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Abstract

Can people multitask optimally? We use a dual-task paradigm
in which participants had to enter digits while monitoring a
randomly moving cursor. Participants earned points for
entering digits correctly and were docked points if they let the
cursor drift outside of a target area. The severity of the
tracking penalty was varied between conditions. Participants
therefore had to decide how long to leave the tracking task
unattended. As expected, participants left the tracking task for
longer when the penalty was less severe and also when the
cursor moved less erratically. To test whether participants
were adjusting their behavior in an optimal manner, observed
behavior was compared to a prediction of the optimal visit
duration for each condition. Overall, the degree of
correspondence between the observed behavior and the
predicted optimum was very good, suggesting that people can
multitask in a near optimal fashion given explicit feedback on
their performance.

Keywords: Multitasking; Objective functions; Optimal
Performance.

Introduction

In many everyday settings people are faced with the
problem of deciding how much time to spend on a given
task or activity. For instance, should you take the time to
read this paper? This decision becomes more difficult to
make if you have several other tasks or activities that also
need to be completed. There has been a great deal of interest
recently in how people coordinate and manage multiple
tasks and activities (e.g., Payne, Dugan, & Neth, 2007;
Salvucci & Taatgen, 2011). Understanding the limits on our
abilities to multitask well has important theoretical and
practical implications. In this paper, we focus on a core
aspect of multitasking behavior: deciding how much time to
spend on a given task before switching to another. Are
people any good at making this decision in a dual-task
setting, given clear feedback on their performance?

To address this question we use an explicit payoff regime
to objectively define what good dual-task performance is in
the context of our study. Payoff regimes have been used in a
number of studies (e.g., Janssen et al., 2011; Schumacher et
al., 1999; Trommershiuser, Maloney, & Landy, 2008). One
of the benefits of using a payoff regime is that it allows
multiple task performance metrics to be combined into a
single currency (or value) that can be communicated to the
participant. For instance, in a simple stimulus-response task,
participants might be given more points for making faster
responses but docked points for making an error. The
participants’ pay might then be determined by the points
accrued during the study.
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A major benefit of using a payoff regime in an experiment
is that it provides an objective criterion against which
optimal task performance can be defined: People should
select behaviors that maximize reward (Howes, et al., 2009).
The idea that people adapt behavior to maximize reward is a
key element of a number of important theoretical
approaches to understanding human behavior, including
models based on decision theory in economics,
reinforcement learning, signal detection theory, and some
Bayesian approaches.

A recent study by Janssen, Brumby, Dowell, Chater and
Howes (2011) gives support to the idea that people can
optimally adapt their behavior in a complex dual-task
setting to maximize reward. In their study, participants had
to type a string of 20 digits while keeping a moving cursor
inside a target area. Participants were given explicit
feedback on their performance at the end of every trial using
a payoff function that integrated performance across the two
tasks into a single value. The payoff function rewarded
participants for entering the digit string quickly but
penalized them for allowing the cursor in the tracking task
to move outside of its target area. A model was developed to
identify the task interleaving strategy that would maximize
payoff for different conditions, which varied how difficult it
was to keep the cursor inside the target area. Janssen et al.
(2011) showed that participants’ observed strategies were
very near the optimal strategy for each condition.

A limitation of the Janssen et al.’s (2011) study was that
only a single payoff regime was used. A stronger test of the
hypothesis that people select behaviors that maximize
reward (e.g., Howes, et al., 2009) would be given by
varying the payoff regime and seeing whether people adapt
their behavior accordingly.

In this paper, we use a dual-task paradigm and vary the
nature of the payoff function used to reward participants.
We use a modified version of the dual-task paradigm
developed by Janssen et al (2011), in which participants had
to enter digits while keeping a moving cursor inside a target
area. As in Janssen et al.’s study, participants were rewarded
for entering digits correctly and were penalized for allowing
the cursor to drift outside of its target area. The severity of
this tracking penalty was varied between conditions, such
that participants either lost all the points gained after
entering a set of digits, half of the points gained, or incurred
a fixed penalty. Given this change in tracking penalty, we
were interested in whether participants would adjust their
task interleaving strategy in such a way as to maximize the
payoff achieved in each condition.



The current study was designed in such a way to give
participants considerable flexibility in deciding how to
allocate their time across the two tasks over an extended
period of time. In contrast, participants in Janssen et al.’s
(2011) study were required to enter 20 digits in the typing
task. Participants could do this fairly quickly, and the fixed
number of digits meant that that there was a limited space of
plausible ways to interleave the two tasks. The current study
had participants enter a continuous stream of digits while
monitoring the tracking task over a period of 120 seconds.
This meant that participants had considerably greater
freedom in deciding how long they should leave the
tracking task unattended for while entering digits.

This change in the structure of the dual-task setup from
that used in Janssen et al. (2011) meant that participants in
the current study could also be given feedback on their
performance, in terms of the number of points earned, after
every visit to the typing task as well as at the end of every
trial. We were primarily interested in whether participants
would adjust their behavior in such a way as to maximize
the cumulative payoff achieved over a trial in each
condition. To do this, we compare observed performance to
a prediction of the optimal visit duration for each condition,
which was inferred using a model of the task environment
and observations of basic task execution times.

Before describing the experiment and the results in detail,
we first briefly consider why participants might not be able
to perform optimally in this dual-task setting. In our study,
participants will receive feedback on their performance both
at the end of every visit to the typing task and at the end of
the trial. That is, they will be exposed to local feedback on
their immediate behavior and global feedback on their
overall performance. The participant’s task is to achieve the
best possible score at the end of the trial based on the
incremental accumulation of points during the trial. This is a
fairly complex assessment to make because the number of
visits that can be made in a trial is not fixed but is instead
dependent on the duration of each visit: The participant
must choose between fewer longer visits and many shorter
visits. Moreover, participants were not given explicit
information on the underlying form of the payoff function,
but instead had to evaluate their behavior after receiving
feedback. In this context, participants might meliorate by
adopting a strategy that maximizes the highest local reward
(e.g., the reward value after a single visit) rather than
finding the strategy that maximizes the cumulative reward
to be had at the end of the trial (e.g., Gureckis & Love,
2009; Neth, Sims, & Gray, 2006).

Method

Participants

Twenty Master’s students (seven female) from University
College London participated on a voluntary basis.
Participants were aged between 22 and 37 years (M = 27
years). An incentive of a £10 voucher was offered for the
participant who achieved the highest score in the study.
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Figure 1: Position of the two task windows in the interface.
Only one of the task windows was visible at a time.

Materials

A dual-task setup similar to that of Janssen et al. (2011) was
used, in which participants completed a discrete typing task
while monitoring a continuous tracking task (see Fig. 1).
Tasks were displayed on a 17-inch monitor at a resolution of
1024 by 1280 pixels, with each task being presented within
a 450 x 450 pixel area. The typing task was presented on the
left of the monitor and participants entered digits with their
left-hand using a numeric keypad. The tracking task was
presented on the right of the monitor and participants
controlled the task with their right-hand using a Logitech
Extreme 3D Pro joystick. There was a horizontal separation
of 127 pixels between the two tasks. At any moment in time
only one of the tasks was visible on the monitor. By default
the typing task was visible and the tracking task was
covered by a gray square. Holding down the trigger of the
joystick revealed the tracking task and covered the typing
task. Releasing the trigger covered the tracking task and
made the typing task visible again. Each task could only be
controlled when it was visible.

The typing task required participants to enter digits using
a numeric keypad. A continuous list of to-be-entered digits
was generated from the numbers 1 to 3 drawn in a random
order with the constraint that no digit was repeated more
than three times in a row. At any moment, 27 digits were
shown on the typing task display. As a participant typed, the
left-most digit in the list would disappear, all digits would
then move one to the left, and a new digit would appear in
the right-most position. The display would remain
unchanged if an incorrect digit were entered, meaning that
the participant did not have to rectify the error. However, a
typing penalty was applied through the payoff function.

For the tracking task participants were required to keep a
square cursor inside a circular target area. The cursor was 10
x 10 pixels and the target area had a radius of 120 pixels.
The movement of the cursor was updated every 23
milliseconds. Values were sampled from a Gaussian
distribution to determine the size of the cursor’s movement,
and the parameters on this distribution were varied between
conditions in such a way to make the cursor move about at
different speeds. Holding down the trigger of the joystick
allowed participants to see the tracking task and move the



cursor around with the joystick if they so wished. Releasing
the trigger covered up the tracking task again.

Due to the nature of the random drift function, the cursor
could move outside of the target area, and move back in
again, whilst the participant was typing. This would make it
difficult for the participant to know whether the cursor had
moved outside the target area while they had been working
on the typing task. We therefore used a change in cursor
color to make it clear whether or not the cursor had moved
outside the target area. At the start of the trial the cursor was
blue. If it moved outside of the target area during a typing
visit it changed to red. The cursor returned to blue once the
participant returned the cursor inside the target area.

Using this dual-task setup, participants completed a series
of trials, each lasting for 120 seconds. During each trial the
main decision facing the participant was to judge how long
they should leave the tracking task to enter digits.
Participants received feedback on their performance in
terms of number of points achieved under the payoff
function after each visit to the typing task. The payoff
function rewarded participants for each digit that was
correctly entered during the visit, and penalized them for
entering digits incorrectly. An additional penalty was also
applied if the cursor drifted outside of the target area during
the visit. The precise nature of the payoff function was
varied between conditions. Feedback was displayed above
the tracking task and remained visible while the tracking
task was being worked on. This allowed the participant to
evaluate their performance after each visit to the typing task.
Cumulative feedback was also given at the end of each trial.

Design

A 3x2 (payoff function x cursor noise) within-subjects
design was used. After every visit to the typing task
participants received feedback on their performance in terms
of the number of points achieved. Participants received 10
points for every digit that was typed correctly and were
docked 5 points for every digit that was typed incorrectly.
Points were also deducted if the cursor drifted outside of the
target area. The severity of this tracking penalty was varied
between conditions: Participants either lost all the points
gained for that visit (lose-all condition), half of the points
gained for that visit (lose-half condition), or incurred a fixed
penalty of 500 points (lose-500 condition).

The study also implicitly varied the amount of time that
the tracking task could be left unattended. Recall that the
movement of the cursor was updated every 23 milliseconds.
Movement values were sampled from a Gaussian function
with a mean of zero and a standard deviation of either three
(low noise condition) or five (high noise condition) pixels
per update. This meant that in the high noise condition, the
cursor moved more erratically and was more likely to travel
outside of the target area sooner than in the low noise
condition (see Fig. 2).

The dependent variable of interest was the mean visit
duration to the typing task over each trial. This measure
captures the tradeoff that participants had to make between
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Figure 2: Probability of cursor crossing the target area
boundary if left unattended during the course of a trial in
the high and low noise condition.

gaining points (by typing more digits), and losing points (by
incurring the tracking penalty) in this dual-task setting.

Procedure

Upon arrival, participants received instructions on the dual-
task setup. Crucially, they were briefed that they could gain
points in dual-task trials through fast and accurate typing
and that they would lose points by making typing errors and
by letting the cursor drift outside the target area. Participants
were not informed of the exact way in which the gain and
penalties were calculated in each condition. They were told
that the payoff function changed between blocks of trials.

At the beginning of the experiment participants were
given a chance to practice each of the tasks separately
(tracking for two trials of 10 seconds each and typing for
two trials of 20 seconds each) before being given a chance
to practice the tasks together (for two trials of 30 seconds
each). Following the practice session, participants
completed six experimental blocks (one for each condition).
For each block, participants first completed two single-task
tracking trials of 10 seconds each so that they could estimate
the speed of the cursor, and two single-task typing trials of
20 seconds each. There were then two dual-task trials of 120
seconds each. We report data from only the second of each
dual-task trial from each block (condition). In total the
experiment took about 45 minutes to complete. Participants
were given a brief break after every other block of trials.
The order in which the different payoff conditions were
experienced was randomized and counter-balanced across
different participants. The order of the noise conditions was
assigned randomly for the first two blocks, but repeated for
each payoff condition.



Model

Before describing the results of the study, we first describe
the model that was used to derive predictions for optimal
performance for each condition. We assume that optimal
performance corresponds to behavior that maximizes the
payoff achieved over the trial. In order to maximize payoff,
participants had to determine how long to make each visit to
the typing task before returning to the tracking task. If a
visit is too long, then a penalty will likely be incurred (as
the probability of the cursor leaving the target increases). If
a visit is too short, then the participant will incur needless
switch costs (from flicking back and forth between tasks).
For each condition we assume that there will be a point of
optimal gain. We formalize these intuitions with a model.

We start by formalizing the drift rate of the cursor for the
two noise conditions. Figure 2 shows the probability of the
cursor leaving the target area during a given period of time
for the two noise conditions. These functions were derived
from 3,000 simulations in which the cursor was started at
the center of the target display and left to drift for 120
seconds. We then calculated the mean distance of the cursor
from the center of the target area at each time step across
each run. As expected, the cursor was more likely to cross
the target area boundary sooner in the high noise condition.

With an estimate of the rate of drift for the tracking task,
we develop a simple model of the typing task. In order to
develop this model we take the average time it took a
participant to enter a digit. We observed that the mean
interval between two keypresses was 40 msec (SD = 10
msec) across all dual-task conditions. We therefore use this
estimate of 40 msec in the model. We also incorporated
typing errors into the model by fixing the error rate to that
which was observed across all dual-task conditions. It was
found that on average 6% of all key presses made during a
trial were incorrect. We therefore had the model make extra
(incorrect) keypresses at this rate.

After typing a number of digits, the model switched from
typing to tracking. We found that the mean visit duration to
the tracking task was 1.32 sec (SD = 0.36 sec) across the
various dual-task conditions. Based on this observation we
made the assumption that each visit to the tracking task
would always be 1.32 sec (regardless of the actual position
of the cursor). We also made the assumption that during
each visit to the tracking task, the cursor was brought back
to the center of the target area. This meant that the time for
the cursor to cross the boundary was the same for each visit.

With the basic components of the model in place we can
consider the payoff that would be achieved by making visits
of different durations to the typing task. We consider 300
simple strategies in which a consistent number of digits
were entered during each visit to the typing task display.
The number of digits entered ranged between typing one
digit per visit (frequent interleaving) to typing 300 digits in
a single visit (i.e., typing the entire trial without tracking).
To assess the success of each strategy, we calculated the
expected payoff of each strategy for each experimental
condition.

Table 1. Mean duration of visits to the typing task (in sec)
for human data and predicted optimal durations.

Low noise High noise
Half  All 500 Half  All 500
Data 575 463 403 325 247 218
Model -~ ¢59 600 481 600 361 1.6l
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Note: For the lose-500 condition the true optimal prediction was
for visit durations of 120 seconds. The reported values are for the
earlier peak in the payoff curve (see Fig. 3).

Results

We consider the mean duration of visits to the typing task
during each 120-second trial. Before presenting the results
of the modeling analysis used to identify the optimal visit
duration for each condition and whether participants
achieved it, we first consider the impact of the experimental
manipulations on performance.

Table 1 shows mean visit durations to the typing task for
the second dual-task trial for each condition. It can be seen
that participants made visits of different durations
dependent on the payoff function. On average, visits to the
typing task were longest in the lose-half condition and
shortest in the lose-500 condition. Cursor noise also had an
effect, in that, participants made shorter visits to the typing
task in the high noise condition than in the low noise
condition. For statistical analysis a 3x2 (payoff function x
cursor noise) repeated-measures analysis of variance
(ANOVA) was used, finding significant main effects of
payoff function, F(2,38)=5.1, p<.05, and cursor noise,
F(1,19)=61.12, p<.001. The interaction was not significant,
however, F<1. In short, participants were adjusting their
behavior to the different experimental conditions. We next
use the results of the modeling analysis to determine
whether the observed visit durations were optimal.

Figure 3 shows a series of data plots showing the duration
of visit to the typing task against the payoff achieved for
each condition. In each data plot the human data is shown
along with the predicted cumulative payoff that would be
achieved by making visits of a given duration over the 120-
second period of the trial (the dark grey lines).

To derive these predictions of the cumulative payoff for
each condition, we first calculated the expected payoff for a
single visit of a given duration (shown as the light grey lines
in the figure). Recall that we systematically varied the
number of digits that the model entered during each visit to
the typing task. Given that we assumed that entering a digit
would take 40 msec on average, it was possible to infer how
long a visit would be for a strategy that entered a given
number of digits. Given this estimate of visit duration, it
was then possible to determine the probability that the
cursor would leave the target area during that visit
(see Fig. 2). In this way, it was possible to calculate the
average payoff that would be expected for a given visit
duration. These values are shown in Fig. 3, which shows the
payoff that would be expected after a single visit to the
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Figure 3: Data plots showing payoff achieved against duration of visit to the typing task for each condition. Diamond data
point represents mean human performance (error bars represent standard error of the mean). Model curves show the payoff
achieved after a single visit to the typing task (light grey line) and cumulative payoff at the end of the trial (dark grey line).

typing task. To calculate the cumulative payoff achieved for
a given strategy, we had to incorporate the time given to the
tracking task between visits. As outlined above, we assumed
that all visits to the tracking task were 1.32 seconds in
duration. With this time cost added, we calculate the
number of visits of a given duration that could be made
within the 120-second period of the trial and the cumulative
payoff that would be expected.

It can be seen in Fig. 3 that the optimal visit duration (i.e.,
the peak of the curve) is different for each condition. The
payoff curves for the lose-half and lose-all conditions have a
single defined peak. The reason for this is fairly intuitive:
Very short visits earn few points and needlessly give too
much time to tracking, while very long visits are likely to
incur the penalty and lose points. Furthermore, it can be
seen in the figure that the optimal visit duration varies
between conditions: Visits should be shorter in the lose-all
condition than in the lose-half condition, and visits should
be shorter in the high noise condition than in the low noise
condition.

The lose-500 condition provides an interesting exception
to the above pattern. Here the payoff curve has two defined
peaks. The most points are to be gained by making a single
very long visit to the typing task. This is because the penalty
is fixed and the loss can be made up over the course of the
trial by entering digits. There is however a second, lower
peak to be had in the lose-500 condition by making many
very short visits to the tracking task.

Comparing the human data to the cumulative payoff
curves it can be seen that in the lose-all and lose-half payoff
conditions, participants were making visits of a duration that
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were remarkably close to the peaks of the payoff curves. For
the lose-500 condition, not one single participant adopted
the optimal strategy, which was to ignore the tracking task
completely and make a single visit to the typing task.
Instead, participants honed in on the earlier peak in the
payoff curve by making very short visits.

For statistical analysis, we compare human data to the
predicted optimal visit duration time (i.e., the peak of the
curves in Fig. 3). Table 1 summarizes these data. Note that
because the lose-500 condition had two peaks, we compared
the human data with the earlier peak since no single
participant adopted the extreme strategy of completely
ignoring the tracking task. In general, it can be seen that
there is a very good degree of correspondence between the
observed visit durations for each condition and those
predicted to be optimal by the model, R* = 0.79, RMSE =
1.79 sec. However, the RMSE is relatively high. This is
because participants made shorter visits on average in the
lose-half condition than the predicted optimal duration.

Discussion

We investigated whether people can hone their behavior in a
dynamic dual-task setting to maximize reward from a payoff
function. Participants had to determine how long they could
leave a dynamic tracking task unattended to enter digits in a
continuous typing task. The payoff function rewarded
participants for entering digits correctly but penalized them
for allowing the cursor to drift outside of the target area. By
manipulating the penalty function, the optimal time to make
each visit to the typing task differed between conditions.



Results showed that participants adjusted to the change in
penalty function by making longer or shorter visits
according to what would maximize the cumulative payoff at
the end of the trial. That is, participants honed in on the
optimal strategy for each condition. What is remarkable
about this is that participants were not simply learning to
maximize the amount of points gained after a single visit. If
they were doing this, then they would have made very long
visits in most of the conditions (see Fig. 3). Instead
participants were integrating feedback on local rewards with
a fairly accurate assessment of how many visits they would
be able to fit within the trial so as to maximize the
cumulative payoff at the end of the trial. In other words,
they were assessing the rate of reward. These results are
consistent with the general idea that people select behaviors
that maximize reward (e.g., Howes, Lewis & Vera; 2009;
Janssen et al., 2011; Trommershduser et al., 2008).

The optimal visit duration for each condition was inferred
using a model. It should be stressed that these are not model
fits in the traditional sense: the model predictions are
derived from systematically exploring the space of possible
strategies and making a prediction based on the performance
characteristics of the strategy that maximizes payoff (see,
Howes, Lewis, & Vera, 2009). With the exception of the
lose-500 condition, the degree of overall correspondence
between the observed visit duration and the optimal model
was very good.

In the lose-500 condition participants did not adopt a
strategy that achieved the maximum payoff. The reason for
this is that the cumulative payoff curve in this condition had
two peaks. The most points were to be gained in this
condition by making a single very long visit to the typing
task. This extreme strategy would have required the
participants to completely ignore one of the two tasks. It
seems reasonable to think that participants would not
spontaneously adopt this behavior as they were told that
they were taking part in a multitasking study. Moreover,
participants received feedback when they switched between
tasks. Therefore, making many shorter visits to the typing
task is far more informative as feedback is given more
frequently, especially since participants were given quite
limited exposure to the environment (i.e., two trials per
condition).

One issue with the model is that we assumed that all visits
to the tracking task were of a constant duration. It seems
reasonable to think that time spent on the tracking task
might be dependent on the distance of the cursor from the
center of the target area. In this modeling analysis we chose
not to incorporate this aspect. If we had done it would have
given a second dimension on which strategies could vary
(see Janssen et al., 2011). For the current model this
dimension was probably not as interesting, as most
participants spent a relatively fixed amount of time in the
tracking window to return the cursor to the middle of the
target area. However, there might be more subtle differences
that are not being accounted for in the current model. For
instance, this constant time assumption seems particularly
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problematic for very short visits: as here the cursor might
not have moved very far at all and a correction might not be
needed at all.

In summary, we have shown that people are sensitive to
feedback on performance in a complex dual-task
environment. The participants in our study made fairly
sophisticated judgments about the amount of time to spend
on one task before switching to another, and in that way
achieved near optimal performance (in terms of received
feedback). What is remarkable to us is that participants were
able to do this despite being given very little exposure to the
tasks and the payoff regime (i.e., only two trials per
condition). Future work might consider what learning
processes underlie this ability and how people represent and
reason about feedback information.
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