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Abstract

To study the decision process during rating tasks, PC cursor
trajectories were recorded and analyzed. The trajectories were
often successions of rapid saccadic-like movements that are
called strokes in this paper. The analysis of strokes revealed
that the distribution of strokes differed across tasks as a
function of task difficulty. A simple number matching task
elicited fewer strokes, shorter response times, and velocity
patterns resembling simple ballistic reaching movements. A
personality rating task tended to elicit multiple strokes and
longer RTs, which caused a typical inverted-U RT effect. The
shape and speed of tangential velocity of trajectories may
reflect participant’s internal states, especially when cognitive
loads are high.
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Rating Scales and Trajectories

Despite the advances in new technologies and modern
methods, rating scales are still a mainstay of data acquisition
in psychology and cognitive science. Unfortunately, there
remain many unresolved fundamental questions concerning
the nature of rating scale methods and the data arising from
them. It appears that the rating scale is a “black box” that no
one is willing to open. One of these problems is that we do
not know very well how the rating decisions are physically
performed, let alone the internal processes influencing
choice and response time. Within the framework of the
process tracing paradigm often employed in behavioral
decision making research, the present study analyzed the
trajectories of cursors in rating decisions using a computer-
based decision interface (Figure 1) and contrasted responses
to a digit matching Benchmark Task and a more cognitively
engaging Big 5 personality questionnaire Task.

Trajectory monitoring of this type has been used in many
situations to infer the internal states of decision makers
(Baccino, 1994; Baccino & Kennedy, 1995; Arroyo, Selker,
& Wei, 2006; Spivey, Grosjean, & Knoblich, 2005; Dale,
Kehoe, & Spivey, 2007; Farmer, Cargill, Hindy, Dale, &
Spivey, 2007; Freeman, Ambady, Rule, & Johnson, 2008;
Shiina, 2008). Recently, Shiina (2011) pointed out that the
cursor trajectories in rating tasks were not always smooth
continuous curves as in the previous studies, but were often
successions of rapid brief movements similar to saccadic
eye-movements. They are called strokes in this paper.

The purpose of the present paper is two-fold: investigation
into the characteristics of such strokes including the
relationship between strokes and response times, and the
search for the evidence that stroke frequencies and shapes
can serve as indices of some decisional characteristics,
decisional fluctuation in particular. Finally, implications for
decision research are highlighted in Discussion.
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Figure 1: The form wused in the number matching

Benchmark Task and an example of a cursor trajectory that
traveled from “Start” button, which disappeared from the
screen after the initial click, to Category 1 (lower left small
square button). There are two strokes (rapid movements) in
this trajectory. See text and Figure 4 as well.

We used two tasks that call for distinct cognitive
processes. In Benchmark Task, the goal of cursor
movements was set by the experimenter and the respondents
were simply following the order of the experimenter,
whereas in the second Big 5 Task, the goal of cursor
movements should be set by the participants’ spontaneous
judgment, which was the reason why a Big 5 personality
assessment task with well-studied items was employed. It
seems very plausible that the differences between the two
tasks reflect the internal states of the participants.

Experiment

In this trajectory monitoring experiment, the form shown
in Figure 1 was used. Figure 1 also shows an example of a
cursor trajectory. There were 5 ordered categories with a set
of numerical labels from 1 to 5 in Benchmark Task and a set
of verbal labels in Big 5 Task.

Procedure Using the form shown in Figure 1, a trial was
initiated with the presentation of a center button labeled
“Start”. After the initial click of the start button, the button
disappeared from the screen. The start button is not shown
in Figure 1 but the origin of the trajectory example shows its
approximate location. Immediately after the initial click of



the start button, a problem appeared in the stimulus display
box in the center of the form and the participants were asked
to click a “correct” or “most suitable” category button
(small squares in the bottom of the form) as quickly as
possible. The time and trajectory of the cursor between the
initial and last clicks were recorded. The experimental
program was written in VBA for Microsoft Excel and the
experiment was run on Excel.

Tasks In Benchmark Task, a random digit from 1 to 5 was
presented in the display box and the participant’s task was
to click the corresponding response button as quickly as
possible. The trajectories arising from this task served as
baselines with a minimum of cognitive components. The 5
digits were randomly presented 5 times each.

In Big 5 Task, participants were asked to rate their
personality by clicking one of the 5 buttons. In the stimulus
display box, adjectives or sentences based upon Big 5
theory were presented. In this task, instead of the 5 numerals
“No”, ”Don’t know”, and “Yes” labels (in Japanese) were
placed in the positions of 1, “3”, and “5”, respectively and
there were no labels for “2” and “4”. There were 30
personality items written in Japanese (Shimizu and
Yamamoto, 2007) and these verbal labels are typically used
in questionnaires of this type in Japan. All participants were
first given Benchmark Task and then Big 5 Task.

Participants The participants were 483 undergraduates of
Waseda University. They were native or quasi-native
Japanese speakers.

Analysis of Mean RT and Inverted-U Effect

The time from the initial click of “Start” button to the final
click of a rating category button was defined as response
time (RT). In Figure 2 the mean response times as a
function of the final category clicked (answer) are shown.

In Benchmark Task, average response times were U-
shaped, reflecting the physical distance between the central
start button and the lower, horizontally arrayed response
buttons. In Big 5 Task, in contrast, a typical inverted-U
effect was observed. Inverted-U effects have been found in
a variety of tasks and stimuli that use response scales with
polytomous ordered categories (e.g., Likert scale). In
general, the Inverted-U effect refers to the fact that
responses are more unstable and require more processing
time in the middle than in the extremes of the response scale
(Kuiper, 1981). This multi-faceted effect is observed in the
forms of response times, errors, and response variabilities,
called, inverted-U response time, error, and uncertainty

effects, respectively (Mignault, Marley, & Chaudhuri, 2008).

There was no inverted-U RT effect in Benchmark Task
while Big 5 Task showed an inverted-U RT pattern.
Therefore, it is reasonable to say that inverted-U RT effect
did occur in Big 5 Task and the difference between the two
lines in Figure 2 was due to cognitive loads in Big 5 Task.
Further, it might be predicted that inverted-U RT effect does
not occur when the cognitive load is low (Shiina, 2011).
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Figure 2: Mean RTs as a function of final category chosen.
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Figure 3a: Average tangential velocities in Benchmark Task.
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Figure 3b: Average tangential velocities in Big 5 Task.

Analysis of Average Tangential Velocities

A trajectory is a time-indexed 2-dimensional function:
(x(t), y(t)), 0<t<RT . Because each trajectory had a
different RT that was measured from the initial to the final
clicks, some standardization was needed. To do this, we first
divided the RT by 256 to define a discretized time step and
then estimated the locations (Xi, Vi), i = 0,255 by linear



interpolation. This procedure maintains the length and the
shape of a trajectory while equalizing the number of time
steps. A convenient way of comparing trajectories without
losing information in time domain is to analyze tangential
velocity of trajectories (Shiina, 2008). Tangential velocity
of a trajectory at time i is defined by

\/(Xm - Xi)2 + (Vi — yi)2 _ Traveled Distance
RT /256 time step

Then average curves of tangential velocities of the
trajectories that arrived at the same rating category (Figure
3) were computed. In Figure 3a, there are 5 average
tangential velocity curves corresponding to the 5 final rating
categories clicked in Benchmark Task. The curves are
showing the “speed” of the cursor as a function of
standardized time and the numbers in parentheses are mean
RTs. In the same way, the tangential velocity curves in Big
5 Task are shown in Figure 3b. Obviously, one can observe
that tangential velocities a) in Big 5 Task were lower, b)
toward the middle categories were lower in both tasks, c)
toward the middle categories in Big 5 Task were flat, were
d) positively correlated with RT in Benchmark Task, and
were €) negatively correlated with RT in Big 5 Task.
Observation a) implies the effect of cognitive load, b, d) the
effect of physical distance, ¢) decisional hesitation and
vacillation (Shiina, 2008) , and e) a realization of inverted-U
variability effect (Shiina, 2008, 2011).

The average curves in Figure 3 gives a strong impression
that the raw trajectories must also be smooth single
movements as in the case of reaching movement (Kelso,
Southard, & Goodman, 1979, for example). In reality,
however, most of individual trajectories were not
continuous smooth curves. Figure 4 presents examples of
such velocity curves to be analyzed extensively in the next
section. There were several peaks and hills derived from
rapid movements of the cursor that are referred to as strokes
(see Figure 1). Single, twin, triple or more stroke curves
were abundant and there were drift patterns as well that are
depicted in the last row of Figure 4. Moreover, the strokes
do not appear to be homogeneous: we can see pulses, peaks,
and hills, although there are no rigorous definitions of them
as in the real world. At any rate, the emergence of strokes in
decision making is a novel finding, if not an artifact inherent
in mouse interface, showing a new aspect of real time
processing of decision making.
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Tangential Velocity of Individual Raw Trajectories

The first step to analyze individual raw trajectories should
be the counting of strokes as a function of final categories
clicked. Because it is almost impossible to visually count
pulses and hills in the thousands of velocity graphs, a stroke
detection filter was designed.

Stroke Detection Filter Finding out strokes from cursor
trajectories is equivalent to searching for peaks and hills in
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Figure 4: Raw tangential velocity curves (Benchmark Task)
showing peaks and hills (strokes) and drifts (the last row).
Second row left corresponds to the example trajectory in
Figure 1. Abscissa indicates standardized time (256 time
steps) and ordinate indicates tangential velocity (dot/s).

tangential velocity graphs shown in Figure 4. In general, it
is a hard problem to extract signals from noises. Moreover,
the definition of peaks and hills in the present situation is
difficult to make partly because there are no previous
studies that help us to set guidelines and partly because
there cannot be a correct definition of a hill or a peak.

With these problems in mind, the filter was designed in the
following way. First, because tangential velocities as
defined by Equation (1) cannot be negative, detection and
filtering methods from digital image analysis can be used. In
digital image analysis, edge detection is a fundamental
technique with known algorithms and outcomes. A standard
procedure is to compute second derivatives of an image and
search for zero-crossings. Employing this idea for our stroke
detection filter, first derivatives of tangential velocity
(acceleration) were computed and then zero-crossings
corresponding to hill tops (no acceleration points) were
detected. We need not compute second derivatives in our



case because we are searching for a hill top and the first
derivative at the hill top should be 0, the first derivatives to
the left of the top should be positive (upward slope), and the
first derivatives to the right of the top should be negative
(downward slope). Zero-crossings obtained from this
procedure arise from both true strokes and noise: By
applying a moving average filter, it was hoped that noise-
generated zero-crossings would be eliminated almost
entirely. A moving average filter (Smith, 1997, p.277) was
used because it is optimal for a common task of reducing
random noise while retaining a sharp step response. Finally,
a stroke (a hill on velocity graphs) was detected by setting
two parameters, width and steepness. The first parameter
defines a minimum width of a knob, and the second a
minimum steepness of a knob, to be called a hill. More
specifically, the width of a knob is defined on the first
derivative time-series as:

Width= Time difference between a valley bottom to the
right of a zero-crossing and a hill top to the left of a zero-
crossing,

Steepness=Height difference between the hill top and
valley bottom divided by Width as defined above.

The number of peaks and hills detected is a function of
these two parameters, because changing the parameters
gives different definitions of a peak or hill.

To summarize, strokes in original 2D trajectories are
translated into peaks and hills in tangential velocity graphs.
Hill tops are translated into zero-crossings in first derivative
time-series graphs after application of a 14-point moving
average filter. Finally, the zero-crossing detection algorithm
counts the number of hills (strokes) using the two
parameters that define what a hill should be.

Results of Stroke Analysis Figure 5 shows the results of
stroke counting. Define Stroke Ratio or conditional
probability:

P(i|C) = SR, (i)

__ The number of trajectories arriving at Category C and has i strokes

The number of trajectories arriving at Category C

where C is a rating category and i is the number of strokes.
In Figures 5a and 5b, Stroke Ratios in Benchmark Task for
the 5 response categories are depicted. Figure 5a shows the
Stroke Ratios using a strict criterion (width=31,
steepness=0.5) and Figure 5b using a lax criterion
(width=20, steepness=0.5). Similarly, Figures 5¢ and 5d
show results for Big 5 Task. Figure 5c is using the strict
criterion (width=31, steepness=0.5) while Figure 5d is using
the lax criterion (width=20, steepness=0.5). Under the strict
criterion, only larger hills and peaks were counted as strokes
while under the lax criterion smaller hills and peaks were
also detected and counted as strokes. Note that a lax
criterion tends to pick up noise-generated hills while a strict
criterion tends to reject true signals: This trade-off between
noise rejection and signal detection is well known in signal
analysis and cannot be eliminated completely. This is the
reason for considering several criteria at the same time.
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Figure 5: The ratios of stroke numbers for each rating
category. Very small ratios (more than 4 or 5 strokes) are
invisible in this figure. a) Benchmark Task under strict
criterion (12,075 total responses) , b) Benchmark Task
under lax criterion. In Benchmark Task, Categories 1, 2, 3,
4, and, 5 were clicked 2417, 2414, 2415, 2414, and 2415
times, respectively. ¢) Big 5 Task under strict criterion
(14,490 total responses), d) Big 5 Task under lax criterion.
Categories 1, 2, 3, 4, and, 5 were clicked 2642, 1987, 2289,
3367, and 4205 times, respectively.

Major observations are as follows:

1) In Benchmark Task (Figures 5a and 5b), the stroke ratios
were about the same across categories under both criteria,
meaning that the probability of strokes occurring was not
related to the final categories clicked, while in Big 5 Task
(Figures 5c¢ and 5d) , we find rather systematic differences
in the stroke ratios.

2) Figures 5a and 5c tell us that, under the strict criterion,
SR¢(1) (single-stroke trajectories ratio) decreased and
multiple-stroke trajectories (2 or more) increased with the
cognitive load of personality judgment except Category 5.
Similarly, under the lax criterion, comparison of Figures 5b
and 5d tells us that SRc(2) (double-stroke trajectories)
decreased and triple-or-more stroke trajectories increased
with the cognitive load imposed by personality judgment
except again Category 5. Taken together, it is safe to say
that the personality judgment increased the number of
strokes, with the exception of Category 5.

3) In Big 5 Task (Figures 5¢ and 5d), it is apparent that the
average number of strokes was larger for Categories 2 and 3
under both criteria.



4) In Big 5 Task, shorter averaged RTs (Figure 2) were
associated with high SR¢ (1)’s, that is, RT was a decreasing
function of single-peak ratio. The correlation between them
is r = - 0.98 under the strict criterion and r = - 0.96 under the
lax criterion, although the values were calculated from only
5 points and are not too reliable.

5) The responses to Category 5 were unique. When
participants clicked Category 5 or “Yes” category in Big 5
Task, the stroke ratios were very similar to those in
Benchmark Task as if there were no cognitive loads. This
“Yes” effect merits further investigation in the future.

From these observations, it is apparent that the number of
strokes is related to rating judgments and RTs. The next task
should be to clarify how and why they are linked. Although
it is impossible to fully extend such an analysis, connections
to motor movement research and inverted-U effects are
described in the next section.

Ballistic Movements and Decisional Hesitation The ratio
of single stroke trajectory has a theoretically important
meaning because it relates to the ballistic movements. It is
well known in motor control studies that simple reaching
movements involve an initial ballistic phase followed by a
second corrective control phase (Elliot, Helsen, & Chua,
2001). Because of the speed limitations of
neurotransmission, ballistic movements are under feed
forward control. This means that in a ballistic movement the
initial velocity and direction should be determined before
the initiation of the movement and thus should be
unaffected by cognitive processes during the moving. In
other words, ballistic movements are “thoughtless” after
departure, and can serve as an index that the participants are
not in the states of hesitation or deliberation. Therefore, if a
single stroke movement in the present study is a ballistic
movement, it implies that there was little, if any, decisional
hesitation. A typical feature of ballistic movement is
relatively high and bell-shaped (Gaussian) tangential
velocity. Therefore, deviation of tangential velocity curve
from bell-shape coupled with velocity levels can help
determine whether the trajectory is ballistic or non-ballistic
(Shiina, 2008).

In the previous section, we conducted stroke-wise
categorization of trajectories. Using these results, average
tangential velocities of single stroke trajectories toward the
5 categories in Benchmark Task are drawn in Figure 6a,
because it was very plausible that Benchmark Task
produces simple reaching movements that contain ballistic
components and thus has rapid bell-shaped tangential
velocities. The curves are obviously bell-shaped, indicating
that Benchmark Task evoked simple reaching movements
that contain ballistic components. The curves in Figure 6a
also show that the overall tangential velocities were

relatively high, another characteristic of ballistic movements.
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Figure 6a: Average tangential velocities of single stroke
trajectories toward the 5 categories in Benchmark Task.
Bell-shape is a feature of ballistic movement. Lax criterion.
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Figure 6b: Average tangential velocities of single stroke
trajectories toward the 5 categories in Big 5 Task.
Deviation from Bell-shape indicates deviation from ballistic
movement. Lax criterion.

In Figure 6b, average tangential velocities of single stroke
trajectories toward the 5 categories in Big 5 Task are shown.
Deviation from Bell-shape indicates deviation from ballistic
movement and then suggests decisional hesitation.
According to this rule, we can conjecture that Categories 1
and 5 were chosen easily while the other categories were
chosen after deliberation and hesitation. Of course, this type
of multi-stage inference is sometimes dangerous and it is
too early for drawing a conclusion.

Inverted-U Effect and RT In Figure 2, a typical inverted-U
RT effect was found. Then the stroke analysis revealed that
the raw tangential trajectories were rather heterogeneous,
having several strokes (peaks or hills). Finally, in Figure 6b
(and Figure 3b), it was revealed that the single stroke
trajectories toward the middle 3 categories deviated from
ballistic movements in Big 5 Task. In this task, Double-or-
more stroke average tangential velocity curves were much
more deviant from bell-shaped and thus different from



ballistic movements (although cannot be shown explicitly
due to space limitation).

Figure 6 shows the purest average velocities in the sense
that they are drawn using filtered velocities and their shapes
in Benchmark Task do look bell-shaped. Therefore, a direct
cause of inverted U-effect in Big 5 Task would be that the
tangential velocities of single-stroke movements toward the
middle 3 categories were not bell-shaped and too low that
many of them were not ballistic at all.

The most parsimonious overall explanation for the present
results is that trajectories toward the middle categories in
Big 5 Task had more strokes and were non-ballistic (vibrant
and instable) so that their average speed slowed down and
thus the inverted-U RT effect occurred. A more bold
psychological interpretation would be that participants’
hesitation and deliberation caused internal fluctuations and
the strokes and trajectory vibrations were the manifestation
of these internal fluctuations (Shiina, 2011).

Because average tangential velocity curves strongly reflect
stroke-onset frequencies averaged over time, so other
interpretations are possible. We are not in the position to
make a definite conclusion and the second psychological
interpretation, although suggestive, should be justified in the
future research.

Discussion

This study is basically an exploratory one and there are
many important variables that this study did not deal with:
individual differences, direction of velocities, distribution of
RT, and distribution of stroke duration and length, to name
but a few. Nevertheless, some interesting relationships
emerged that suggest the interplay between internal
decisions and physical movements (strokes in particular).
Major results of this paper can be summarized as follows: 1)
The distribution of strokes differed across tasks, and the
number of strokes increased with task difficulty. 2) Strokes
in a trajectory slowed down RT, causing the inverted-U
effect. 3) The shape and speed of tangential velocity of a
trajectory may suggest the type of movement (ballistic vs.
non-ballistic) that in turn suggest the participant’s internal
states, especially when the cognitive loads are high. 4)
Finally, positive responses did not seem to elicit significant
internal conflict. This “Yes” effect appears interesting in
connection with recent unconscious decision making
research. These findings will be fully explored in the future
research.
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