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Abstract

The goal of this paper is to enhance understanding of how
bodily actions between two social partners are coordinated in
interpersonal interactions in naturalistic contexts. To this end,
we introduce information-theoretic measures as a new
approach to capturing sensorimotor dynamics in child-parent
social interaction. In particular, information flows were
measured based on a set of variables extracted from
multimodal fine-grained behavioral data in social interactions
wherein a child and a parent played with a set of novel toys.
Our results showed that information-theoretic measures can
indeed capture the inherent structure of perception and action
dynamics and further information exchange patterns can be
used to predict successful learning through child-parent
interactions. Moreover, those information flows between
sensorimotor variables reveal a set of underlying perceptual
and motor patterns with cognitively plausible explanations. In
summary, the present study represents the first steps to
connect information-theoretic measures as a mathematically
rigorous framework with embodied human communication
and cognition.
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Information Theory; Word Learning; Social Interaction.

Introduction

How do two interacting agents couple their activity? Some
forms of human collaborative and coordinated behavior
(such as maintaining a conversation, or jointly solving a
complex problem) appear to happen effortlessly as if the
participants can read each other’s mind and understand each
other’s communicative intent. At an elementary level, inter-
agent coordination depends on external (and observable)
behaviors by the participants where the behavior of one
participant influences the behavior of the other. Past
research tells us that behaviors such as eye movements,
head turns, and hand gestures are critical to this
coordination. However, very little is known about the real-
time dynamics of these behaviors in social interactions nor
about how they may be related to higher-order functions
such as making inferences about the goals and intentions of
other.

Because so little is known about the real time dynamics of
the sensory-motor behaviors on which social coordination
rests, the present study takes a bottom-up approach,
measuring multiple sensory streams — head and hand
movements as well as each participant’s view of the events
— and then attempts to determine the possible signatures of
coordination in these behaviors. The social coupling of a
toddler and a parent is an appropriate first setting for this
endeavor because the toddler as a developing system is just
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learning the relevant sensorimotor cues and thus may enable
us to see more clearly the strands that are more tightly
woven in the highly developed adult system.

The key idea of the present study is to apply information-
theoretic measures to understand the structure in the
sensorimotor dynamics of the interaction. To this end, we
conceptualize multimodal information flows between
children and parents as those between senders and receivers
in artificial communication systems (Shannon, 1948). More
specifically, the child and the parent communicate with each
other using multiple communication channels such as gaze,
pointing, speech, and hand movements. The specific goal
this study is to understand how information theoretic
measures might be used to analyze the flow and information
exchange within each participant and between participants.
For example, within an individual, do behaviors such as
looking “send” information to the hands, in the sense of
signalling a reach? Across individuals, does a hand action
by one participant send information to the gaze of the other?
And, if we can measure information flow in these ways, can
we also measure how it might change at different points in
the interaction, for example, when an object is being
named?

Historically, information theory was developed to find
fundamental limits on compressing and reliably
communicating data within single transmission channels
(Shannon, 1948). Since its inception, information theory has
found applications in many other areas, including statistical
inference, natural language processing, the evolution and
function of molecular codes, model selection in ecology,
thermal physics and other forms of data analysis(de Ruyter
van Steveninck et al., 1997). Recently, information theory
has been applied in the context of embodied autonomous
systems to help characterize the flow of information
between (neural or algorithmic) control architectures, body
and environment (Sporns & Lungarella, 20006).

Despite the recent success of information-theoretic
measures in various scientific fields, these recent advances
have not been systematically applied to human behavioral
data. Thus the present study seeks both to understand the
sensorimotor dynamics of social interactions as information
flow and to develop a mathematically rigorous framework
within which to do so.

Experiment and Data Preprocessing

Figure 1 provides an overview of the approach. We
measured multiple sensory streams with no prior
expectations that they are independent or dependent. These
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Figure 1.0verview of our approach. Sensorimotor dynamics are analyzed based on the normalized transfer entropy around naming
moments. 1) Data: Multimodal time series were collected from child-parent interactions. 2) Symbolization and information-theoretic
measure: those continuous time series were converted into symbolic sequences and information flows between those sequences were
calculated. 3) Pattern Discovery: finally we analyzed information transfer patterns between the child and the parent and discovered
psychologically interesting patterns that can lead to smooth social interaction and learning.

continuous data streams are then subjected to a
symbolization step that, in a mathematically defensible way,
partitions the continuous values into a set of discrete
categories. From these, we can further apply information-
theoretic measures by first grouping the temporal variables
according to different categorical events in the interaction,
and then measuring the information flow between and
within participants.

Before we provide further details, we briefly review the
experimental setup, the nature of the multimodal data and
data processing. More details can be found in Yu, Smith,
Shen, Peirera, & Smith (2009) and Yu & Smith (under
revision). In the experiment, the child and the parent sat
opposite each other at a small table and the parent was
instructed to interact naturally with the child, engaging the
child’s attention with the toys while naming them. The toys
and names were novel to the children. In total there were six
objects with novel shapes and solid colors and 6 to-be-
learned object names were artificial names (e.g. “bosa”,
“dodi”). Children and parents played with three objects at a
time. Eight children between 18 to 24 months of age and
their parents participated in the study.

There were two sessions of the study. In the free-play
session, parents and children played with 3 objects for 4 1.5
minute play periods. Parents were asked to play naturally
and if they named the objects, they had to use the names that
were provided by the experimenter and pre-taught to the
parents. The novel aspect of the study was the multimodal
sensing equipment worn by the participants: two head-
mounted mini cameras that were placed on both the child’s
and the parent’s foreheads, motion tracking sensors placed
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on heads, and audio recording of the parent’s speech. The
head cameras captured the dynamic visual information from
each participant’s first-person perspective.

After these play trials, the child was tested to determine
whether the child had learned any of the object names. This
name-comprehension test was performed by the
experimenter. On each trial, three objects were placed out of
reach of the child about 30 inches apart, one to the left of
the child, one in the middle and one to the right. Then the
experimenter looked directly into the child’s eyes, said the
name of one of the objects and asked for it. Direction of the
child's eye gaze was scored as indicating comprehension.
Each word was tested twice with a score ranging from 0, 1
to 2. The objects with score 0 or 2 are considered to be
unsuccessfully or successfully learned respectively.

Data Preprocessing

The data from head cameras, motion sensors and audio were
automatically annotated by various image and sensory
processing tools developed in our previous work. Technical
detailed can be found in Yu, Smith, Shen, Pereira, and
Smith (2009).

Video processing. The recording rate is 30 frames per
second and the resolution of each image frame is 720x480.
The image data is analyzed in two ways: (1) At the pixel
level, we use the saliency map model developed by Itti,
Koch, and Niebur (1998)to measure which areas in an
image are most salient based on motion and intensity. (2) At
the object level, we automatically extract visual information,
such as the locations and sizes of objects, from sensory data
in each of the two cameras. The combination of using pre-



defined simple visual objects and utilizing state-of-the-art
computer vision techniques results in high accuracy in
visual data processing.

Motion data processing. Two motion tracking sensors on
participants' heads recorded 6 degrees of freedom of their
head movements at the frequency of 240 Hz. Raw motion
data {x, y, z, h, p, r} from each sensor were grouped into
position {x, y, z} and orientation {h, p, r} groups, and then a
motion detection program was developed and used to
compute the magnitudes of both position movements and
orientation movements.

Speech processing. The parent's speech was recorded. The
speech signals were processed and we counted a spoken
utterance sentence containing an object name as a naming
moment for that object.

From Data Streams to Information Flow

We begin with multiple streams of continuous data from
sensorimotor child-parent interaction. Yet the goal is to
measure information exchange at the bit level. Thus, we
need to convert continuous time series into streams of
discrete states. From these, we can then form probabilistic
distributions of the states of each variable over time, and
apply information metrics to quantify the amount of
information in bits.

Symbolization

Symbolization is the procedure in which a continuous
data stream is converted a symbol sequence. As in the
SAX algorithm (Lin, Keogh, Lonardi, & Chiu, 2003),
we used the distribution of piecewise aggregate
approximates (PAAs) and made a uniformly
distributed symbol set based on the histogram of the
PAAs. Compared with other approaches, SAX allows
lower-bounding distance measures to be defined on the
symbolic space that are identical with the original data
space. Thus, the information loss through this
symbolization and its potential effects on subsequent
data processing is minimal. One open issue in this
process is window size; it needs to be neither too small
nor too large to capture the relevant dynamics of the
phenomena under study. Here we set the window size
to 300 msec (PAA=3), as most micro-level human
behaviors, such as gaze fixations, happen at this timing
scale.

Transfer Entropy

With symbolic representations of various derived time series
from multimodal child-parent communication, we can select
two time series and measure transfer entropy as a way to
capture information transfer between the two underlying
processes that generate these two time series. Transfer
entropy was originally proposed by Marko (1973), and has
been successfully applied to understand how much
information ~ flows  between  variables  (Massey,
1990;Schreiber, 2000; Gourevitch&Eggermont, 2007). This
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section provides some technical details in information
theoretic calculations.

For example, in order to measure the potential information
transferred by the child’s head movement to the child’s hand
actions, let X be a symbol sequence representing the child’s
head movement and Y be a symbol sequence representing
the child’s hand actions, the transfer entropy from Y to X
can be calculated through the following steps. First, let 4 be
a set of the symbols used in sequence X, and p(x) be the
probability mass function of symbol x. Entropy of sequence
X is defined by

HOO = =) p() log p(o).

XEA
Next, we calculate conditional entropy, H(X|XP), as the

entropy in sequence X given its previous values of X:
HX|XP) = — p(x, x7) log p(x|xP).

X€EAxXPEA
H(X|XP) can be viewed as the amount of information
transferred from one’s previous state to its current state in
the same sequence/process.
Further, given two processes X and Y, free information of X
given X” and ¥’ is defined by:
H(X|X?,YP)

p(x,xP,y?) log p(x|x?, yP).

x€AXPEA,YPEA
Free information captures the amount of information of X
that is not transferred from YP as Y? is given (Note in
information-theoretic measures, a variable with certainty
doesn’t contain any information).
Now that given conditional entropy and free information,
transfer entropy from Y to X is defined by

TE(Y,X) = H(X|X?) — H(X|XP,YP),
which is the information in current X coming from Y. Thus,
by subtracting free information in X which has nothing to do
with Y (as YP is given), we can obtain the amount of
information actually transferred from Y to X.
Finally, in practice, two additional steps were included to
improve calculation accuracy. The first step was to
normalize transfer entropy from Y to X with respect to the
total information in sequence X itself. In this way, we can
obtain the relative amount of information transferred by Y.
Moreover, we introduce shuffled transfer entropy TE(Y’,X)
as a bias term (Y* is a shuffled sequence of Y) to remove
accidental information captured by the information between
X and Y°, as ¥ contains the same symbols as those in Y but
those symbols are arranged in a randomly shuffled order. As
a result, the final form used in our study is called
normalized transfer entropy:

TE(Y,X) — TE(YS, X)
H(X|X?)

NTE(Y,X) =

Finding Cognitively Significant Events

If these information theoretic measures capture the structure
in the parent-child interaction, then they should be revealing



about significant behavioral events in that interaction. The
naming of objects is known to a psychologically compelling
moment in parent and child interaction and one in which the
parent and child seem to tightly coordinate attention
(Tomasello & Farrar, 1986). Accordingly, we grouped the
normalized transfer entropy sequence into three time periods
defined around naming events: 1) “during” moments
defined by the onset and offset of a naming event; 2)
“before” moments defined by 3 seconds prior to the onset of
a naming event to that onset; 3) “after” moments defined by
the offset of a naming event to 3 seconds after that offset.
In addition, we segregated those naming events into two
kinds, those that led to successful learning and those that did
not (as measured by the comprehension test after play).
Thus, the goal was to compare information transfer patterns
in successful learning with those in unsuccessful learning,
and at three particular (and critical) moments in the
interaction (before/during/after naming).

In the present paper, we selected a subset of sensorimotor
variables in the interaction, grouped them into 5 semantic
categories and reported information exchange patterns
between them: child’s perception, child’s head movements,
child’s holding action, parent’s head movements and
parent’s holding action. As shown in Figure 2, four
variables from the child’s perception (1-4) contain visual
information of named objects, such as its size, intensity
saliency, motion saliency, and its spatial location in the head
camera view. Four variables (17-20) from the child’s head
movements measures both orientational and positional
changes of the child’s head. Similarly, four variables from
the parent’s head movements (21-23) capture the dynamics
of the parent’s head. Additionally, variables 7 and 8 contain
the information on which objects held by either the child or
the parent.

The first questions we asked were whether the transfer
entropy measures captured the inherent structure of
perception versus action and of one participant versus the
other, and whether information transfer patterns in
successful learning differ with those in unsuccessful
learning. To this end, we first calculated all of the transfer
entropies between any pairs of two variables in the data set
which formed a transfer entropy matrix. Within this matrix,
each cell indicates the amount of information transferred
from one variable to the other. We viewed this transfer
entropy matrix as a similarity matrix and applied
multidimensional scaling (MDS) to recover the structure
between those variables based on their information
exchange. This data analysis procedure consists of two
steps. First, a normalized transfer entropy matrix was
converted into a symmetric dissimilarity matrix. Next,
multidimensional scaling (MDS) equipped with the constant
adding technique as in kernel Isomap (Choi & Choi, 2007)
was applied to the dissimilarity matrices.

Given we decompose and group temporal sequences into six
groups before/successful, during/successful,
after/successful, before/unsuccessful, during/unsuccessful,
and after/successful, six normalized transfer entropy

871

matrices were computed and their MDS plots were shown in
Figure 2, which reveals various patterns and dynamics
between five variable categories. In the following, we will

further  quantify  those patterns with  cognitive
interpretations.
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Figure 2. MDS plots from 6 normalized transfer entropy matrices:
(Left column) unsuccessful learning, (Right column) successful
learning. (Top) before the naming moments, (Middle) during the
moments and (Bottom) after the moments. The red ellipses are for
child’s head movement group, the blue for parent’s head
movements, and the green for child target object perception group.
7 and 8 are child’s holding and parent’s holding actions,
respectively. The ellipses show the 1.5c(standard deviation of the
group) equidistance trace from the group centers.

Child Perception and Head Movements

From Figure 2, we observe that the distances from child’s
perception to two head movement groups are changing over
time. In successful learning, the child’s perception (green) is
closer to the parent’s head movement (blue) before the
naming events. A closer distance in MDS indicates that two
groups were closely tied as there were more information
exchanges between the two groups. This suggests that the
child’s perception was strongly influenced by the parent’s
head movements right before naming in successful learning.



One possible explanation is that in successful learning,
parents either followed the child’s attention or successfully
attracted the child’s attention. This close coupling between
the parent’s head movements and the child’s perception
served a precursor for successful learning.

However, during the naming moments, the child’s
perception cluster (green) moved toward the child’s head
movement cluster (red), and then finally moved away from
both head movement clusters in Figure 2 with
approximately equal distances to both, suggesting that the
child’s head movements were closely coupled with the
child’s own perception when the child heard the target
object name in successful cases.

Successful learning

I Child Head
IF:rent Head

Unsuccessful learning

I i ld Head
I ent Head

1.5 1.5

0
after before after

0
before

during during

Figure 3. Closest distances between child’s perception and
heads movements: (Left) successful learning, (Right)
unsuccessful learning.

These distance patterns are quantified and summarized in
Figure 3. We calculated the distances between the groups
based on the closest distance between two member variables
of two groups, as a close distance between any variable pair
from the two groups indicates a link between two groups
through those two variables. As shown in Figure 3, the same
trend described in successful cases also appeared in
unsuccessful cases but the pattern is much weaker than what
happened in successful moments.

Head Movements and Holding Actions

Figure 4 (top) shows the distances between the child’s head
movements and both the child’s and the parent’s holding
actions. In successful cases (left), both the child’s and the
parent’s hand actions are directly linked to the child’s head
movements only during naming moments but not before or
after naming, suggesting a coupling of the child’s head
movements and manual actions from both participants at the
naming moments. A similar pattern also appeared in
unsuccessful learning, suggesting that the pattern is
characteristic for naming moments, being successful or not.
Moreover, one noticeable difference between successful and
unsuccessful learning is that the parent’s hand actions
consistently exchanged more information with the child’s
head movements during and after naming in unsuccessful
cases, compared with those information exchanges between
the child’s own holding actions and his own head
movements. This pattern suggests that the child’s head
movements, as an indicator of the child’s sustained
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attention, were more influenced by the parent’s (but not the
child’s own) manual actions, which turned out to have
negative effects on learning.

The bottom two plots in Figure 4 showed information
exchanges between the parent’s head movements and hand
actions from both participants. During naming moments,
there were more information flows between the parent’s
head movements and manual actions in successful cases
than those in unsuccessful cases. A direct coupling between
the parent’s head movements with manual activities can be
viewed as a metric of the parent’s engagement in interacting
with the child and in teaching object names.

Successful learning Unsuccessful learning

1.5 1.5
I Child Hand I Child Hand
BF:ent Hand IF:ent Hand
1
0.5
0 " 0 "
before  during after before  during after
1.5 1.5
B child Hand I child Hand
Parent Hand I F:ent Hand
1
0.5
0 " 0 "
before during after before during after

Figure 4. Closest distances between head and hand movements:
(Top Left) between child’s head movement and hand movements
in successful learning, (Top Right) between child’s head
movement and hand movements in unsuccessful learning, (Bottom
Left) between parent’s head movement and hand movements in
successful learning, and (Bottom Right) between parent’s head
movement and hand movements in unsuccessful learning.

Child Perception and Holding Actions

Yu, Smith, Shen, Pereira, and Smith (2009) reported that
hand movements, especially the child’s hand movements,
are dominant factors for child’s perception. However, it is
not clear how their relations are measured in terms of
transfer entropy. As shown in Figure 5, the overall pattern
between holding actions and child perception is that before
naming they are close, and then child perception moves
away from holding actions during the naming moments and
then returns back to hand actions after the naming moments.
Moreover, this trend is shown in both successful and
unsuccessful learning cases. This is a rather unexpected
result as our previous studies (Yu, Smith & Pereira, 2008)
showed that the child’s holding actions during the naming
moments can facilitate learning. Taken together with the
results illustrated in Figures 3 and 4, one plausible
explanation is that during those naming moments, the



child’s and the parent’s manual actions had direct effects (as
measured by transfer entropy) on both the child’s and the
parent’s head movements which consequentially influenced
the child’s perception. Thus, both the child’s and the
parent’s head movements played a role during the naming
moments as a link between the child’s perception and
manual actions. This additional involvement of head
movements may play a critical role in naming and therefore
learning. In contrast, right before and right after naming
moments, head movements were not involved and therefore
there were more direct information exchanges between the
child’s perception and manual actions.

Successful learning Unsuccessful learning

1.5 1.5
I Child Hand I child Hand
Parent Hand Parent Hand
1
0.5
0 . 0 !
before  during after before  during after

Figure5. Closest distances between hands and child’s perception:
(Left) unsuccessful learning, (Right) successful learning.

Discussions

The present study applied normalized transfer entropy
measures to child-parent interaction data to better
understand sensorimotor dynamics in such multimodal
interaction. We analyzed information flows between various
variables and reported how information is flowing in the
child-parent interaction, especially around the naming
events. Indeed, those information flows between
sensorimotor variables informatively reveal a set of
underlying perceptual and motor patterns which shed light
on our understanding on real-time sensorimotor dynamics,
within one participant and between two social partners, that
lead to smooth interaction and therefore successful learning.
However, we also note that, in this present approach, there
are some issues that should be handled carefully. For
example, there is a tendency to over-interpret directional
information-theoretic measures, such as transfer entropy,
because information flow itself is not causality (though it
seems like causality). Experimental studies are needed to
determine the causal mechanisms through which variables
exchange information.

A general goal of the present study has been exploring a
new venue to introduce information theoretic measures to
social and behavioral studies. This approach has already
been widely used in many other scientific fields and it
allows the quantitative statistical analysis of many disparate
systems in a mathematically rigorous way which has special
merits to understand and ground high-level social
interaction at the sensorimotor level. In addition, it provides
a framework to study and compare seemingly different
systems using the same quantitative concepts. The present
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study represents our first steps to combine multimodal fine-
grained behaviors and information-theoretic measures to
better understand coordinated behaviors.
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