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Abstract 
The goal of this paper is to enhance understanding of how 
bodily actions between two social partners are coordinated in 
interpersonal interactions in naturalistic contexts. To this end, 
we introduce information-theoretic measures as a new 
approach to capturing sensorimotor dynamics in child-parent 
social interaction. In particular, information flows were 
measured based on a set of variables extracted from 
multimodal fine-grained behavioral data in social interactions 
wherein a child and a parent played with a set of novel toys. 
Our results showed that information-theoretic measures can 
indeed capture the inherent structure of perception and action 
dynamics and further information exchange patterns can be 
used to predict successful learning through child-parent 
interactions. Moreover, those information flows between 
sensorimotor variables reveal a set of underlying perceptual 
and motor patterns with cognitively plausible explanations. In 
summary, the present study represents the first steps to 
connect information-theoretic measures as a mathematically 
rigorous framework with embodied human communication 
and cognition. 
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Introduction 
How do two interacting agents couple their activity?  Some 
forms of human collaborative and coordinated behavior 
(such as maintaining a conversation, or jointly solving a 
complex problem) appear to happen effortlessly as if the 
participants can read each other’s mind and understand each 
other’s communicative intent.  At an elementary level, inter-
agent coordination depends on external (and observable) 
behaviors by the participants where the behavior of one 
participant influences the behavior of the other. Past 
research tells us that behaviors such as eye movements, 
head turns, and hand gestures are critical to this 
coordination. However, very little is known about the real-
time dynamics of these behaviors in social interactions nor 
about how they may be related to higher-order functions 
such as making inferences about the goals and intentions of 
other.  
Because so little is known about the real time dynamics of 
the sensory-motor behaviors on which social coordination 
rests, the present study takes a bottom-up approach, 
measuring multiple sensory streams – head and hand 
movements as well as each participant’s view of the events 
– and then attempts to determine the possible signatures of 
coordination in these behaviors. The social coupling of a 
toddler and a parent is an appropriate first setting for this 
endeavor because the toddler as a developing system is just 

learning the relevant sensorimotor cues and thus may enable 
us to see more clearly the strands that are more tightly 
woven in the highly developed adult system.  
The key idea of the present study is to apply information-
theoretic measures to understand the structure in the 
sensorimotor dynamics of the interaction. To this end, we 
conceptualize multimodal information flows between 
children and parents as those between senders and receivers 
in artificial communication systems (Shannon, 1948). More 
specifically, the child and the parent communicate with each 
other using multiple communication channels such as gaze, 
pointing, speech, and hand movements. The specific goal 
this study is to understand how information theoretic 
measures might be used to analyze the flow and information 
exchange within each participant and between participants.  
For example, within an individual, do behaviors such as 
looking “send” information to the hands, in the sense of 
signalling a reach?  Across individuals, does a hand action 
by one participant send information to the gaze of the other?  
And, if we can measure information flow in these ways, can 
we also measure how it might change at different points in 
the interaction, for example, when an object is being 
named? 
Historically, information theory was developed to find 
fundamental limits on compressing and reliably 
communicating data within single transmission channels 
(Shannon, 1948). Since its inception, information theory has 
found applications in many other areas, including statistical 
inference, natural language processing, the evolution and 
function of molecular codes, model selection in ecology, 
thermal physics and other forms of data analysis(de Ruyter 
van Steveninck et al., 1997). Recently, information theory 
has been applied in the context of embodied autonomous 
systems to help characterize the flow of information 
between (neural or algorithmic) control architectures, body 
and environment (Sporns & Lungarella, 2006). 
Despite the recent success of information-theoretic 
measures in various scientific fields, these recent advances 
have not been systematically applied to human behavioral 
data. Thus the present study seeks both to understand the 
sensorimotor dynamics of social interactions as information 
flow and to develop a mathematically rigorous framework 
within which to do so. 

Experiment and Data Preprocessing 
Figure 1 provides an overview of the approach.  We 
measured multiple sensory streams with no prior 
expectations that they are independent or dependent.  These 
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continuous data streams are then subjected to a 
symbolization step that, in a mathematically defensible way, 
partitions the continuous values into a set of discrete 
categories.  From these, we can further apply information-
theoretic measures by first grouping the temporal variables 
according to different categorical events in the interaction, 
and then measuring the information flow between and 
within participants. 
Before we provide further details, we briefly review the 
experimental setup, the nature of the multimodal data and 
data processing. More details can be found in Yu, Smith, 
Shen, Peirera, & Smith (2009) and Yu & Smith (under 
revision). In the experiment, the child and the parent sat 
opposite each other at a small table and the parent was 
instructed to interact naturally with the child, engaging the 
child’s attention with the toys while naming them.  The toys 
and names were novel to the children. In total there were six 
objects with novel shapes and solid colors and 6 to-be-
learned object names were artificial names (e.g. “bosa”, 
“dodi”). Children and parents played with three objects at a 
time. Eight children between 18 to 24 months of age and 
their parents participated in the study. 
There were two sessions of the study. In the free-play 
session, parents and children played with 3 objects for 4 1.5 
minute play periods.  Parents were asked to play naturally 
and if they named the objects, they had to use the names that 
were provided by the experimenter and pre-taught to the 
parents. The novel aspect of the study was the multimodal 
sensing equipment worn by the participants: two head-
mounted mini cameras that were placed on both the child’s 
and the parent’s foreheads, motion tracking sensors placed 

on heads, and audio recording of the parent’s speech. The 
head cameras captured the dynamic visual information from 
each participant’s first-person perspective.  
After these play trials, the child was tested to determine 
whether the child had learned any of the object names. This 
name-comprehension test was performed by the 
experimenter. On each trial, three objects were placed out of 
reach of the child about 30 inches apart, one to the left of 
the child, one in the middle and one to the right. Then the 
experimenter looked directly into the child’s eyes, said the 
name of one of the objects and asked for it. Direction of the 
child's eye gaze was scored as indicating comprehension. 
Each word was tested twice with a score ranging from 0, 1 
to 2. The objects with score 0 or 2 are considered to be 
unsuccessfully or successfully learned respectively. 

Data Preprocessing 
The data from head cameras, motion sensors and audio were 
automatically annotated by various image and sensory 
processing tools developed in our previous work. Technical 
detailed can be found in Yu, Smith, Shen, Pereira, and 
Smith (2009). 
Video processing. The recording rate is 30 frames per 
second and the resolution of each image frame is 720x480.  
The image data is analyzed in two ways: (1) At the pixel 
level, we use the saliency map model developed by Itti, 
Koch, and Niebur (1998)to measure which areas in an 
image are most salient based on motion and intensity. (2) At 
the object level, we automatically extract visual information, 
such as the locations and sizes of objects, from sensory data 
in each of the two cameras. The combination of using pre-

Figure 1.Overview of our approach. Sensorimotor dynamics are analyzed based on the normalized transfer entropy around naming 
moments. 1) Data: Multimodal time series were collected from child-parent interactions. 2) Symbolization and information-theoretic 
measure: those continuous time series were converted into symbolic sequences and information flows between those sequences were 
calculated. 3) Pattern Discovery:  finally we analyzed information transfer patterns between the child and the parent and discovered 
psychologically interesting patterns that can lead to smooth social interaction and learning.  
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defined simple visual objects and utilizing state-of-the-art 
computer vision techniques results in high accuracy in 
visual data processing. 
Motion data processing. Two motion tracking sensors on 
participants' heads recorded 6 degrees of freedom of their 
head movements at the frequency of 240 Hz.  Raw motion 
data {x, y, z, h, p, r} from each sensor were grouped into 
position {x, y, z} and orientation {h, p, r} groups, and then a 
motion detection program was developed and used to 
compute the magnitudes of both position movements and 
orientation movements. 
Speech processing. The parent's speech was recorded. The 
speech signals were processed and we counted a spoken 
utterance sentence containing an object name as a naming 
moment for that object. 

From Data Streams to Information Flow 
We begin with multiple streams of continuous data from 
sensorimotor child-parent interaction. Yet the goal is to 
measure information exchange at the bit level. Thus, we 
need to convert continuous time series into streams of 
discrete states. From these, we can then form probabilistic 
distributions of the states of each variable over time, and 
apply information metrics to quantify the amount of 
information in bits. 
 

Symbolization 
Symbolization is the procedure in which a continuous 
data stream is converted a symbol sequence. As in the 
SAX algorithm (Lin, Keogh, Lonardi, & Chiu, 2003), 
we used the distribution of piecewise aggregate 
approximates (PAAs) and made a uniformly 
distributed symbol set based on the histogram of the 
PAAs. Compared with other approaches, SAX allows 
lower-bounding distance measures to be defined on the 
symbolic space that are identical with the original data 
space. Thus, the information loss through this 
symbolization and its potential effects on subsequent 
data processing is minimal. One open issue in this 
process is window size; it needs to be neither too small 
nor too large to capture the relevant dynamics of the 
phenomena under study.  Here we set the window size 
to 300 msec (PAA=3), as most micro-level human 
behaviors, such as gaze fixations, happen at this timing 
scale.  

Transfer Entropy 
With symbolic representations of various derived time series 
from multimodal child-parent communication, we can select 
two time series and measure transfer entropy as a way to 
capture information transfer between the two underlying 
processes that generate these two time series. Transfer 
entropy was originally proposed by Marko (1973), and has 
been successfully applied to understand how much 
information flows between variables (Massey, 
1990;Schreiber, 2000; Gourevitch&Eggermont, 2007). This 

section provides some technical details in information 
theoretic calculations.  
For example, in order to measure the potential information 
transferred by the child’s head movement to the child’s hand 
actions, let X be a symbol sequence representing the child’s 
head movement and Y be a symbol sequence representing 
the child’s hand actions, the transfer entropy from Y to X 
can be calculated through the following steps. First, let A be 
a set of the symbols used in sequence X, and p(x) be the 
probability mass function of symbol x. Entropy of sequence 
X is defined by 

! ! =   − ! !   log  ! !
!∈!

. 

Next, we calculate conditional entropy, ! !|!! , as the 
entropy in sequence X given its previous values of X: 

! !|!! =   − ! !, !!   log  ! !|!!
!∈!,!!∈!

. 

! !|!!   can be viewed as the amount of information 
transferred from one’s previous state to its current state in 
the same sequence/process.  
Further, given two processes X and Y, free information of X 
given Xp and Yp is defined by: 

! !|!!,!!

= − ! !, !!, !!   log  ! !|!!, !!
!∈!,!!∈!,!!∈!

. 

Free information captures the amount of information of X 
that is not transferred from !! as !! is given (Note in 
information-theoretic measures, a variable with certainty 
doesn’t contain any information).  
Now that given conditional entropy and free information, 
transfer entropy from Y to X is defined by  

!" !,! = ! !|!! − ! !|!!,!! , 
which is the information in current X coming from Y. Thus, 
by subtracting free information in X which has nothing to do 
with Y (as !! is given), we can obtain the amount of 
information actually transferred from Y to X.  

Finally, in practice, two additional steps were included to 
improve calculation accuracy. The first step was to 
normalize transfer entropy from Y to X with respect to the 
total information in sequence X itself. In this way, we can 
obtain the relative amount of information transferred by Y. 
Moreover, we introduce shuffled transfer entropy TE(Ys,X) 
as a bias term (Ys is a shuffled sequence of Y) to remove 
accidental information captured by the information between 
X and Ys, as Ys contains the same symbols as those in Y but 
those symbols are arranged in a randomly shuffled order. As 
a result, the final form used in our study is called 
normalized transfer entropy:  
 

!"# !,! =
!" !,! − !" !!,!

! ! !!
. 

Finding Cognitively Significant Events 
If these information theoretic measures capture the structure 
in the parent-child interaction, then they should be revealing 
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about significant behavioral events in that interaction.  The 
naming of objects is known to a psychologically compelling 
moment in parent and child interaction and one in which the 
parent and child seem to tightly coordinate attention 
(Tomasello & Farrar, 1986). Accordingly, we grouped the 
normalized transfer entropy sequence into three time periods 
defined around naming events: 1) “during” moments 
defined by the onset and offset of a naming event; 2) 
“before” moments defined by 3 seconds prior to the onset of 
a naming event to that onset; 3) “after” moments defined by 
the offset of a naming event to 3 seconds after that offset.  
In addition, we segregated those naming events into two 
kinds, those that led to successful learning and those that did 
not (as measured by the comprehension test after play). 
Thus, the goal was to compare information transfer patterns 
in successful learning with those in unsuccessful learning, 
and at three particular (and critical) moments in the 
interaction (before/during/after naming).  
In the present paper, we selected a subset of sensorimotor 
variables in the interaction, grouped them into 5 semantic 
categories and reported information exchange patterns 
between them: child’s perception, child’s head movements, 
child’s holding action, parent’s head movements and 
parent’s holding action. As shown in Figure 2, four 
variables from the child’s perception (1-4) contain visual 
information of named objects, such as its size, intensity 
saliency, motion saliency, and its spatial location in the head 
camera view. Four variables (17-20) from the child’s head 
movements measures both orientational and positional 
changes of the child’s head. Similarly, four variables from 
the parent’s head movements (21-23) capture the dynamics 
of the parent’s head. Additionally, variables 7 and 8 contain 
the information on which objects held by either the child or 
the parent.  
The first questions we asked were whether the transfer 
entropy measures captured the inherent structure of 
perception versus action and of one participant versus the 
other, and whether information transfer patterns in 
successful learning differ with those in unsuccessful 
learning. To this end, we first calculated all of the transfer 
entropies between any pairs of two variables in the data set 
which formed a transfer entropy matrix. Within this matrix, 
each cell indicates the amount of information transferred 
from one variable to the other. We viewed this transfer 
entropy matrix as a similarity matrix and applied 
multidimensional scaling (MDS) to recover the structure 
between those variables based on their information 
exchange. This data analysis procedure consists of two 
steps. First, a normalized transfer entropy matrix was 
converted into a symmetric dissimilarity matrix. Next, 
multidimensional scaling (MDS) equipped with the constant 
adding technique as in kernel Isomap (Choi & Choi, 2007) 
was applied to the dissimilarity matrices.  
Given we decompose and group temporal sequences into six 
groups – before/successful, during/successful, 
after/successful, before/unsuccessful, during/unsuccessful, 
and after/successful, six normalized transfer entropy 

matrices were computed and their MDS plots were shown in 
Figure 2, which reveals various patterns and dynamics 
between five variable categories. In the following, we will 
further quantify those patterns with cognitive 
interpretations.  
 

 
Figure 2. MDS plots from 6 normalized transfer entropy matrices: 
(Left column) unsuccessful learning, (Right column) successful 
learning. (Top) before the naming moments, (Middle) during the 
moments and (Bottom) after the moments. The red ellipses are for 
child’s head movement group, the blue for parent’s head 
movements, and the green for child target object perception group. 
7 and 8 are child’s holding and parent’s holding actions, 
respectively. The ellipses show the 1.5σ(standard deviation of the 
group) equidistance trace from the group centers.  
 
Child Perception and Head Movements 
From Figure 2, we observe that the distances from child’s 
perception to two head movement groups are changing over 
time. In successful learning, the child’s perception (green) is 
closer to the parent’s head movement (blue) before the 
naming events. A closer distance in MDS indicates that two 
groups were closely tied as there were more information 
exchanges between the two groups. This suggests that the 
child’s perception was strongly influenced by the parent’s 
head movements right before naming in successful learning. 
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One possible explanation is that in successful learning, 
parents either followed the child’s attention or successfully 
attracted the child’s attention. This close coupling between 
the parent’s head movements and the child’s perception 
served a precursor for successful learning. 
However, during the naming moments, the child’s 
perception cluster (green) moved toward the child’s head 
movement cluster (red), and then finally moved away from 
both head movement clusters in Figure 2 with 
approximately equal distances to both, suggesting that the 
child’s head movements were closely coupled with the 
child’s own perception when the child heard the target 
object name in successful cases.  

 
Figure 3. Closest distances between child’s perception and 
heads movements: (Left) successful learning, (Right) 
unsuccessful learning. 
 
These distance patterns are quantified and summarized in 
Figure 3. We calculated the distances between the groups 
based on the closest distance between two member variables 
of two groups, as a close distance between any variable pair 
from the two groups indicates a link between two groups 
through those two variables. As shown in Figure 3, the same 
trend described in successful cases also appeared in 
unsuccessful cases but the pattern is much weaker than what 
happened in successful moments.  

 
Head Movements and Holding Actions 
Figure 4 (top) shows the distances between the child’s head 
movements and both the child’s and the parent’s holding 
actions. In successful cases (left), both the child’s and the 
parent’s hand actions are directly linked to the child’s head 
movements only during naming moments but not before or 
after naming, suggesting a coupling of the child’s head 
movements and manual actions from both participants at the 
naming moments. A similar pattern also appeared in 
unsuccessful learning, suggesting that the pattern is 
characteristic for naming moments, being successful or not. 
Moreover, one noticeable difference between successful and 
unsuccessful learning is that the parent’s hand actions 
consistently exchanged more information with the child’s 
head movements during and after naming in unsuccessful 
cases, compared with those information exchanges between 
the child’s own holding actions and his own head 
movements. This pattern suggests that the child’s head 
movements, as an indicator of the child’s sustained 

attention, were more influenced by the parent’s (but not the 
child’s own) manual actions, which turned out to have 
negative effects on learning.  
The bottom two plots in Figure 4 showed information 
exchanges between the parent’s head movements and hand 
actions from both participants. During naming moments, 
there were more information flows between the parent’s 
head movements and manual actions in successful cases 
than those in unsuccessful cases. A direct coupling between 
the parent’s head movements with manual activities can be 
viewed as a metric of the parent’s engagement in interacting 
with the child and in teaching object names.   

 
Figure 4. Closest distances between head and hand movements: 
(Top Left) between child’s head movement and  hand movements 
in successful learning, (Top Right) between child’s head 
movement and hand movements in unsuccessful learning, (Bottom 
Left) between parent’s head movement  and  hand movements in 
successful learning, and (Bottom Right) between parent’s head 
movement and hand movements in unsuccessful learning. 
 
Child Perception and Holding Actions 
Yu, Smith, Shen, Pereira, and Smith (2009) reported that 
hand movements, especially the child’s hand movements, 
are dominant factors for child’s perception. However, it is 
not clear how their relations are measured in terms of 
transfer entropy. As shown in Figure 5, the overall pattern 
between holding actions and child perception is that before 
naming they are close, and then child perception moves 
away from holding actions during the naming moments and 
then returns back to hand actions after the naming moments. 
Moreover, this trend is shown in both successful and 
unsuccessful learning cases. This is a rather unexpected 
result as our previous studies (Yu, Smith & Pereira, 2008) 
showed that the child’s holding actions during the naming 
moments can facilitate learning. Taken together with the 
results illustrated in Figures 3 and 4, one plausible 
explanation is that during those naming moments, the 
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child’s and the parent’s manual actions had direct effects (as 
measured by transfer entropy) on both the child’s and the 
parent’s head movements which consequentially influenced 
the child’s perception. Thus, both the child’s and the 
parent’s head movements played a role during the naming 
moments as a link between the child’s perception and 
manual actions. This additional involvement of head 
movements may play a critical role in naming and therefore 
learning. In contrast, right before and right after naming 
moments, head movements were not involved and therefore 
there were more direct information exchanges between the 
child’s perception and manual actions.  

 
Figure5. Closest distances between hands and child’s perception: 
(Left) unsuccessful learning, (Right) successful learning. 

Discussions 
The present study applied normalized transfer entropy 
measures to child-parent interaction data to better 
understand sensorimotor dynamics in such multimodal 
interaction. We analyzed information flows between various 
variables and reported how information is flowing in the 
child-parent interaction, especially around the naming 
events. Indeed, those information flows between 
sensorimotor variables informatively reveal a set of 
underlying perceptual and motor patterns which shed light 
on our understanding on real-time sensorimotor dynamics, 
within one participant and between two social partners,  that 
lead to smooth interaction and therefore successful learning. 
However, we also note that, in this present approach, there 
are some issues that should be handled carefully. For 
example, there is a tendency to over-interpret directional 
information-theoretic measures, such as transfer entropy, 
because information flow itself is not causality (though it 
seems like causality).  Experimental studies are needed to 
determine the causal mechanisms through which variables 
exchange information.  
A general goal of the present study has been exploring a 
new venue to introduce information theoretic measures to 
social and behavioral studies. This approach has already 
been widely used in many other scientific fields and it 
allows the quantitative statistical analysis of many disparate 
systems in a mathematically rigorous way which has special 
merits to understand and ground high-level social 
interaction at the sensorimotor level. In addition, it provides 
a framework to study and compare seemingly different 
systems using the same quantitative concepts. The present 

study represents our first steps to combine multimodal fine-
grained behaviors and information-theoretic measures to 
better understand coordinated behaviors.  
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