
improvement in the average estimate. Thus a substantial 
expected improvement can result from adjusting towards a 
random anchor. Informally, it is clear that adjustment works 
for the same reason the solutions to the greater number and 
two-envelope problems work: they provide people with a 
way to exploit the fact that high numbers tend to be high. 
Thus improvement in each can result from applying a Cover 
function as an adaptive heuristic 

This result is not dependant on G, T and A having the 
same distributions, however once this assumption is relaxed 
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it is possible to give them distributions in which adjustment 
will not be expected to yield a better estimate (e.g., when A 
has a higher mean than G, and T a lower mean that G, and 
these discrepancies are large). Also adjustment will be less 
effective when G and T are positively correlated. The aim of 
these simulations is not to show that adjustment is an 
effective heuristic under all conditions, but instead to show 
that it is false to assume that adjusting towards a random 
anchor is inherently irrational. 

General Discussion 
This analysis has implications both for the particular 

phenomena considered and more generally for reasoning 
and decision making. 

This analysis is not intended to address most of the issues 
examined by the large literature on anchoring and 
adjustment. However an assumption of this literature is that 
any influence of a random anchor on people’s decisions 
must be an error, and it is this assumption that the analysis 
demonstrates is incorrect. Seeing such anchoring and 
adjustment as beneficial may suggest new directions for 
research.  For example, the analysis suggests there are 
parameters for which adjustment towards an anchor would 
not be expected to improve estimates, examination of such 
parameters could be the basis of predictions regarding when 
people will be most influenced by anchors. The results of 
the experiment on the two-envelope problem illustrate how 
Cover function solutions can lead to empirically testable 
predictions. In my own work on how belief in the hot hand 
is adaptive (Burns, 2004) I showed how such an approach 
can change the sorts of questions asked about it.  

However this paper is intended to be only a demonstration 
of how the concept of Cover functions could apply to 
psychologically interesting phenomena. That decisions can 
be improved by utilizing a random criterion, is a result that 
could have implications for understanding a number of 
phenomena. In both perception and decision making, 
criteria with little validity might be used with adaptive 
success, especially initially. Cover functions suggest that 
criteria do not necessarily need to be based on any 
knowledge in order to be useful, even if only for 
bootstrapping a system. 

To the extent that phenomena such as anchoring may 
show that people utilize Cover functions, they support a 
Bayesian approach to reasoning, even if they are not 
Bayesian models themselves. As Oaksford and Chater 
(2007) show, when reasoning is seen as probabilistic and 
based on taking advantage of the distribution of information 
in the environment then behavior previously regarded as in 
error can be shown to be rational. The analyses presented 
here are consistent with the claim that people may be 
making decisions consistent with sensitivity to the 
distributions of the numbers representing anchors and the 
numbers they are asked to estimate. Stanovich (1999) 
pointed out that the rationality of human reasoning has often 
been judged by how close that reasoning has been to what 
was considered normatively correct. However often little 

analysis has informed declarations of what is normative, and 
Bayesian approaches have the potential to correct this. 
Cover functions support such analyses and provide a 
potentially useful tool for modeling a range of cognitive 
functons. 
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