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Abstract

A core issue in the cognitive sciences is understanding
how people acquire conceptual knowledge. One way
that people can acquire this knowledge is through the
inference of missing feature information. Recent studies
have proposed a shift away from the idea that inference
learning results in knowledge of the internal structure
of the categories being learned. The current study varies
the inference learning task and the category structure
being learned in order to examine these claims. The
results provide little support for the notion that
participants are acquiring either exemplar knowledge or
a simple set of rules as a result of inference learning.
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During the past decade, inference learning has been
studied as a form of category learning (e.g. Sweller &
Hayes, 2010; Yamauchi & Markman, 1998). Inference
learning occurs as a participant predicts a missing feature
value of an item when the category membership is explicitly
available. For instance, the participant is shown a fictional
bug, identified as a “DEEGER”, that is missing its legs.
Possible values for the missing legs are provided, and the
participant predicts which would occur with that bug. As the
participant continues to make inferences of this sort and
receives feedback on those predictions, she acquires
knowledge of the categories the bugs are drawn from.

Most previous research in this area has focused on
comparing inference learning to classification learning. The
current study focuses specifically on inference learning in
order gain insight into that learning paradigm. One view of
category learning is that the category knowledge acquired
reflects that information about the category and its members
that allows for a successful completion of the learning task
(Markman & Ross, 2003). According to this view, inference
learning leads to the acquisition of information about how
features occur within the categories of interest. This can be
as simple as learning the most likely feature value given the
category label. However, this knowledge can also include
more rich information about the internal structure of the
category, e.g. the co-occurrence of feature values (Chin-
Parker & Ross, 2002), variation among the feature values
(Yamauchi & Markman, 2000), or abstract relations that
exist between the features (Erickson, Chin-Parker, & Ross,
2005). Successful inference learning depends on realizing
the category structure so that feature inferences can reflect
how the features are instantiated within the category
members. Although Johansen and Kruschke (2005) echo the
notion that different learning tasks can lead to the
acquisition of different category knowledge, they propose
that inference learning results in a set of rules specifying
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only the association between the category label and the
inferred feature values as opposed to a richer sense of the
internal structure of the categories. More recently, Sweller
and Hayes (2010) have proposed that inference learning
results in the acquisition of exemplar knowledge under
certain conditions, a claim that runs counter to much of the
previous work examining inference learning. Although
exemplar knowledge can be useful for many category-based
tasks, inference learning seems to require a more unitary
representation of the category to be successful.

The current study explores these claims by varying both
the inference task and the structure of the categories being
learned. Participants learned about categories that had a
family resemblance (FR) structure. They either inferred only
the prototypical feature values or both the prototype-
consistent feature values and exceptions to those values.
This manipulation has been used in previous studies
(Nilsson & Olsson, 2005; Sweller & Hayes, 2010), and it
has been proposed that inferring all feature values leads to
exemplar learning. However, the effect of this manipulation
on inference learning has not been fully explored. In this
study, the participants also either learned a category
structure where the feature values were shared across the
categories or one where the feature values associated with
each category were independent of one another. By
examining the effect of the category structure, we can gain
some insight into what knowledge is acquired through
inference learning and how it is represented.

The working hypotheses for this study are based on the
premise that successful inference learning involves selecting
the most likely feature value in terms of the internal
structure of the categories as opposed to a simple set of rules
or exemplars. Several dependent measures are examined,
including inference accuracy during learning and typicality
ratings of both studied and novel items after the learning.
Previous research (e.g. Sweller & Hayes, 2010) has shown
that the manipulation of the inference task affects inference
accuracy during learning. As noted prior, the inference task
prompts the learner to select the most likely feature value
given the category structure — this strategy leads to accurate
inference of the prototype-consistent feature values but
leads to poor accuracy when prototype-exception values are
predicted. This in turn affects what participants are able to
learn about the categories. Because their learning task better
matches the category structure, the typicality ratings of the
participants who infer only the prototype-consistent feature
values will better reflect the FR structure of the categories.
The effect of the category structure on participant
performance will be more complex. Due to the nature of
inference task, it is not obvious that the category structure



manipulation will affect accuracy during learning because
both category structures instantiate the prototypical feature
values the same within the FR structure. However, I do
predict that the participants who infer the feature values that
are not shared across the categories will better realize the
FR structure because they can focus on how specific feature
values are distributed within each category. The participants
who interact with the categories that share feature values
will show less learning of the FR structure because they
would have to realize the distribution of the feature values
both within and across the categories to fully appreciate the
category structure. What these results show about the
underlying representation of category knowledge acquired
from inference learning will be addressed in the Discussion.

Experiment
Methods

Participants Ninety-six undergraduates from a Midwest
college received participation credit for an Introductory
Psychology class in return for their participation.

Design The experiment was a 2 (category structure) X 2
(inference task) independent samples design. During the
learning task, the participants learned a category structure in
which the feature values occurred across the categories, the
cross-category structure, or the feature values were specific
to each category, the independent-category structure. The
structures of the categories learned are explained further in
the Materials section of this paper. Also, participants either
inferred both prototype-consistent and prototype-exception
feature values (exception inference conditions) or only the
prototype-consistent feature values (consistent inference
conditions). The design resulted in four learning conditions:
the cross-exception condition (C-E), the cross-consistent
condition (C-C), the independent-exception condition (I-E),
and the independent-consistent condition (I-C). Participants
were randomly placed into a learning condition upon arrival
at the experimental session.

Materials The stimuli were drawings of “bugs”, labeled
Deegers and Koozles (see Figure 1). The bugs varied along
four features: the legs, antenna, tail, and wings. The stimuli

Figure 1: Example Stimuli — Category Prototypes

DEEGER (1111)

KOOZLE (0000)

Table 1: Category Structures Used in the Experiment

Cross-Category Structure

Deeger Koozle
Learning 1110 0001
Items 1101 0010

1011 0100

0111 1000
Prototype 1111 0000
Independent-Category Structure

Deeger Koozle
Learning 1112 0003
Items 1121 0030

1211 0300

2111 3000
Prototype 1111 0000

were pretested to confirm that the feature values carried
similar weights when participants were asked to make
similarity judgments.

The categories (see Table 1) were defined by prototype,
and during the learning task the participants interacted with
bugs that matched the prototype on three of the four feature
values (the prototype-consistent features), but had one
feature value that did not match the prototype (the
prototype-exception feature). The value of the prototype-
exception feature depended on the category structure. In the
cross-category structure, the values for prototype-exception
features were the values associated with the prototype of the
other category (e.g. a value of O for the prototype-exception
feature in the Deeger category). In the independent-category
structure, there was no overlap in the feature values
associated with the two categories. For the learning stimuli,
the feature that was to be inferred was removed from the
picture of the bug, and pictures of each feature value were
prepared in isolation so they could be displayed alongside
the incomplete bug during the learning task as described in
the Procedures section. Sixteen blocks of the learning
exemplars were constructed so that during each learning
block the participant would interact with each item once and
each feature was inferred once for each category.

The items for typicality-rating task were based on the FR
structure in Table 1. Participants rated the prototype of each
category, I-off items, 2-off items, 3-off items, and category
conflict items. The values of the prototype-exception
features of these items varied as to whether they were from
the cross-category, e.g. a value of 0 for a Deeger, or from
the independent-category, e.g. a value of 2 for a Deeger.
The 1-off items did not match the category prototype on one
feature value, the 2-off items did not match on two feature
values, and the 3-off items did not match on three feature
values. The category conflict items had no prototype-
consistent feature values (e.g. items 0000 and 2222 for the
Deeger category). There were four 1-off items, six 2-off
items, four 3-off items, and one category conflict item for
each of the types of mismatch feature values, whether cross-
category or independent-category values. Including the
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category prototype, there were 31 items from each category
in the typicality-rating task. The stimuli for the single-
feature classification task consisted of each of the feature
values instantiated alone on the generic head-body form
used for all bugs in the study.

Procedure The participants worked individually at a
computer, seated roughly two feet from a 17 CRT monitor.
Participants were told that they would be asked a series of
questions about fictional bugs during the study. After this
initial introduction to the study, instructions and reminders
were presented on the computer.

The order of the sixteen learning blocks was randomized
for each participant, as was the order of the presentation of
the learning items within each block. For each trial of the
learning task, a fixation point was followed by one of the
learning items centered on the screen. As described in the
Materials section, the bug was missing one of four features
(the legs, wings, antenna, or tail). A notification of the
category membership for the bug, either “This bug is a
DEEGER” or “This bug is a KOOZLE”, was presented in
large font above the bug. To the right of the bug were the
two possible values for the missing feature, the prototype-
consistent value and the prototype-exception value. The
location of each of the features, whether above or below the
vertical center of the screen, was randomly determined each
trial. Once the participant clicked on one of the feature
values using the computer mouse, the initial picture of the
bug was replaced with a complete version, all features were
shown, and the participant was provided feedback on their
inference. Either “CORRECT” appeared in a green font or
“INCORRECT” appeared in a red font on each side of the
bug for two seconds. The image of the bug remained for two
seconds after the feedback before the next trial began.

After completing the 16 learning blocks, the participant
was provided instructions for the typicality-rating task. The
items seen during the task were blocked by category, and
the order of the items within each block was random. The
order of the categories was balanced across the participants.
As in the learning, each trial was preceded by a short
fixation point. The bug was presented in the center of the
screen with the question, “How typical is this bug of a
(DEEGER/KOOZLE)?” below it. Below the question was a
seven-point typicality rating scale that was anchored at 1
(“Not at all typical”), 4 (“Somewhat typical”), and 7 (“Very
typical”). The participant clicked on their rating using the
computer mouse. Once the participant rated the 31 items in
one of the category blocks, the other category block
followed. No feedback was given during the task.

The final transfer task was the single-feature classification
task. During this task, the feature values that were seen
during the learning task were presented individually in a
random order. Each feature value was preceded by a
fixation point and was centered on the screen. On each side
of the image were the category labels, “DEEGER” and
“KOOZLE”. The participant clicked on her classification
for each feature value using the computer mouse. No
feedback was provided during this task.

Results

Figure 2 shows the mean learning performance for each
of the conditions organized by the learning block quartiles.
A 2 (category structure) X 2 (inference task) X 4 (learning
block quartile) mixed ANOVA showed a significant main
effect of learning block quartile, F(3, 276) = 4323, p <
001, 17[,2 = 0.32, no main effect of category structure, F(1,
92) = 0.00, p > .50, and a main effect of the inference task,
F(1, 92) = 186.35, p < 01, r]pz = 0.67. There was an
interaction between the learning block quartile and inference
task, F(3,276) = 13.58, p < 001, n,” = 0.13. As can be seen
in Figure 2, the consistent-inference participants improved
in their performance while the exception-inference
participants showed much less improvement across the
learning blocks. There was no effect of the category
structure on this pattern. In the final learning block, 34 of
the 48 consistent-inference participants were perfect at
inferring the missing feature value, while only 4 of the 48
exception-inference participants did so. In contrast, 24 of
the 48 exception-inference participants made four or fewer
correct inferences in the final learning block.

Table 2 presents the mean typicality ratings for each of
the item types by condition. It is important to note that all
participants rated the typicality of items that had exception
feature values seen during learning and items that had
exception feature values not seen during learning. The
analyses and tables that follow are organized to reflect this.

The analyses of the typicality ratings first focus on the
typicality slope - the slope and intercept of the line that best
fit each participant’s ratings of the items from prototype to
the conflict item. A near zero slope indicates that varying
the number of prototype-consistent feature values has little
effect on the typicality rating. A positive slope indicates that
rated typicality increased as fewer feature values match the
prototype (not expected if the FR structure is learned). A
negative slope reflects that the participant is rating items

Figure 2: Learning Performance by Quartile

Proportion Correct
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020 Cross Consistent
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Q1 Q2 Q3 Q4
Learning Block Quartile

Figure Note: Error bars represent +/- 1 SE



Table 2: Mean (and SD) of Typicality Ratings by Item

2a: Exception Feature Values Match Learning

Item Type
Proto  1-0ff 2-0ff 3-Off Conflict
C-E 5.21 5.18 4.40 4.18 394
(1.80) (0.96) (1.34) (143) (1.86)
I-E 5.15 545 4.80 451 4.29
(1.68) (096) (1.26) (140) (1.82)
C-C 5.96 5.20 3.86 2.86 2.13
(1.63) (081) (1.02) (145) (1.78)
I-C 6.08 547 498 4.49 4.29
(143) (092) (1.13) (153) (1.79)
2b: Exception Feature Values Mismatch Learning
Item Type
Proto  1-0ff 2-0ff 3-Off Conflict
C-E 5.21 2.53 1.97 1.72 1.67
(1.80) (140) (1.04) (0.95) (1.14)
I-E 5.15 3.80 3.14 2.72 2.77
(1.68) (1.18) (095) (0.92) (1.74)
C-C 5.96 3.79 2.61 1.97 1.48
(1.63) (1.82) (1.15) (0.89) (0.87)
I-C 6.08 4.49 345 2.77 2.25
(143) (1.07) (098) (1.22) (145)

Note: The prototype ratings are reported twice to allow for
comparison across all levels in the tables above.

that share fewer feature values with the prototype as less
good members of the category. The slope intercept provides
an indication of the typicality rating assigned to the more
typical members of the category. The mean slope and slope
intercepts were computed across the items that had
prototype-exception values seen during learning (match
slopes) and those that introduced the prototype-exception
values not seen during learning (mismatch slopes). These
values are reported in Table 3. The slope intercepts are not
addressed here because of space.

The match slopes for all participants were analyzed using
a 2 (category structure) X 2 (inference task) ANOVA. This
analysis showed a main effect of category structure, F(1, 92)
=8.93,p < 01, 77[,2 = 0.09, a main effect of inference task,
F(1, 92) = 15.60, p < 01, npz = 0.15, and an interaction
between category structure and inference task, F(1, 92) =
462, p = 03, np2 = 0.05. The participants that had been
exposed to the cross-category structure during learning
tended to have more negative match slopes than those
exposed to the independent-category structure, and the
participants in the consistent-inference conditions had more
negative match slopes than those in the exception-inference
conditions. The participants in the C-C condition had a
mean match slope that was twice as large as any other
condition leading to the interaction.

The mismatch slopes were similarly analyzed. A 2
(structure) X 2 (inference) ANOVA revealed a non-
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Table 3: Mean (and SD) Slope and Slope Intercept Values

Exception Values Exception Values

Match Learning Mismatch Learning
Slope Slope
Slope  Intercept Slope  Intercept
C-E -0.35 5.28 -0.79 420
(0.53) (1.31) (0.52) (1.20)
I-E -026 536 -058 4.68
(044) (1.22) (0.58) (146)
C-C -1.00 6.00 -1.07 531
(0.62) (1.13) (042) (1.70)
1I-C -0.46 5.97 -094 5.69
(046) (1.10) (0.55) (1.10)

significant effect of structure, F(1,92) =2.63,p = .11, npz
0.03, a main effect of inference, F(1,92) =9.28,p < 01, npz
= 0.09, and no interaction between the factors, F(1, 92) =
0.10, p = .75. The participants in the consistent-inference
conditions had higher mismatch slopes on average than the
participants in the exception-inference conditions.

The assessment of the typicality slopes is useful, but the
slope summarizes the change across the levels of typicality.
In order to look at the changes in the ratings at a more fine-
grained level, I calculated for each participant how much the
typicality ratings changed from the prototype to the 1-off
items, the 1-off to 2-off items, etc. This provided four
“drop” values for each participant. Each drop value
indicated how the typicality ratings changed as an additional
feature value mismatched the prototype. Using the four drop
values, each participant’s performance was categorized:
consistent drop meant at least three of the four values were
greater than 0.25, consistent reversal meant that three of the
four values were less than -0.25, flar meant that three of the
four values were between -0.25 and 0.25, and inconsistent
meant that the drops varied across these ranges. Table 4
shows these patterns organized by condition and whether
the values of the exception features matched (Table 4a) or
mismatched (Table 4b) those seen during the learning.
Organizing the patterns into two types, Consistent and
Other’, there is a obvious effect of the condition, x’; ) =
13.72, p < 01, ¢. = 0.38. Only the C-C condition had a
majority of the participants showing a consistent drop across
these items in the typicality rating task when the prototype-
exception feature values matched those seen during
learning. There is also an effect of condition on the patterns
observed in the typicality ratings for the items with the
mismatched exception feature values, yx’; o5 = 11.31, p =
01, ¢. = 0.34. The typicality ratings of the C-E condition
did not consistently reflect the typicality gradient. The I-E
condition was more consistent in their ratings. Most of the
consistent-inference participants showed a consistent change
in their typicality ratings. It is important to note that nearly

! Combining the reversal, flat, and inconsistent into one grouping
to contrast with consistent is necessary for the analysis because of
the small number of participants with the flat and reversal patterns.



Table 4: Distribution of Participant Typicality Drop
Patterns Within the Conditions

4a: Exception Feature Values Match Learning

Consistent Reversal  Flat Inconsistent
C-E 9 1 2 12
I-E 6 2 4 12
Cc-C 18 1 1 4
I-C 9 0 3 12

4b: Exception Feature Values Mismatch Learning

Consistent Reversal  Flat Inconsistent
C-E 8 1 8 7
I-E 13 1 3 7
Cc-C 16 0 4 4
I-C 19 0 0 5

all participants who were categorized as having a flat
response pattern with the mismatch items (especially those
in the C-E condition) actually rated the prototype rather high
but the introduction of any feature value not seen during
learning resulted in a low typicality rating.

The final measure was the single feature classification
accuracy. It is important to remember that in this task the
cross-category conditions (C-E and I-E) classified eight
feature values while the independent-category conditions (I-
E and I-C) classified sixteen feature values. All four
conditions, C-E M =0.79, SD =0.14), I-E (M =0.87, SD =
0.15),C-C (M =0.89, SD =0.19), and I-C (M = 0.86, SD =
0.14), were above chance when classifying the feature
values (all p < .01). A 2 (category structure) X 2 (inference
task) ANOVA showed no effect of category structure, F(1,
92) =0.89,p = 35, npz = 0.01, no effect of inference task,
F(1, 92) = 1.84, p = .18, r)pz = 0.02, and a marginally
significant interaction between category structure and
inference task, F(1, 92) = 3.12, p = 08, n,” = 0.03. The
interaction term approaches significance, reflecting the
similar performance of all conditions except for the C-E
condition. Both the C-C and I-E conditions were
significantly more accurate than the C-E condition (both ps
< .05), and the difference between the C-E and I-C
conditions approached significance (p = .07).

Discussion

The results of this experiment provide some insight into
the nature of inference learning. To facilitate discussion, a
brief summary of the experimental conditions follows. The
cross-exception (C-E) condition performed poorly during
the learning task, and their typicality ratings showed
restricted knowledge of the FR category structure. When the
exception values matched those seen during learning, the
typicality slope was small and inconsistent across the
participants in the condition. When rating the mismatch
items, the participants in the C-E condition gave any item
with a novel feature value a low rating; the number of
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prototypical values had little impact on their ratings. The
independent-exception (I-E) condition, like the C-E, had
difficulty during the learning. Their typicality ratings for the
matched items were also similar to the other exception-
inference condition. However, when they were rating the
typicality of the mismatch items, they showed more
sensitivity to the FR structure. The cross-consistent (C-C)
condition performed very well during the learning. Their
typicality ratings showed that they were sensitive to the FR
structure of the categories they learned, and this was evident
whether they were rating items that had exception features
that matched those that they had seen during learning or not.
The independent-consistent (I-C) condition also did well
during the learning task. In the matched slope analyses, the
typicality slope of the I-C condition was somewhat flat and
the participants’ ratings fluctuated among the items.
However, the ratings of the mismatch items, in terms of
both the slope measures and the consistency of the
participant drops showed recognition of the FR structure.

As predicted, there was a strong effect of the inference
task, but little effect of the category structure, during the
learning. The lower learning performance of the exception-
inference conditions occurred because the participants
consistently predicted the prototypical value for the missing
feature. On 25% of the learning trials, the participants were
getting feedback that the prototypical value was the
incorrect value for the missing feature. As noted prior, this
works directly against the underlying principle of the
inference task — identifying the most likely, i.e. prototypical,
feature value given the category of interest. This disruption
in the learning was extensive; half of the participants in the
exception-inference condition correctly predicted four or
fewer of the missing features in the final block of learning.

The effect of the inference task on the transfer measures
is more complicated, and it interacts with the effect of the
category structure. Within the cross-category conditions, the
learning task had a strong effect. Participants in the C-E
condition did not realize the category structure, but the C-C
condition showed evidence across all of the transfer tasks
that they understood the FR structure. The independent-
structure conditions were more similar, although more
variable, in terms of what the typicality ratings suggested
about their knowledge of the categories. The typicality
ratings for the items with exception-feature values that
matched those seen during learning indicated that
participants in both the I-E and I-C conditions did not
appreciate the FR structure. The ratings for the items with
the mismatch values indicated that they did understand the
FR structure, the I-C condition somewhat better than the I-E
condition. The difference between the ratings for the items
with the matched and mismatched exception-feature values
can be attributed to two factors. First, within this category
structure all feature values in the matched items had been
associated with a single category during learning, and this
may have attenuated the drop in the ratings for the less
typical items. Second, the items with the matched and
mismatched exception-feature values were interleaved, so



the ratings may have been treated as relative — regardless of
the number of prototypical features, the matched items were
still more typical than the mismatched items. Importantly,
both independent-category conditions showed evidence of
recognizing the FR structure to some degree following the
learning. The predicted overall advantage for the
independent category structure was not seen as the C-C
condition learned the categories as well as either of the
independent-structure conditions. The preservation of some
learning in the I-E condition, especially compared to the C-
E condition, is the sole indication that the independent
category structure affected learning as predicted.

As noted, these results can be used to address recent
proposals about inference learning. First, Johansen and
Kruschke (2005) proposed that inference learning leads to a
set of rules representation that specifies the associations
between the category label and feature values inferred
during learning. The simplest form of the model can be
ruled out as the I-C condition showed sensitivity to the
value of the exception features during the typicality rating
task. This indicates that some information about the non-
inferred feature values was captured in the category
representation. Johansen and Kruschke acknowledged that a
more complex rule model might be necessary to capture the
knowledge acquired from the inference learning. Indeed, the
set of rules would have to somehow capture more than just
the inferred and non-inferred feature values; it would also
have to be flexible enough to represent relationships
between feature values (Chin-Parker & Ross, 2002) and
abstract relations between features (Erickson, Chin-Parker,
& Ross, 2005).

This study found very little to support the claim that the
exception-inference task results successful storage of
exemplar information during learning. As in prior studies
using the exception-inference task and cross-category
structure (Nilsson & Olsson, 2005; Sweller & Hayes, 2010),
participants performed poorly during the learning task.
Here, details about the progression of the inference accuracy
during the learning trials are provided so that we can better
appreciate the difficulty of the exception-inference task. If
participants had based their predictions on individual
exemplars instead of predicting the most likely value given
the category, performance would improve. However, only
five of the forty-eight participants in the current exception-
inference conditions were above 75% accuracy in the final
learning block. So, although it is possible that participants
could use exemplar knowledge to guide their inferences, it
was not a strategy that was readily employed in this
experiment. Also, a review of the transfer measures from
this study and the others shows that exception-inference
participants perform poorly on tasks designed to illustrate
their category knowledge, especially when feature values
are distributed across categories, complicating attempts to
ascertain the representation that underlies that knowledge.

The evidence suggests that the exception-inference task
undermines a fundamental constraint of inference learning —
a stable relationship between the category label and feature
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values so that the learner can develop a coherent sense of
the internal structure of the category. Sweller & Hayes
(2010) are correct that exceptions to prototypical features
exist, but they may be learned through a process other than
direct inference. Importantly, the current study provides
evidence that these constraints may be moderated by other
factors like the category structure being learned.

The pattern of results reported here fits with the notion
that inference learning relies on the development of
knowledge of the internal structure of the categories. When
the focus of the inference task matched the FR structure, as
with the consistent-inference conditions, participants easily
learned the categories. When there was a mismatch, e.g. the
C-E condition, learning was meaningfully hindered. Current
research, e.g. Yamauchi (2009), is exploring possible
processes that underlie the abstraction process that occurs
during feature inference and how coherent representations
of the category structure develop.
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