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Abstract

Language acquisition involves learning nonadjacent dependen-
cies that can exist between words in a sentence. Several ar-
tificial grammar learning studies have shown that the human
ability to detect dependencies between A and B in sequences
AXB is influenced by the amount of variation in the X element.
This paper presents a model of statistical learning that displays
similar behavior on this task and generalizes in a human-like
way. The model was also used to predict human behavior for
increased distance and more variation in dependencies. We
compare this model-based approach with the standard invari-
ance account of the variability effect.

Keywords: Language acquisition; statistical learning; vari-
ability; nonlocal dependencies; liquid-state machines.

Introduction

Sentences in natural language are not just sequences of in-
dependent words. Dependencies can hold between immedi-
ately adjacent words or between words at a distance. Lan-
guage acquisition involves learning which dependencies are
syntactically required to form grammatical sentences. We
call a sequence of words in which the final element depends
on the identity of the initial element a frame. Frames are
quite common in natural language. In tense morphology, in-
flectional morphemes depend on the subject auxiliary, e.g.,
in ‘X is VERB-ing Y’. The category VERB is highly vari-
able whereas the frame itself is rigid and highly frequent.
Nonlocal dependencies are also created by noun-verb number
agreement, e.g., in ‘the Xs on the table are Y’ where depen-
dent elements (plural marker and auxiliary) can be separated
by prepositional phrases or relative clauses. Furthermore, it
has been argued that frequent three-word frames such as ‘You
X it’ may enable children to induce word categories X and
thus solve the bootstrapping problem (Mintz, 2003), in par-
ticular if frame elements are function words (Leibbrandt &
Powers, 2010). In all these examples, patterns of highly in-
variant nonadjacent words are separated by highly variable
lexical material (fillers).

In the artificial grammar learning paradigm (AGL) several
recent studies have investigated how the learning of nonadja-
cent dependencies is modulated by the amount of variation in
the middle slot (Gémez, 2002; Gémez & Maye, 2005; Onnis
et al., 2003, 2004). These studies found a variability effect
in adults and children, and across modalities. In Onnis et
al. (2003), for instance, adult subjects were exposed to 432
nonce word strings of the form A;X;B; where i € {1,2,3}
and X; was drawn from sets of various sizes (1, 2, 6, 12, or
24). Subsequently, subjects had to judge the grammaticality
of strings that were in the training set (e.g., A1 X4B;) and of
strings in which dependencies were violated in that the final
element did not match the initial element (e.g., A2X9B3). The
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Figure 1: The variability effect in learning nonadjacent de-
pendencies (data reproduced from Onnis et al. 2003).

results of this experiment are depicted in Figure 1. In condi-
tions of high variability (12 and 24), dependency learning was
significantly better than for medium variability (6). The high-
est accuracy was observed when there was no variation in the
middle element (1). Manipulating the amount of variability
in the fillers resulted in a U-shaped behavioral pattern.

The experiment was designed to exclude surface distribu-
tional properties as explanatory factors. In all variability con-
ditions, for example, each A..B frame occurred the same num-
ber of times in training, ruling out a frequency-based account
of the variability effect. Other statistical cues such as type fre-
quency and forward transitional probabilities were similarly
uninformative (see Figure 2). This suggests that mechanisms
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Figure 2: Statistical cues do not explain variability effects.

of statistical learning which rely on frequency and N-gram
information may not be able to account for the learning of
nonadjacent dependencies in humans. The only information
that was useful in this task was the identity of the frame initial
elements. Learners had to attend to these elements and ignore
the ‘noise’ in the middle position. Why did this strategy work



better in some conditions than in others? Onnis et al. (2003)
argued that learners attempt to seek invariance in the input.
When variability is high, dependencies stand out as invariant
against the fillers and get noticed. When there is no varia-
tion in fillers, fillers stand out against the variable frames and
attention focuses on dependencies in these frames. In condi-
tions of medium variability, neither frames nor fillers attract
special attention leading to poorer performance. Hence, the
authors explained the U-shaped behavior by means of an at-
tentional mechanism that tries to detect figure-ground rela-
tionships in the input. While this explanation works to ac-
count for the big picture, some more fine-grained aspects of
the data are left unexplained. For low variability (2), for ex-
ample, the difference in the number of frames and fillers is
smaller than for variability 6, and yet performance was better.
Secondly, no significant difference between variabilities 12
and 24 was found, although the invariance account predicts
that more variation in fillers should facilitate learning here.
Thus the postulated attentional mechanism may not fully ex-
plain behavioral differences between conditions.

In this paper we present a connectionist model that repli-
cates human performance on the dependency learning (and
generalization) task. The model suggests an alternative, simi-
larity-based explanation of the variability effect that does not
involve the role of attention. Differences in model behavior
resulted from the nature of information states induced by the
input stream: variability in the fillers exerted two opposing
forces which conspired to produce the U-shaped pattern in a
single-route mechanism. The model allowed us to make pre-
cise, quantitative predictions when the number of frames and
the dependency distance were increased. We conclude with a
discussion of our approach.

The liquid-state framework

Liquid-state machines (LSM for short) are recurrent neural
networks which are modelled on the information process-
ing characteristics of the cerebellum (Maass et al., 2002).
Their defining characteristic is a sparsely and randomly con-
nected reservoir of neuron-like units (liquid) which turns a
time-varying input signal into a spatio-temporal pattern of
activations (Figure 3). Recurrence in the liquid equips the
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Figure 3: Schematic representation of a liquid-state machine.
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model with a working memory of past inputs that is degrad-
ing over time (similar to the context layer of an SRN, see
Elman, 1990).

A liquid state is a vector of liquid-size in which each po-
sition corresponds to the activation value of one unit in the
reservoir. During processing the liquid state is updated ac-
cording to the formula

Z2(t+ 1) = o(Wygz(t) + Winx) (1)

where z(¢) is the liquid state at time ¢, wy, is the connection
matrix of the liquid, w;, is the connection matrix from the
input units to the liquid, x is the current input, and G is the
activation function of units in the liquid (in our implementa-
tion tanh). The liquid consisted of 60 units and connectivity
was set to 10%. To make the liquid state-forgetting (Jaeger,
2001), the spectral radius of w;, was clamped to 0.9 and the
connection matrix was scaled accordingly.

Input to the model was encoded using ten units. Each sym-
bol in the language was represented by five randomly chosen
units of the input layer. These were switched to 1, the rest
to 0. The same distributed encoding was used to represent
target symbols at the output layer. The model’s output was
decoded by mapping the five most active units to 1, the others
to 0. To predict a target element correctly, the decoded output
pattern had to match the target’s encoding exactly. Thus, the
model was not guaranteed to predict elements of the appro-
priate class (A, X or B) in each position. It had to learn word
classes and positional information from the input.

A sequence of inputs to an LSM induces a diverse range of
nonlinear dynamics in the liquid. In order to compute with
an LSM, a set of linear output units is calibrated to map the
internal dynamics to a stable, desired output. Calibration (or
training) can be achieved by adjusting w,,,, the weights from
the input and liquid to the output layer, using multiple linear
regression

Wou = (S'8)71S'T (2)

where S is the collection of internal states during the pre-
sentation of an input sequence (and S’ its transpose), and T
is the matrix of targets that the model is intended to pro-
duce. In other words, to train an LSM an input sequence is
passed through the liquid once and subsequently the read-out
weights are adapted such that the sum of squared residuals is
minimized at the output layer. All other weights in the model,
most importantly the liquid itself, remain unchanged. Regres-
sion training boils down to matrix inversion which is cheap
to compute. To avoid singularity a small amount of Gaussian
noise (u =0, o2 = 0.001) was added to each bit of an input
pattern. This proved sufficient to ensure that the inverse (of
§'S) always existed.

LSMs have previously been used in natural language pro-
cessing tasks, e.g., in speech recognition (Triefenbach et
al., 2011), grammar learning (Tong et al., 2007; Frank &
Certiansky, 2008) and reading time prediction (Frank & Bod,
2011). We present the first application of these models that
aims at explaining a particular psycholinguistic phenomenon.



Learning and generalization

The model was trained on artificial languages similar to those
used in the AGL studies—three frames A..B interspersed with
X elements drawn from sets of various sizes (1, 2, 6, 12 and
24). For each level of variability, all grammatical strings were
generated, they were concatenated in randomized order, and
these blocks were repeatedly presented to the model for a to-
tal of 432 strings. To mimic the 750ms pause between items
in the human experiments, each string AX B was followed by
an end-of-sentence marker P. As in the AGL studies, the
model received the training set as one continuous input stream
without being reset between items. The test procedure dif-
fered from the human task of judging the grammaticality of
strings. The model rather had to predict the next element in a
test sequence, and was evaluated on how well it predicted the
dependent elements (Bs). The test set consisted of all string
types that the model had encountered in training. Individual
differences in human subjects were simulated by randomiz-
ing the distributed input representations between model runs.
This also minimized the risk of observing behavior that was
an artefact of a particular encoding. Results were averaged
over 12 model subjects as in the AGL experiments.

After training, the model was ‘well-behaved’ in that it had
learned the transitional probabilities for both A and X ele-
ments in each variability condition. This indicates that the
training procedure was adequate to track adjacency informa-
tion in the input. Predicting the B elements in trained items,
the model displayed a U-shaped curve which was qualita-
tively similar to human subjects (Figure 4), although perfor-
mance was substantially better in high variability conditions
(12 and 24) and worse for variability 6. Overall, though, the
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Figure 4: The model showed U-shaped performance similar
to humans when tested on trained strings AXB.

model matched the human data on how dependency learning
is influenced by filler variability quite well.

Onnis et al. (2004) investigated whether there was also a
variability effect when subjects had to generalize to novel
items. Tested strings now contained fillers X that did not oc-
cur in training. The model’s ability to generalize was mea-
sured in a similar way, by testing on 6 strings composed of
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familiar frames with novel X elements (e.g., A2X31B2). On
this task, the model again closely matched human behavior
for zero and high variability, although it did not generalize
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Figure 5: U-shaped performance for strings with novel fillers
X (human data not available for variability 6 and 12).

nearly as well as humans for medium variability (Figure 5).
In both test conditions—trained and novel fillers—the model
amplified human differences between variabilities but showed
considerable qualitative similarities with the data.

Robustness

Neural network models are often sensitive to small changes in
parameters, initialization, and training conditions. We found
that the LSM was very consistent in its behavior. Changes in
the language encoding, liquid size, percentage connectivity,
spectral radius, and amount of noise did not essentially alter
the model’s U-shaped behavior, although, of course, perfor-
mance was closer to the human data in some settings than
in others. In similar vein, varying the total number of cy-
cles through randomized blocks of stimuli or the time-scale
of updating the liquid did not lead to a qualitative change in
behavior. It was almost impossible to erase the characteris-
tic differences except when the liquid was so small that the
model did not learn dependencies above 10% in any condi-
tion. This suggests that the LSM had a strong architectural
propensity to differentially respond to relevant information
depending on the amount of variation in the input.

Model analysis

The critical information that was used to train the LSM was
contained in the states of the liquid while the input sequence
was passed through it. If inputs were sufficiently similar they
caused the liquid to assume similar states and eventually got
mapped to the same output; if inputs were sufficiently dis-
similar the liquid separated them at the output. To analyze
the model’s behavior, internal states were recorded during
the input phase, a principal components analysis was con-
ducted, and the liquid was visualized by projection into a
two-dimensional principal subspace. After presentation of an
X element, the liquid entered a state from which a dependent



element had to be predicted (B-state for short). For zero vari-
ability, variation in B-states derived entirely from distinct A
elements whereas in the other conditions also differences in
X elements added variation. As variability increased from 1
to 24, the regions from which identical B elements had to be
predicted increased in size because distinct X elements sent
the liquid into distinct states. This steady increase in state dis-
persion was measured as the average Euclidean distance of a
B-state region from its centroid. At the same time, increasing
variation in X elements provided more and more distinct data
points in each such region. Thus, variability had two oppo-
site effects on the information states that the model used to
predict B elements. B-state regions that mapped to identical
dependencies grew larger and simultaneously became filled
more densely with relevant training data (see Figure 6). When
combined, these two forces—dispersion and density—could
explain U-shaped performance.

Since trained B-states resulted from a continuous stream of
input sentences, and tested B-states from presenting a single
test sentence, the former always deviated slightly from the lat-
ter. In testing, the model could correctly predict a dependent
element if the corresponding B-state was sufficiently close to
a B-state that the model had assumed in training. For zero
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Figure 6: B-states in training (dots) and testing (crosses) for
three levels of variability; simplified depiction.

variability, B-states clustered in a small region of state space
that contained many data points because there were 144 cy-
cles through the training set in this condition (Figure 6, left).
B-states in testing mostly fell into this region (and the model
made a correct prediction) due to the lack of variation in the
X element. For high variability, B-states spanned a larger re-
gion of state space, with distinct data points deriving from all
trained items with a different X element. As a consequence,
the training algorithm adapted the entire region of state space
to map onto the same B element (Figure 6, right). This made
the model highly robust for variability 24, especially in the
generalization task with novel X elements. When variabil-
ity was medium (Figure 6, center), states that mapped to the
same B were scattered in isolated clusters across state space
(one for each distinct X element) and these clusters each con-
tained less data points than in the zero variability condition.
When B-states in testing fell outside these regions, the model
could not interpolate the dependent element as in the high
variability condition, and hence accuracy was lower.

To verify that this was the correct analysis, we derived
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three predictions that were then tested experimentally. For
zero variability, prediction accuracy should drop when there
is only one cycle through the training set. Now there is only
a single data point in the circular region of Figure 6 (left) to
which the model is adapted in training, and B-states induced
in testing are not entirely congruent. High variability condi-
tions, on the other hand, should be less affected by the num-
ber of cycles. This was confirmed in that accuracy in the zero
variability condition dropped to 0% and remained above 90%
for variability 24. Secondly, imposing a large amount of noise
on the liquid’s internal states should increase the area of B-
state regions in training and thus make the model more fault-
tolerant. In conditions of medium variability, this should im-
prove prediction success, and indeed the model reached al-
most 100% accuracy on trained items for variability 6. And
third, the model should also achieve very high accuracy when
variability is increased to 48 because the critical B-state re-
gion should become even more densely filled with training
data than for variability 24. This prediction was confirmed as
well, the model reached above 90% accuracy on both trained
and novel items when variability was increased to 48.

Apart from these factors, the choice of learning algorithm
can have a strong influence on neural network behavior. Thus,
it is possible that the reported results were mainly due to
regression training. To determine the role that the training
regime played in creating the observed behavior, we com-
pared the LSM with a feed-forward network. This network
had the liquid replaced by a non-recurrent hidden layer but
was identical otherwise. Without recurrence, the model did
not implement a working memory and hence could not pre-
dict dependent elements above chance. Nonetheless, if re-
gression training played a crucial role we would also expect
to witness similar U-shaped accuracy in the feed-forward net-
work (relative to chance level performance which was iden-
tical in all conditions). We found that this was not the case;
model performance peaked for variability 6, and was lowest
for variability 24. For novel items, there was a steady decline
in accuracy from zero to high variability. This control experi-
ment suggests that the effect of differences in filler variability
on dependency learning was caused by the properties of the
liquid and not by the training algorithm that was used.

Novel predictions

Frames in natural language can be more diverse than in the
AGL experiments, and dependencies can be separated by
more than one word. We therefore tested the model in condi-
tions of increased frame variability and dependency distance.

Increased frame variability

According to the standard explanation of the variability ef-
fect, learners seek to identify invariance in the input (Onnis
et al., 2003, 2004). When variability in X is high, the frames
A..B stand out as invariant against the X elements. When vari-
ability in X is zero, the focus shifts on the variation in frame
dependencies. In conditions of medium variability, the num-
ber of frames and fillers is similar, which makes it difficult



for the learner to detect dependencies and this results in lower
performance. To assess this account in the model, the number
of A..B frames in the language was doubled. If the invariance
account is correct, we should observe improved performance
for variabilities 1 and 2 because the frame-to-filler ratio in-
creases. For variability 6, we should observe a drop in perfor-
mance because having the same number of different frames
and fillers in the input should mask frame invariance. For
high variability 12 and 24, we should also observe a drop in
performance because the difference in the number of frames
and fillers is less distinct. Figure 7 shows the model’s learn-
ing behavior for six frames compared to the results of Fig-
ure 4 for three frames. For high variability (12 and 24) there
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Figure 7: Performance increased for medium variability when
the number of frames was doubled.

was no performance difference and for medium variability (6)
performance improved considerably. In the zero and low vari-
ability conditions (1 and 2), the model performed worse than
before. Thus, the U-shaped pattern persisted when depen-
dencies in the language were more complex and the results
suggest that the behavior of the LSM was not in accordance
with the predictions of the invariance account.

Increased dependency distance

In a third experiment, the model was used to investigate per-
formance for increased distance between nonadjacent ele-
ments. The input language consisted of ‘sentences’ AXY B,
where the filler chunks XY were again drawn from sets of
cardinalities 1, 2, 6, 12 or 24. The invariance account does
not make predictions for increased distance since it does not
specify the role of working memory in learning nonlocal de-
pendencies. In the model, U-shaped behavior persisted for
trained items, and to some extent also for novel filler chunks
(Figure 8). Compared to Figure 5, however, increasing the
distance led to a breakdown in generalization. A novel com-
bination of two fillers caused the model to enter regions of
state space that could not reliably be mapped to dependent
targets by the read-out units. As in the previous experiment
of increased frame variation, the most pronounced difference
occurred for variability 6. In both these experiments, there
was more variation in B-states resulting from either more
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Figure 8: Learning and generalization for increased depen-
dency distance.

frames or fillers in the input language. This variation helped
the model to better predict dependencies for variability 6 in a
way similar to the effect of adding noise to the liquid in the
control condition described in the analysis section.

General discussion

Several recent AGL studies have shown that the learning
of nonadjacent dependencies is modulated by the amount
of variation in the filler elements (Gomez, 2002; Gémez &
Maye, 2005; Onnis et al., 2003, 2004). The U-shaped pattern
found in these studies can not easily be explained by recourse
to distributional properties of the language input and is diffi-
cult to reconcile with many findings indicating that the human
language system is remarkably sensitive to transitional prob-
abilities (e.g., Saffran et al., 1996). In particular, these results
pose a challenge for statistical models of language learning
that exploit adjacency and frequency information.

To account for this data we used a liquid-state model which
is a sparsely connected, recurrent network that computes over
transient states. LSMs implement a working memory to de-
tect temporal contingencies and can be trained efficiently by
linear regression. This allowed us to study the model’s behav-
ior after exposure to the same small number of training items
as in the AGL studies. The LSM was trained off-line after
the entire input sequence had been presented. This procedure
may not be not faithful to the human experiments where im-
plicit expectations about upcoming words might be formed
during the input phase already. However, it was shown that
the training regime was not critically responsible for the ob-
served U-shaped behavior. It remains to be tested whether the
model displays similar behavior when the read-out weights
are adjusted incrementally (e.g., using perceptron learning).

The liquid-state approach provides a generic neuro-com-
putational framework for sequential processing and cognitive
modelling more broadly. The liquid is general purpose and
can be used to model an indefinite number of cognitive tasks
(even in parallel). Connectivity in the liquid is not altered
during learning and hence these models make very modest as-
sumptions about the nature of mental representations. Inputs



which are sufficiently distinct are separated by the liquid, in-
puts which are sufficiently similar are mapped to similar out-
put. In such a system, differential behavior results from the
input stream filtered through the architecture of the model,
rather than the observable symbolic properties of the input
itself. That is to say, variability in the input generates statis-
tically relevant information in the liquid—such as the density
and dispersion of information states—that is not measurable
in the input stream in terms of transitional probabilities, N-
gram frequency or the type-token ratio. The explanation we
propose for the variability effect is based on these properties
of information states. It is a hallmark of neural network mod-
els that they represent inputs as a graded pattern of activation
distributed over a set of units. In the LSM, differences and
similarities between such patterns were picked up by the re-
gression used to calibrate the read-out weights. This enabled
the model to categorize novel stimuli based on their repre-
sentational similarity with trained items. When variability in
fillers was zero, representations of test stimuli were highly
similar to those of trained items because they fell into a small
region of state space that was densely populated by train-
ing data. When variability was high, a large region of state
space was adapted to map to the same dependency in training
which again caused high similarity between trained and tested
items. For medium variability, similarity was lower because
the state space got partitioned into smaller, separate regions.
When representations of test items fell outside these regions
the model produced errors in predicting dependencies.

This similarity-based account differs from the invariance
account proposed in Onnis et al. (2003). Whereas the latter
argues that differential learning can be explained by a mecha-
nism of attentional shift that seeks to find stable patterns in a
noisy stream, the account proposed here is based on similari-
ties between information states in the learner’s working mem-
ory which are induced by training and test stimuli. The model
suggests that this might be an alternative, more parsimonious
explanation of the variability effect. Both accounts, however,
are not mutually exclusive although some of the model pre-
dictions were not in line with the invariance account. At-
tention as well as representations in working memory might
play a role in learning nonadjacent dependencies, especially
in the implicit learning paradigm in which all of the data on
the variability effect have been gathered.

We also used the LSM to obtain novel predictions for con-
ditions in which there were more frames in the language
(six instead of three) and a larger distance between depen-
dencies (two fillers instead of one). It was found that the
model displayed a similar U-shaped pattern, but shifted to-
wards lower variabilities. The most pronounced difference
occurred for medium variability where the model’s perfor-
mance improved significantly compared to the standard con-
dition (three frames, one filler). These precise, quantitative
predictions suggest a straightforward test of whether process-
ing in the model adequately captures the implicit learning
of nonadjacent dependencies in humans. In future work we
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therefore intend to assess this similarity-based, liquid-state
model account in AGL behavioral experiments.
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