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Abstract

Models and theories of category learning may exaggerate the
extent to which people adopt discriminative strategies because
of a reliance on the traditional supervised classification task.
In the present experiment, this task is contrasted with
supervised observational learning as a way of exploring
differences between discriminative and generative learning.
Categories were defined by a simple unidimensional rule with
a second dimension that was either less diagnostic (than the
simple rule on the first dimension) or non-diagnostic. When
the second dimension was less diagnostic, observational
learners were more sensitive to its distributional properties
compared to classification learners (though classification
accuracy at test did not differ). Observational learners were
also consistently more sensitive to distributional information
about the highly diagnostic dimension. When the second
dimension was non-diagnostic, neither learning group showed
sensitivity to the distributional properties of this dimension.
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Introduction

Representations of concepts and category knowledge
must be robust enough to be applied across a broad range of
psychological tasks. Some of the most important functions
of such knowledge include being able to make inferences
about unknown properties, satisfy goals, communicate
ideas, and generate new instances. In short, we need to have
comprehensive and flexible mental models of information
corresponding to categories in the real world (Markman &
Ross, 2003; Solomon, Medin, & Lynch, 2003).

Some well-known models of human category learning
(e.g. ALCOVE, RULEX) do not address the robustness and
flexibility of real psychological concepts. Instead, they
focus on the time course of learning to assign items to one
category or another. This neglects the learner’s ability to use
the resulting representation to do anything else (though see
Kurtz, 2007; Love, Medin, & Gureckis, 2004).

Theoretical claims about the mechanisms behind category
learning can be similarly focused on the core task of
artificial classification learning. One example of this is the
prevalence of selective attention as the proposed primary
mechanism by which category learning occurs. In light of
evidence such as Shepard, Hovland, & Jenkins’ (1961)
classic study, researchers have tended toward the view that
people learn by allocating attention (either initially or
gradually) exclusively to dimensions that are diagnostic of
category membership (Nosofsky, 1984). This type of
explanation has been successful in explaining classification
learning as studied in the lab, but it may not go far enough
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to account for the flexibility with which categories are used
in the real world. One example of this is the ability to
perform tasks requiring knowledge that was not needed
while learning to distinguish between classes.

Generative and Discriminative Methods

A useful framework for understanding this shortcoming in
leading accounts of category learning can be found in the
distinction between generative and discriminative classifiers
in the machine learning literature (Ng & Jordan, 2001).
Formally, a discriminative model (e.g., linear regression)
learns to classify examples by optimizing a function to
partition the space and correctly segregate category
members. A generative model (e.g., naive Bayes classifier)
learns the distributional properties within each category. It
classifies by determining the likelihood of each category
generating the given input. Both types of models can learn
to correctly categorize, but the generative model does so by
modeling more of the data than the task requires per se.

A generative framework may be more appropriate to
apply to the psychology of human categorization. According
to the dichotomy, purely discriminative category learning
would result in good classification performance, but not
much knowledge beyond the ability to distinguish the
categories. Purely generative category learning would result
in complete statistical models of each category that are
sensitive not only to diagnostic properties, but also to the
internal structure and distributional characteristics of its
features. As suggested earlier, the latter may be closer to the
type of category learning that occurs in the real world.

The nature of laboratory materials and tasks may induce
discriminative and generative learning to different extents.
However, the task that is most commonly used, modeled,
and accounted for in category learning experiments — the
traditional supervised classification task — may foster
learning that is especially discriminative. In a traditional
supervised classification task, a series of objects or feature
sets are displayed one at a time and learners respond by
choosing one of the (typically two) mutually exclusive
categories. Corrective feedback is given on each trial and
participants learn to assign each member to the appropriate
category.

In addition to other factors (binary-valued stimulus
dimensions, mutually exclusive categories, small number of
categories and examples), this task itself invites the learner
to engage in discriminative learning behavior. Guess-and-
correct learning about category membership supports
hypothesis testing that is specific to distinguishing between
categories and may encourage focusing on individual



features that define membership rather than information
about the internal structure of the categories. As a
consequence of the field’s reliance on this task as a primary
source of data, our explanatory accounts may be overly
focused on an idiosyncratic mode of learning.

By comparing classification to other learning modes that
may be less focused on distinguishing between categories,
we may be able to identify shortcomings and spur
development of better models and theories. For example,
research on inference learning (learning by predicting
missing features) shows this learning mode to be more in
line with the development of generative knowledge. In
contrast to classification, inference learning has been shown
to make learners more aware of non-diagnostic, prototypical
features (Yamauchi & Markman, 1998) and correlations
between features not necessary for classification (Chin-
parker & Ross, 2002). Of particular relevance to the current
experiment, Hoffman and Rehder (2010) found that
inference learners were better able to adapt and
appropriately attend to a novel classification contrast in
which a previously irrelevant dimension was suddenly
relevant.

Observational Task to Induce Generative Learning

In this experiment, we employ a supervised observational
category learning task in an attempt to induce more
generative learning. In an observational task, the learner
does not explicitly generate a guess about category
membership. Instead, the example and category label are
presented simultaneously (or the category label is presented
just before the example). Cases of this type of learning are
readily available in the real world. For example, imagine a
child and parent walking by a lake when the parent says
“Look! A duck.” In cases like this, the focus of learning
may be taken off distinguishing between categories. Instead,
learning may involve trying to understand the properties of
the category itself. The child who is shown a duck is likely
to develop knowledge about what it means to be a duck, or
what features are associated with being a duck, but probably
not explicitly what distinguishes a duck form some other
animal.

There has been little research comparing the traditional
supervised classification task with observational category
learning. Most of this research has evaluated learning based
on classification accuracy and has not investigated more
subtle ways that resulting representations may differ (i.e.
differences in within-category knowledge). For example,
using two-dimensional continuous stimuli, Ashby, Maddox,
and Bohil (2002) found no difference in learning accuracy
between the two types of tasks when categories were
defined by a simple unidimensional rule. Although this
suggests (as they took it to mean) that there is no qualitative
difference between learning rule-based categories through
classification or observational learning, the design was not
sensitive to possible differences in representations of
internal structure.
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There is one study (that we know of) in which the
representation of internal structure is compared between the
two tasks. Hsu and Griffiths (2010) found that for a simple
rule-based category structure, observational learners were
more likely to be sensitive to the variability of examples
within the category. They conducted an experiment in which
participants learned to distinguish between two categories of
lines varying in length. Category membership was based on
a simple one-dimensional rule (short lines in one category,
long lines in the other category). The categories were
designed so that the variability of one category was greater
than that of the other category. At test, participants were
asked to classify lines of intermediate length. They found
that observational learners were more likely than
classification learners to place intermediate examples into
the category with higher variability. This suggests that
observational learners may possess greater sensitivity along
relevant, diagnostic dimensions. This is consistent with our
intuition that observational learning may have a more
generative basis than classification.

Current Experiment

In this experiment we investigate differences between
learning categories via classification and observation. We
are particularly interested to see if these differences are
consistent with the distinction between generative and
discriminative methods of learning. We use two-
dimensional stimuli with categories defined by a simple
unidimensional rule along one of the dimensions. The other
dimension is distributed bimodally with the center of the
distribution vacant. Typicality ratings and an adapted
inference task after learning are used to evaluate acquired
representations of internal structure.

The general premise of our predictions is that, without a
decrement in classification performance, observational
learners will be sensitive to information beyond that needed
to classify items according to the unidimensional rule. We
expect that this sensitivity will include distributional
information along the most diagnostic dimension and also
along the other dimension.

Increased sensitivity could arise either because: 1)
observational learners are able to look beyond the most
obvious unidimensional rule to consider other differences
between the categories, or 2) because they are attending to
the distributions of the individual categories with reduced
regard for distinguishing the categories. To address the
cause of a possible advantage, we manipulated the degree of
diagnosticity of the second dimension.

Method

Participants

200 Binghamton University undergraduates participated in
this experiment for partial fulfillment of course credit.
Participants were randomly assigned to one of four
conditions based on the learning task (Classification or



Observational), and diagnosticity of the second dimension
(Less-Diagnostic or Non-Diagnostic).

Materials and Design

Stimuli. The stimulus materials were adapted from a
“creature” produced with the SPORE Creator tool from the
videogame SPORE (2001). Figure 1 shows a sample
creature. The creatures varied along two dimensions: the
number of “spike” protrusions from the sides of the body,
and the ratio of gray dots (always above) to black dots
(always below). The number of spikes on the right and left
side could range from 3 to 14. There were always 150 total
dots, but creatures ranged from having only 20 gray dots
(and therefore 130 black dots) to having 130 gray dots (and
therefore 20 black dots) in intervals of ten. Hence, there
were 12 possible values along each of the two dimensions,
creating a possible stimulus space of 144 items representing
every combination of feature (see Figure 2 for the entire
range of possible feature combinations).

Figure 1: Example of stimuli

Twenty-four creatures (12 for each category) taken from
the center of the stimulus space were used for training. The
rest of the stimulus space was reserved for exploring how
category representations generalized. At test, four examples
within each category and ten additional items for each
category were used to collect typicality ratings.

Category Structure. Figure 2 depicts the feature space,
specific examples, frequency of examples, and the category
assignment of examples used in the experiment. As can be
seen in the figure, the assignment of stimuli to categories
was determined based on a simple unidimensional rule
(examples to the right of the solid black line were in one
category, examples to the left were in the other). The
dimension to which the rule applied was counterbalanced.
We will refer to the dimension in which the simple
unidimensional rule determined category membership as the
HI relevance dimension, and the second, less diagnostic
dimension as the LO relevance dimension.

The degree to which the LO relevance dimension was
diagnostic differed between the conditions (see Figure 2). In
the Less-Diagnostic condition, one category consisted of
creatures with extreme values along the LO relevance
dimension, while the other category was made up of
creatures possessing central values along the LO relevance
dimension. In this condition, the LO relevance dimension
could be used to predict category membership, although the
rule for membership was more complex than the
unidimensional rule along the X-axis (e.g., one category has
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less than 50 gray dots or greater than 100 dots, while the
other has between 50 and 100 dots). In the Non-Diagnostic
condition, both of the categories consisted of creatures
possessing extreme values along the Y- dimension. Because
both categories possessed the same structure along this
dimension, learners could not use it to distinguish between
categories. It is important to note that the same category
used in the Less-Diagnostic condition was also used in the
Non-Diagnostic conditions (the “common category” on the
left in Figure 2). This allows us to compare representations
of the same category under conditions in which one
dimension is either diagnostic or not diagnostic.

Although there were only 12 unique creatures for each
category in the training set, some items were presented more
than once in each block. Therefore, each block of training
included 24 presentations for each category. The frequency
of presentation of each item reinforced the robustness of
each category’s internal structure and provided another
avenue for learners to learn non-diagnostic information
about the categories. The most frequent items (displayed 4
times every block) were always at the center of the
distribution of examples along the HI relevance dimension.
Along the LO relevance dimension, the most frequently
occurring items were at the center of only one category
distribution in the Less-Diagnostic conditions. All other
categories had bimodal distributions along the LO relevance
dimension and the most frequently occurring items were at
the extremes.
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Figure 2: Feature space, examples, and frequency of each
example in the training set for the Less-Diagnostic (black
squares) and Non-Diagnostic (white squares) conditions. All
conditions learned the common category.

Procedure

The instructions given to classification and observational
learners were slightly different in conjunction with the
induction of a discriminative or generative approach. All
participants were told that a new planet was recently
discovered and that it was their job to learn about the two
types of creatures living there. In the observational
condition, participants were told that researchers traveled



around the planet taking a picture of each creature they
found and that they would be learning from this catalog of
pictures. This was intended to give the impression that the
examples were drawn from a population and their properties
directly reflected the distribution of properties of creatures
on the planet. Classification learners were merely told that
they would be seeing pictures of creatures, but no mention
was made of the pictures actually representing the
population of creatures.

Learning Phase. In classification trials, items were
presented one at a time randomly on the screen along with
buttons labeled for creatures of type “Yugli” and “Zifer.”
On each trial, participants were asked to choose via mouse
click the category to which the example belonged. After
making a guess, they received feedback indicating whether
they were right or wrong and were shown the correct
answer. The feedback remained on the screen until they
clicked to proceed to the next trial.

Before a stimulus was displayed in observational trials,
learners were presented with the correct category label for
1500 ms. The image and label were then shown together on
the screen for another 1500 ms — at which point the learner
clicked to confirm the correct category name and continue
to the next trial.

Both classification and observational learners completed
two blocks consisting of all 48 items. After the first block,
all learners were given a brief endorsement task asking them
to classify 8 selected items. In this task, each item was
presented on the screen with a correct or incorrect label.
Participants were asked to indicate whether they agreed or
disagreed with the classification of the item. The purpose of
this test phase was to determine the progress of learners.
This was critical for the observational learning condition in
which no learning accuracy data could be recorded. In an
effort to match the number of trials between the
observational and classification conditions, there was no
criterion level of performance that would move learners on
to the test phase. Instead, all classification and observational
learners completed a total of 96 trials before progressing to
the test phase.

Test Phase. The test phase consisted of a series of three
types of test trials. The first type of test trial was an
endorsement task (as above) designed to assess category
knowledge of the 24 trained examples. Each item was
presented once with a corresponding label that was either
correct or incorrect (randomly determined). This task was
used instead of a traditional classification test phase to
ensure that the test task did not match the task of either
learning group.

While the first test phase was included to compare
classification accuracy, the next two test phases were
included to evaluate whether there was a difference in
sensitivity to the distribution along both dimensions
depending on the type of learning task. The second test
phase was designed to assess representations of internal
structure via typicality ratings. Learners were presented with
a series of 24 creatures (shown in Figure 3). They were
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given the correct category label and asked to rate how
typical or ‘good an example’ each item was of its category.
Category membership of each item was provided to try to
ensure that typicality ratings were not based on confidence
in category membership. Only four of these items had been
presented during training. The other 20 items had never
been seen. Despite never having been seen, some items were
closer to the distribution of items in their category than
others. Along the HI relevance dimension, sensitivity to
internal structure would manifest in typicality ratings
reflecting the range of values presented during training. In
other words, the items with feature values along the HI
relevance dimension that were presented many times during
training (those items labeled with an “a” in Figure 3) would
be rated higher than those items outside of the distribution
of presented feature values (those items labeled with a “b”
in Figure 3). In the category common to all conditions,
items in the center of the distribution were not sampled
during training. If learners were sensitive to this, they would
presumably rate the typicality of examples in this region
(those items labeled with circles in Figure 3) lower than
examples in the extremes of the distribution along that
dimension (those items labeled with squares in Figure 3).

The last test phase was an inference task that more
explicitly assessed the learner’s knowledge of the
distribution of features along the LO relevance dimension.
Participants were given a category label and images
representing two possible feature values along one
dimension. They were asked which value (out of the two
provided) was more likely given the category information.
In addition to the category labels, they could answer
“equally likely” if they believed that there was no greater
probability of one category over another. To ensure that
responses were made because they believed them to be
accurate, not because they were forced to choose, they could
also answer “not sure.”

In the inference task, three key single-feature distinctions
for each category were of interest along the LO relevance
dimension. Of these three, two asked learners to decide
between an extreme value and a central value (e.g. 70 gray
dots vs. 110 gray dots). In the common category in which
the distribution was bimodal, the correct answer was always
that the extreme value was more likely. The third trial asked
them to decide which of two extreme values was more
likely (the correct answer being “equally likely”). We
averaged accuracy across these three judgments for the
common category to determine a score for each participant
based on their sensitivity to the distribution along the LO
relevance dimension.

Predictions. We believed that learners in the
observational conditions would display greater sensitivity to
internal structure along both dimensions. More specifically,
we expected typicality ratings and selection of single feature
values to reflect a greater sensitivity to the missing central
values of the category that was common between all
conditions.



If the observational learners were at an advantage because
they were developing a representation of the features within
each category separately, their sensitivity to the internal
structure of the Y-distribution should not change depending
on the distribution of the contrast category. If, however, the
advantage of the observational learner was due to an
increased ability to develop a more comprehensive
combination of diagnostic information, then their sensitivity
to the internal structure should depend on how diagnostic
that information is. We can directly test this because we
have the same exact category under a condition in which the
contrast category is distributed the same along the LO
relevance dimension (Non-Diagnostic) and a condition in
which it is not (Less-Diagnostic).
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Figure 3. Items presented in typicality phase are labeled
“a” and “b”. Training items shaded gray for reference.
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Results and Discussion

Classification of Trained Examples

To begin, we were interested in determining if classification
accuracy was affected by whether the learning mode was
classification or observational learning. As in Ashby,
Maddox, and Bohil (2002), this was not found. For the
endorsement task of trained items, performance of the
classification learners (M = .98, SD = .05) and observational
learners (M = .97, SD = .08) were not significantly different
for the endorsement test after two blocks (ps>.25). This was
also true after just one block. Therefore, there was no
apparent advantage for classification learning despite the
fact that they were queried on each trial.

Our next goal was to see whether observational learning
resulted in greater sensitivity to distributions of features
along both dimensions. Subsequent analyses focus on the
one category that was common between conditions.

Distribution Along HI relevance dimension

Through typicality ratings, we confirmed our predictions
that observational learners would be more sensitive to the

range of values along the HI relevance dimension presented
during learning.

Typicality ratings. Sensitivity to the range of values
presented in the training set would result in typicality
ratings that decreased as distance from the training
examples increased. Typicality ratings were collected for 6
examples in the common category at the center of the
distribution along the X-axis (indicated by the letter “a” in
Figure 3) and 6 examples that were beyond the distribution
along the X-axis (indicated by the letter “b” in Figure 3).
The extent to which the average typicality ratings for items
further away from the presented values were lower than
those at the center of the distribution determined each
participant’s sensitivity along this dimension.

A 2 (task) x 2 (diagnosticity) x 2 (example type) ANOVA
revealed a main effect of example type, F(1, 196) = 12.501,
p = .001, r]2 = .060. Overall, center items were rated more
typical (M = 5.336, SD = 1.191) than extreme examples (M
= 4.77, SD = 1.825). An interaction between task and
example type drove this main effect, F(1, 192) = 12.281, p =
.001, r]z = .056. For classification learners, there was no
difference between their ratings of the central items and
their ratings of the extreme examples, ¢+ < 1. However,
observational learners rated the central items significantly
higher than the extreme examples, #(99) = 4.740, p < .001,
indicating that they were sensitive to the range of the
distribution along this dimension.

Taken together, these results are consistent with Hsu and
Griffiths (2010) in that people in a classification task try to
find a boundary between categories along diagnostic
dimensions, while observational learners develop a
representation of the diagnostic dimension that includes
distributional information.

Distribution Along LO relevance dimension

As predicted, inference judgments and typicality ratings of
observational learners reflected greater knowledge of the
distributional gap in the LO relevance dimension. This
effect depended on whether or not the second dimension
was diagnostic.

Inference test. We averaged together the accuracy for the
three key questions asked of the LO relevance dimension
within the common category (see Figure 4). A 2 (task) x 2
(diagnosticity) ANOVA revealed a significant main effect
of task, F(I, 196) = 8.566, p = 0.004, n° = .042.
Observational learners were more accurate (M = .403, SD =
.265) than classification learners (M = .300, SD = .244) at
determining which feature value was correct. This was
despite the fact that classification and observational learners
did not differ in their likelihood of selecting “not sure”.

There was also a main effect of diagnosticity, F(1, 196) =
7.497, p = .007, n° = .037, indicating that the degree of
diagnosticity to some extent determines sensitivity to
distributional properties. More specifically, people in the
Less-Diagnostic conditions were significantly more accurate
(M = .400, SD = .321) than those in the Non-Diagnostic
conditions (M = .303, SD = .165).
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Figure 4. Proportion correct on Y-dim inference items

Typicality ratings Along the LO relevance dimension,
we averaged the typicality of the four examples at the center
of the distribution in each category (indicated by circles in
Figure 3) and the four examples at the bimodal location in
each category (indicated by squares in Figure 3). Figure 5
shows the average difference between these measures for
the four conditions. We conducted a 2 (task) x 2
(diagnosticity) x 2 (example type) and found a main effect
of example type, F (1, 196) = 14.403, p < .001, n° = .068.
Overall, the items at the bimodal location were considered
more typical (M = 5.219, SD = 1.159) than those at the
central location (M = 4.835, SD = 1.397). However, we did
not find a significant main effect of task or an interaction
between task type and example type. In sum, classification
learners were just as likely as observational learners to rate
central items lower than the bimodal items.

We did find an interaction between diagnosticity and
example type, F(1, 196) = 13.662, p < .001. Learners in the
less diagnostic conditions rated the center items lower than
the bimodal items, #99) = 3.850, p < .001. However, in the
non-diagnostic condition, there was no significant difference
between ratings of the center and bimodal items, ¢ < 1.
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Figure 5. Average difference between typicality of central
and extreme items along Y-dim.

0.00

Less-Diagnostic

Summary of Findings

Typicality ratings and inference judgments indicate that:
1) observational learners, but not classification learners,
were sensitive to the range of distribution along the most
diagnostic dimension; 2) when a second dimension was also
somewhat diagnostic, observational learners were sensitive
to its distribution despite the fact that it was not necessary
for distinguishing between categories; 3) when a dimension
was not diagnostic, neither classification nor observational
learners were sensitive to its distributional properties. The
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advantages of observational learners were present without a
corresponding difference in classification performance.

These data are consistent with observational learners
being generative learners who are sensitive to information
beyond that which is required for distinguishing between
classes. However, there is conflicting evidence about the
extent to which classification learners are sensitive to this
information. While performance on the inference tasks
indicates a decrement compared to observational learners,
typicality ratings imply that classification learners are aware
on some level of the distribution along the second
dimension. It may be that typicality ratings are a more
sensitive measure, or that classification learners were aided
by the presentation of whole exemplars rather than
individual features.

Although unexpected, we find it important to emphasize
that neither observational nor classification learners were
sensitive to the distribution along the second dimension
when it was non-diagnostic. This suggests that distributional
information is not as strongly represented for features that
do not differentiate between categories. Further work will
investigate more specifically the types of information that
are represented through discriminative and generative
learning modes.
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