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Abstract 
Models and theories of category learning may exaggerate the 
extent to which people adopt discriminative strategies because 
of a reliance on the traditional supervised classification task. 
In the present experiment, this task is contrasted with 
supervised observational learning as a way of exploring 
differences between discriminative and generative learning. 
Categories were defined by a simple unidimensional rule with 
a second dimension that was either less diagnostic (than the 
simple rule on the first dimension) or non-diagnostic. When 
the second dimension was less diagnostic, observational 
learners were more sensitive to its distributional properties 
compared to classification learners (though classification 
accuracy at test did not differ). Observational learners were 
also consistently more sensitive to distributional information 
about the highly diagnostic dimension. When the second 
dimension was non-diagnostic, neither learning group showed 
sensitivity to the distributional properties of this dimension. 
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Introduction 
Representations of concepts and category knowledge 

must be robust enough to be applied across a broad range of 
psychological tasks. Some of the most important functions 
of such knowledge include being able to make inferences 
about unknown properties, satisfy goals, communicate 
ideas, and generate new instances. In short, we need to have 
comprehensive and flexible mental models of information 
corresponding to categories in the real world (Markman & 
Ross, 2003; Solomon, Medin, & Lynch, 2003). 

Some well-known models of human category learning 
(e.g. ALCOVE, RULEX) do not address the robustness and 
flexibility of real psychological concepts. Instead, they 
focus on the time course of learning to assign items to one 
category or another. This neglects the learner’s ability to use 
the resulting representation to do anything else (though see 
Kurtz, 2007; Love, Medin, & Gureckis, 2004).  

Theoretical claims about the mechanisms behind category 
learning can be similarly focused on the core task of 
artificial classification learning. One example of this is the 
prevalence of selective attention as the proposed primary 
mechanism by which category learning occurs. In light of 
evidence such as Shepard, Hovland, & Jenkins’ (1961) 
classic study, researchers have tended toward the view that 
people learn by allocating attention (either initially or 
gradually) exclusively to dimensions that are diagnostic of 
category membership (Nosofsky, 1984). This type of 
explanation has been successful in explaining classification 
learning as studied in the lab, but it may not go far enough 

to account for the flexibility with which categories are used 
in the real world. One example of this is the ability to 
perform tasks requiring knowledge that was not needed 
while learning to distinguish between classes. 

Generative and Discriminative Methods 
A useful framework for understanding this shortcoming in 

leading accounts of category learning can be found in the 
distinction between generative and discriminative classifiers 
in the machine learning literature (Ng & Jordan, 2001). 
Formally, a discriminative model (e.g., linear regression) 
learns to classify examples by optimizing a function to 
partition the space and correctly segregate category 
members. A generative model (e.g., naïve Bayes classifier) 
learns the distributional properties within each category. It 
classifies by determining the likelihood of each category 
generating the given input. Both types of models can learn 
to correctly categorize, but the generative model does so by 
modeling more of the data than the task requires per se. 

A generative framework may be more appropriate to 
apply to the psychology of human categorization. According 
to the dichotomy, purely discriminative category learning 
would result in good classification performance, but not 
much knowledge beyond the ability to distinguish the 
categories. Purely generative category learning would result 
in complete statistical models of each category that are 
sensitive not only to diagnostic properties, but also to the 
internal structure and distributional characteristics of its 
features. As suggested earlier, the latter may be closer to the 
type of category learning that occurs in the real world. 

The nature of laboratory materials and tasks may induce 
discriminative and generative learning to different extents. 
However, the task that is most commonly used, modeled, 
and accounted for in category learning experiments – the 
traditional supervised classification task – may foster 
learning that is especially discriminative. In a traditional 
supervised classification task, a series of objects or feature 
sets are displayed one at a time and learners respond by 
choosing one of the (typically two) mutually exclusive 
categories. Corrective feedback is given on each trial and 
participants learn to assign each member to the appropriate 
category.  

In addition to other factors (binary-valued stimulus 
dimensions, mutually exclusive categories, small number of 
categories and examples), this task itself invites the learner 
to engage in discriminative learning behavior.  Guess-and-
correct learning about category membership supports 
hypothesis testing that is specific to distinguishing between 
categories and may encourage focusing on individual 
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features that define membership rather than information 
about the internal structure of the categories. As a 
consequence of the field’s reliance on this task as a primary 
source of data, our explanatory accounts may be overly 
focused on an idiosyncratic mode of learning. 

By comparing classification to other learning modes that 
may be less focused on distinguishing between categories, 
we may be able to identify shortcomings and spur 
development of better models and theories. For example, 
research on inference learning (learning by predicting 
missing features) shows this learning mode to be more in 
line with the development of generative knowledge. In 
contrast to classification, inference learning has been shown 
to make learners more aware of non-diagnostic, prototypical 
features (Yamauchi & Markman, 1998) and correlations 
between features not necessary for classification (Chin-
parker & Ross, 2002). Of particular relevance to the current 
experiment, Hoffman and Rehder (2010) found that 
inference learners were better able to adapt and 
appropriately attend to a novel classification contrast in 
which a previously irrelevant dimension was suddenly 
relevant. 

Observational Task to Induce Generative Learning 
In this experiment, we employ a supervised observational 

category learning task in an attempt to induce more 
generative learning. In an observational task, the learner 
does not explicitly generate a guess about category 
membership. Instead, the example and category label are 
presented simultaneously (or the category label is presented 
just before the example). Cases of this type of learning are 
readily available in the real world. For example, imagine a 
child and parent walking by a lake when the parent says 
“Look! A duck.” In cases like this, the focus of learning 
may be taken off distinguishing between categories. Instead, 
learning may involve trying to understand the properties of 
the category itself. The child who is shown a duck is likely 
to develop knowledge about what it means to be a duck, or 
what features are associated with being a duck, but probably 
not explicitly what distinguishes a duck form some other 
animal.  

There has been little research comparing the traditional 
supervised classification task with observational category 
learning. Most of this research has evaluated learning based 
on classification accuracy and has not investigated more 
subtle ways that resulting representations may differ (i.e. 
differences in within-category knowledge). For example, 
using two-dimensional continuous stimuli, Ashby, Maddox, 
and Bohil (2002) found no difference in learning accuracy 
between the two types of tasks when categories were 
defined by a simple unidimensional rule. Although this 
suggests (as they took it to mean) that there is no qualitative 
difference between learning rule-based categories through 
classification or observational learning, the design was not 
sensitive to possible differences in representations of 
internal structure.  

There is one study (that we know of) in which the 
representation of internal structure is compared between the 
two tasks. Hsu and Griffiths (2010) found that for a simple 
rule-based category structure, observational learners were 
more likely to be sensitive to the variability of examples 
within the category. They conducted an experiment in which 
participants learned to distinguish between two categories of 
lines varying in length. Category membership was based on 
a simple one-dimensional rule (short lines in one category, 
long lines in the other category). The categories were 
designed so that the variability of one category was greater 
than that of the other category. At test, participants were 
asked to classify lines of intermediate length. They found 
that observational learners were more likely than 
classification learners to place intermediate examples into 
the category with higher variability. This suggests that 
observational learners may possess greater sensitivity along 
relevant, diagnostic dimensions. This is consistent with our 
intuition that observational learning may have a more 
generative basis than classification.  

Current Experiment 
In this experiment we investigate differences between 

learning categories via classification and observation. We 
are particularly interested to see if these differences are 
consistent with the distinction between generative and 
discriminative methods of learning. We use two-
dimensional stimuli with categories defined by a simple 
unidimensional rule along one of the dimensions. The other 
dimension is distributed bimodally with the center of the 
distribution vacant. Typicality ratings and an adapted 
inference task after learning are used to evaluate acquired 
representations of internal structure. 

The general premise of our predictions is that, without a 
decrement in classification performance, observational 
learners will be sensitive to information beyond that needed 
to classify items according to the unidimensional rule. We 
expect that this sensitivity will include distributional 
information along the most diagnostic dimension and also 
along the other dimension.  

Increased sensitivity could arise either because: 1) 
observational learners are able to look beyond the most 
obvious unidimensional rule to consider other differences 
between the categories, or 2) because they are attending to 
the distributions of the individual categories with reduced 
regard for distinguishing the categories. To address the 
cause of a possible advantage, we manipulated the degree of 
diagnosticity of the second dimension. 

Method 

Participants 
200 Binghamton University undergraduates participated in 
this experiment for partial fulfillment of course credit. 
Participants were randomly assigned to one of four 
conditions based on the learning task (Classification or 
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Observational), and diagnosticity of the second dimension 
(Less-Diagnostic or Non-Diagnostic).  

Materials and Design 
Stimuli. The stimulus materials were adapted from a 

“creature” produced with the SPORE Creator tool from the 
videogame SPORE (2001). Figure 1 shows a sample 
creature. The creatures varied along two dimensions: the 
number of “spike” protrusions from the sides of the body, 
and the ratio of gray dots (always above) to black dots 
(always below). The number of spikes on the right and left 
side could range from 3 to 14. There were always 150 total 
dots, but creatures ranged from having only 20 gray dots 
(and therefore 130 black dots) to having 130 gray dots (and 
therefore 20 black dots) in intervals of ten. Hence, there 
were 12 possible values along each of the two dimensions, 
creating a possible stimulus space of 144 items representing 
every combination of feature (see Figure 2 for the entire 
range of possible feature combinations). 

 

                                 
Figure 1: Example of stimuli  

 
Twenty-four creatures (12 for each category) taken from 

the center of the stimulus space were used for training. The 
rest of the stimulus space was reserved for exploring how 
category representations generalized. At test, four examples 
within each category and ten additional items for each 
category were used to collect typicality ratings. 

Category Structure. Figure 2 depicts the feature space, 
specific examples, frequency of examples, and the category 
assignment of examples used in the experiment. As can be 
seen in the figure, the assignment of stimuli to categories 
was determined based on a simple unidimensional rule 
(examples to the right of the solid black line were in one 
category, examples to the left were in the other). The 
dimension to which the rule applied was counterbalanced. 
We will refer to the dimension in which the simple 
unidimensional rule determined category membership as the 
HI relevance dimension, and the second, less diagnostic 
dimension as the LO relevance dimension.  

The degree to which the LO relevance dimension was 
diagnostic differed between the conditions (see Figure 2). In 
the Less-Diagnostic condition, one category consisted of 
creatures with extreme values along the LO relevance 
dimension, while the other category was made up of 
creatures possessing central values along the LO relevance 
dimension. In this condition, the LO relevance dimension 
could be used to predict category membership, although the 
rule for membership was more complex than the 
unidimensional rule along the X-axis (e.g., one category has 

less than 50 gray dots or greater than 100 dots, while the 
other has between 50 and 100 dots). In the Non-Diagnostic 
condition, both of the categories consisted of creatures 
possessing extreme values along the Y- dimension. Because 
both categories possessed the same structure along this 
dimension, learners could not use it to distinguish between 
categories. It is important to note that the same category 
used in the Less-Diagnostic condition was also used in the 
Non-Diagnostic conditions (the “common category” on the 
left in Figure 2). This allows us to compare representations 
of the same category under conditions in which one 
dimension is either diagnostic or not diagnostic. 

Although there were only 12 unique creatures for each 
category in the training set, some items were presented more 
than once in each block. Therefore, each block of training 
included 24 presentations for each category. The frequency 
of presentation of each item reinforced the robustness of 
each category’s internal structure and provided another 
avenue for learners to learn non-diagnostic information 
about the categories. The most frequent items (displayed 4 
times every block) were always at the center of the 
distribution of examples along the HI relevance dimension. 
Along the LO relevance dimension, the most frequently 
occurring items were at the center of only one category 
distribution in the Less-Diagnostic conditions. All other 
categories had bimodal distributions along the LO relevance 
dimension and the most frequently occurring items were at 
the extremes. 

 

           
Figure 2: Feature space, examples, and frequency of each 

example in the training set for the Less-Diagnostic (black 
squares) and Non-Diagnostic (white squares) conditions. All 

conditions learned the common category. 

Procedure 
The instructions given to classification and observational 

learners were slightly different in conjunction with the 
induction of a discriminative or generative approach. All 
participants were told that a new planet was recently 
discovered and that it was their job to learn about the two 
types of creatures living there. In the observational 
condition, participants were told that researchers traveled 
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around the planet taking a picture of each creature they 
found and that they would be learning from this catalog of 
pictures. This was intended to give the impression that the 
examples were drawn from a population and their properties 
directly reflected the distribution of properties of creatures 
on the planet. Classification learners were merely told that 
they would be seeing pictures of creatures, but no mention 
was made of the pictures actually representing the 
population of creatures. 

Learning Phase. In classification trials, items were 
presented one at a time randomly on the screen along with 
buttons labeled for creatures of type “Yugli” and “Zifer.” 
On each trial, participants were asked to choose via mouse 
click the category to which the example belonged. After 
making a guess, they received feedback indicating whether 
they were right or wrong and were shown the correct 
answer. The feedback remained on the screen until they 
clicked to proceed to the next trial.  

Before a stimulus was displayed in observational trials, 
learners were presented with the correct category label for 
1500 ms. The image and label were then shown together on 
the screen for another 1500 ms – at which point the learner 
clicked to confirm the correct category name and continue 
to the next trial. 

Both classification and observational learners completed 
two blocks consisting of all 48 items. After the first block, 
all learners were given a brief endorsement task asking them 
to classify 8 selected items. In this task, each item was 
presented on the screen with a correct or incorrect label. 
Participants were asked to indicate whether they agreed or 
disagreed with the classification of the item. The purpose of 
this test phase was to determine the progress of learners. 
This was critical for the observational learning condition in 
which no learning accuracy data could be recorded. In an 
effort to match the number of trials between the 
observational and classification conditions, there was no 
criterion level of performance that would move learners on 
to the test phase. Instead, all classification and observational 
learners completed a total of 96 trials before progressing to 
the test phase. 

Test Phase. The test phase consisted of a series of three 
types of test trials. The first type of test trial was an 
endorsement task (as above) designed to assess category 
knowledge of the 24 trained examples. Each item was 
presented once with a corresponding label that was either 
correct or incorrect (randomly determined). This task was 
used instead of a traditional classification test phase to 
ensure that the test task did not match the task of either 
learning group. 

While the first test phase was included to compare 
classification accuracy, the next two test phases were 
included to evaluate whether there was a difference in 
sensitivity to the distribution along both dimensions 
depending on the type of learning task. The second test 
phase was designed to assess representations of internal 
structure via typicality ratings. Learners were presented with 
a series of 24 creatures (shown in Figure 3). They were 

given the correct category label and asked to rate how 
typical or ‘good an example’ each item was of its category. 
Category membership of each item was provided to try to 
ensure that typicality ratings were not based on confidence 
in category membership. Only four of these items had been 
presented during training. The other 20 items had never 
been seen. Despite never having been seen, some items were 
closer to the distribution of items in their category than 
others. Along the HI relevance dimension, sensitivity to 
internal structure would manifest in typicality ratings 
reflecting the range of values presented during training. In 
other words, the items with feature values along the HI 
relevance dimension that were presented many times during 
training (those items labeled with an “a” in Figure 3) would 
be rated higher than those items outside of the distribution 
of presented feature values (those items labeled with a “b” 
in Figure 3). In the category common to all conditions, 
items in the center of the distribution were not sampled 
during training. If learners were sensitive to this, they would 
presumably rate the typicality of examples in this region 
(those items labeled with circles in Figure 3) lower than 
examples in the extremes of the distribution along that 
dimension (those items labeled with squares in Figure 3).  

The last test phase was an inference task that more 
explicitly assessed the learner’s knowledge of the 
distribution of features along the LO relevance dimension. 
Participants were given a category label and images 
representing two possible feature values along one 
dimension. They were asked which value (out of the two 
provided) was more likely given the category information. 
In addition to the category labels, they could answer 
“equally likely” if they believed that there was no greater 
probability of one category over another. To ensure that 
responses were made because they believed them to be 
accurate, not because they were forced to choose, they could 
also answer “not sure.”  

In the inference task, three key single-feature distinctions 
for each category were of interest along the LO relevance 
dimension. Of these three, two asked learners to decide 
between an extreme value and a central value (e.g. 70 gray 
dots vs. 110 gray dots). In the common category in which 
the distribution was bimodal, the correct answer was always 
that the extreme value was more likely. The third trial asked 
them to decide which of two extreme values was more 
likely (the correct answer being “equally likely”). We 
averaged accuracy across these three judgments for the 
common category to determine a score for each participant 
based on their sensitivity to the distribution along the LO 
relevance dimension.  

Predictions. We believed that learners in the 
observational conditions would display greater sensitivity to 
internal structure along both dimensions. More specifically, 
we expected typicality ratings and selection of single feature 
values to reflect a greater sensitivity to the missing central 
values of the category that was common between all 
conditions. 
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If the observational learners were at an advantage because 
they were developing a representation of the features within 
each category separately, their sensitivity to the internal 
structure of the Y-distribution should not change depending 
on the distribution of the contrast category. If, however, the 
advantage of the observational learner was due to an 
increased ability to develop a more comprehensive 
combination of diagnostic information, then their sensitivity 
to the internal structure should depend on how diagnostic 
that information is. We can directly test this because we 
have the same exact category under a condition in which the 
contrast category is distributed the same along the LO 
relevance dimension (Non-Diagnostic) and a condition in 
which it is not (Less-Diagnostic). 

 

       
Figure 3. Items presented in typicality phase are labeled 

“a” and “b”. Training items shaded gray for reference. 

Results and Discussion 

Classification of Trained Examples 
To begin, we were interested in determining if classification 
accuracy was affected by whether the learning mode was 
classification or observational learning. As in Ashby, 
Maddox, and Bohil (2002), this was not found. For the 
endorsement task of trained items, performance of the 
classification learners (M = .98, SD = .05) and observational 
learners (M = .97, SD = .08) were not significantly different 
for the endorsement test after two blocks (ps>.25).  This was 
also true after just one block. Therefore, there was no 
apparent advantage for classification learning despite the 
fact that they were queried on each trial. 

Our next goal was to see whether observational learning 
resulted in greater sensitivity to distributions of features 
along both dimensions. Subsequent analyses focus on the 
one category that was common between conditions. 

Distribution Along HI relevance dimension 

Through typicality ratings, we confirmed our predictions 
that observational learners would be more sensitive to the 

range of values along the HI relevance dimension presented 
during learning. 

Typicality ratings. Sensitivity to the range of values 
presented in the training set would result in typicality 
ratings that decreased as distance from the training 
examples increased. Typicality ratings were collected for 6 
examples in the common category at the center of the 
distribution along the X-axis (indicated by the letter “a” in 
Figure 3) and 6 examples that were beyond the distribution 
along the X-axis (indicated by the letter “b” in Figure 3). 
The extent to which the average typicality ratings for items 
further away from the presented values were lower than 
those at the center of the distribution determined each 
participant’s sensitivity along this dimension. 

A 2 (task) x 2 (diagnosticity) x 2 (example type) ANOVA 
revealed a main effect of example type, F(1, 196) = 12.501, 
p = .001, η2 = .060. Overall, center items were rated more 
typical (M = 5.336, SD = 1.191) than extreme examples (M 
= 4.77, SD = 1.825). An interaction between task and 
example type drove this main effect, F(1, 192) = 12.281, p = 
.001, η2 = .056. For classification learners, there was no 
difference between their ratings of the central items and 
their ratings of the extreme examples, t < 1. However, 
observational learners rated the central items significantly 
higher than the extreme examples, t(99) = 4.740, p < .001, 
indicating that they were sensitive to the range of the 
distribution along this dimension.  

Taken together, these results are consistent with Hsu and 
Griffiths (2010) in that people in a classification task try to 
find a boundary between categories along diagnostic 
dimensions, while observational learners develop a 
representation of the diagnostic dimension that includes 
distributional information. 

Distribution Along LO relevance dimension 
As predicted, inference judgments and typicality ratings of 
observational learners reflected greater knowledge of the 
distributional gap in the LO relevance dimension. This 
effect depended on whether or not the second dimension 
was diagnostic.  

Inference test. We averaged together the accuracy for the 
three key questions asked of the LO relevance dimension 
within the common category (see Figure 4). A 2 (task) x 2 
(diagnosticity) ANOVA revealed a significant main effect 
of task, F(1, 196) = 8.566, p = 0.004,  η2 = .042. 
Observational learners were more accurate (M = .403, SD = 
.265) than classification learners (M = .300, SD = .244) at 
determining which feature value was correct. This was 
despite the fact that classification and observational learners 
did not differ in their likelihood of selecting “not sure”. 

There was also a main effect of diagnosticity, F(1, 196) = 
7.497, p = .007, η2 = .037, indicating that the degree of 
diagnosticity to some extent determines sensitivity to 
distributional properties. More specifically, people in the 
Less-Diagnostic conditions were significantly more accurate 
(M = .400, SD = .321) than those in the Non-Diagnostic 
conditions (M = .303, SD = .165).  
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Figure 4. Proportion correct on Y-dim inference items 
 
Typicality ratings Along the LO relevance dimension, 

we averaged the typicality of the four examples at the center 
of the distribution in each category (indicated by circles in 
Figure 3) and the four examples at the bimodal location in 
each category (indicated by squares in Figure 3). Figure 5 
shows the average difference between these measures for 
the four conditions. We conducted a 2 (task) x 2 
(diagnosticity) x 2 (example type) and found a main effect 
of example type, F (1, 196) = 14.403, p < .001, η2 = .068. 
Overall, the items at the bimodal location were considered 
more typical (M = 5.219, SD = 1.159) than those at the 
central location (M = 4.835, SD = 1.397). However, we did 
not find a significant main effect of task or an interaction 
between task type and example type. In sum, classification 
learners were just as likely as observational learners to rate 
central items lower than the bimodal items. 

We did find an interaction between diagnosticity and 
example type, F(1, 196) = 13.662, p < .001. Learners in the 
less diagnostic conditions rated the center items lower than 
the bimodal items, t(99) = 3.850, p < .001. However, in the 
non-diagnostic condition, there was no significant difference 
between ratings of the center and bimodal items, t < 1.  

 

         
Figure 5. Average difference between typicality of central 

and extreme items along Y-dim. 

Summary of Findings 
Typicality ratings and inference judgments indicate that: 

1) observational learners, but not classification learners, 
were sensitive to the range of distribution along the most 
diagnostic dimension; 2) when a second dimension was also 
somewhat diagnostic, observational learners were sensitive 
to its distribution despite the fact that it was not necessary 
for distinguishing between categories; 3) when a dimension 
was not diagnostic, neither classification nor observational 
learners were sensitive to its distributional properties. The 

advantages of observational learners were present without a 
corresponding difference in classification performance. 

These data are consistent with observational learners 
being generative learners who are sensitive to information 
beyond that which is required for distinguishing between 
classes. However, there is conflicting evidence about the 
extent to which classification learners are sensitive to this 
information. While performance on the inference tasks 
indicates a decrement compared to observational learners, 
typicality ratings imply that classification learners are aware 
on some level of the distribution along the second 
dimension. It may be that typicality ratings are a more 
sensitive measure, or that classification learners were aided 
by the presentation of whole exemplars rather than 
individual features. 

Although unexpected, we find it important to emphasize 
that neither observational nor classification learners were 
sensitive to the distribution along the second dimension 
when it was non-diagnostic. This suggests that distributional 
information is not as strongly represented for features that 
do not differentiate between categories. Further work will 
investigate more specifically the types of information that 
are represented through discriminative and generative 
learning modes. 
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