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Abstract

Most accounts of categorization assume the categorization de-
cision for an item to be independent of the categorization de-
cisions for other items. A number of methods are brought to
bear on the question of whether this assumption is justified.
These methods involve the application of a formal categoriza-
tion model that explicitly incorporates the independence as-
sumption to categorization data and the subsequent investiga-
tion of the residuals for unexplained structure. The residuals
reveal multiple departures from independence, suggesting that
the independence assumption in many a categorization account
should be relaxed. Following this suggestion the applied for-
mal model is extended to allow for dependent categorization
decisions. It is explained how the extended model might ad-
dress the concern that categorization accounts have erred in
using similarity as an explanatory construct. It promises to be
a significant step towards a categorization-based model of sim-
ilarity.
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Introduction

Similarity is arguably the variable that is most often invoked
to explain categorization decisions. According to most ac-
counts of categorization an item is believed to be a category
member if its representation sufficiently resembles the cat-
egory representation (regardless of whether the latter is be-
lieved to be an abstracted summary representation, an instan-
tiated set of representative exemplars, an ideal, or a coher-
ent theory). The Threshold Theory of categorization, for in-
stance, posits that prior to making a categorization decision
the similarity between the item’s representation and the cate-
gory’s representation is compared against an internal thresh-
old (Hampton, 2007). If the assessed similarity exceeds the
threshold, the item will be endorsed as a category member;
otherwise it will not.

Most accounts of categorization will make the additional
assumption that consecutive categorization decisions are
made independently from one another. It is believed that ev-
ery new item that is encountered for categorization will in-
voke the same similarity-assessment procedure that earlier
items have. That is, participants will provide a categorization
decision by determining whether the new item’s representa-
tion sufficiently resembles the category’s representation. The
answer that is provided on this particular categorization trial
is thus believed to be arrived at independently from the de-
cisions that were made earlier (and the ones that await). In
the framework of the Threshold Theory, for instance, every
new categorization decision entails a comparison of the item-
category similarity against the internal threshold, without re-
gard of the decisions for alternate items.

This assumption of independence might prove too strong,
particularly in the context of the tasks that are employed to
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study categorization in natural language categories. The list
of items that is presented for categorization is generally a mix
of clear members, borderline members, and clear nonmem-
bers of the target category. However, even the clear non-
members of the target category in these tasks are chosen to
be at least somewhat related to the category’s most prototyp-
ical items. For instance, the nonmembers included for cate-
gorization in a category like vegetables tend to be comprised
of other food or plant items. Employing items from the an-
imals or artifacts domains instead, would presumably render
the task less ecological valid and (perhaps more to the point)
might detract from the similarity-based processes we intend
to study with these tasks. Importantly, when all the items that
make up a set of potential category members are drawn from
a single domain (be it animals, artifacts, foods, activities, ...)
it is likely that meaningful similarity relations exist among
them. These similarity relations might impose structure on
the corresponding categorization decisions that have been ne-
glected in treating these decisions as independent from one
another. For instance, in categorizing items as vegetables or
not, one can imagine participants consistently giving the same
response to parsley as to sage when their similarity as herbs
is recognized.

In what follows we will employ various methods to estab-
lish that the data that result from the traditional categorization
task violate the assumption of independence. These meth-
ods originate from the item response models literature, where
departures from independence are known as Local Item De-
pendencies (LIDs). Rather than considering LIDs as nui-
sances that one is better off eliminating (which is common
practice in the item response models literature), we will re-
late the LIDs to ratings of item-item similarity to argue that
they are a substantial part of categorization decisions which
future accounts of categorization will have to incorporate.
The case for the existence and importance of LIDs in cate-
gorization will be made by means of a reanalysis of previ-
ously published categorization data using the Rasch model
(Rasch, 1960). The reasons for using the Rasch model to
introduce one of the shortcomings of many current catego-
rization accounts are threefold. (i) The model naturally ac-
counts for the inter-individual differences in categorization
that are characteristic of the natural language categories we
study (Verheyen, Hampton, & Storms, 2010). (ii) Since the
Rasch model is an item response model it is straightforward
to apply existing methods for detecting LIDs to it. (iii) A
Rasch-like model that accommodates the need to incorporate
LIDs offers the intriguing possibility of deriving similarity
from categorization, instead of the other way around.



The next section provides additional information about the
Rasch model. In our exposition of the model we will use
indices c to refer to categorizers (. in total) and indices i to
refer to items (n; in total).

Applying the Rasch Model to Categorization

In the Rasch model individual categorization decisions x; are
considered the outcomes of Bernoulli trials with probability
Pci- Equation (1) expresses how p; is fully determined by the
values of 6, and [B;. It expresses that the more B; exceeds 6,
on a latent scale, the higher the probability is that categorizer
¢ will endorse item i, and vice versa.

~ e(Bi_GC)
Pci = 1+e(Bi_ec)

This formalization is reminiscent of the Threshold The-
ory’s claim that categorization decisions arise from the as-
sessment of the similarity between the item’s representation
and the category’s representation (Hampton, 2007). This as-
sessment results in the positioning of the item along a latent
similarity scale (i.e., fixing the item’s 3; value). The further
along the scale an item is positioned, the higher its similarity
to the category is assumed to be. According to the Thresh-
old Theory categorizers then impose threshold criteria on the
scale to determine whether the assessed similarity affords a
positive rather than a negative categorization decision. The
value of . is taken to indicate the position of a categorizer’s
threshold criterion. The probability expressed in Equation (1)
decreases with 6. Low values of 0, indicate rather liberal cat-
egorizers for whom a modest degree of similarity suffices to
conclude category membership. High values of 6, charac-
terize more conservative categorizers who require extensive
similarity between item and category to conclude category
membership. Differences in the estimates of 6. allow the
Rasch model to account for the variable extension of natural
language categories.

Indeed, Verheyen et al. (2010) applied the model to 250
participants’ categorization decisions towards potential ex-
emplars of eight natural language categories to show that
it accords with the inter-individual differences in the data.
Moreover, they also found the model to reconcile the counter-
intuitive finding that the items afford both binary membership
decisions and continuous typicality ratings. The estimates of
the items’ positions along the latent scale correlated almost
perfectly with independently provided ratings of their typi-
cality. This accords with the Threshold Theory’s assertion
that there exists a linear relationship between item-category
similarity and typicality.

In the following section we elaborate on the Verheyen et al.
(2010) categorization data that we will reanalyze to look for
LIDs. To evaluate whether these LIDs can be interpreted in
terms of item-item similarity, an external measure of similar-
ity is required. We also discuss the procedure used to obtain
such a measure.

ey
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Data
Categorization

Two hundred and fifty first year psychology students at the
University of Leuven completed a categorization task for par-
tial fulfillment of a course requirement. The task included
8 categories with 24 items each. The categories consisted
of two animal categories (fish and insects), two artifact cate-
gories (furniture and tools), two food categories (fruits and
vegetables), and two activity categories (sciences and sports).
The corresponding category items included clear members,
clear nonmembers, and borderline cases. The data collection
took place in a large classroom where all participants were
present at the same time. Each of them was handed an eight-
page questionnaire to fill out. They were told to carefully read
through the 24 items on each page and to decide for each item
whether or not it belonged in the category printed on top of
the page. Participants indicated their answer by either cir-
cling 1 for yes or O for no. Five different orders of category
administration were combined with 2 different orders of item
administration, resulting in 10 different questionnaires. Each
of these was filled out by 25 participants.

Similarity

Ninety-two first year psychology students at the University
of Leuven provided pairwise similarities for partial fulfill-
ment of a course requirement. Eighty-three of them provided
ratings for the 276 item pairs of one of the eight categories
of fish, insects, furniture, tools, fruits, vegetables, sciences,
and sports. Six students provided ratings for the pairs of two
of these categories, two students provided ratings for three
categories’ pairs, and one student rated the item pairs of seven
categories. All the items that belonged to a particular set were
shown before the onset of the similarity rating task. This pro-
cedure served two purposes: We wanted to ensure that par-
ticipants had an idea about the degree of similarity and dif-
ference that was represented in the set and we wanted them
to only rate the pairs from a set of which they knew all the
items. Because participants did not always know all the items
in a particular set, they sometimes had to complete a dif-
ferent set than was originally intended. Because of this not
all sets were completed by the same number of participants.
For fish, insects, furniture, tools, fruits, vegetables, sciences,
and sports pairwise similarities were provided by 16, 15, 14,
15, 15, 12, 10, and 11 participants, respectively. Each of them
rated the similarity of every item pair by providing a number
between 1 (totally dissimilar) and 20 (totally similar). Item
pairs were presented in a random order. The presentation or-
der of items within a pair was also randomized. The ratings
were averaged across participants and reliabilities were esti-
mated by split-half correlations corrected with the Spearman-
Brown formula. The reliability estimates ranged between .86
for vegetables and .93 for sciences.



model {
#Endorsing An Item Is A Bernoulli Trial
for (¢ in 1:nc){
for (i in 1:ni){
x[c,i] = dbern(plc,il)
}
}
#Probability Is Determined By Categorizer-Item Positions
for (c in 1:nc){
for (i in 1:ni){
plc,i]l <- (exp(betalil-theta[c])/(1+exp(betali]-thetalc])))
¥
}
#Priors For Categorizers And Items
for (c in 1:nc) { thetalc] ~ dnorm(0,clambda) }
clambda ~ dgamma(.001,.001)
csigma <- 1/sqrt(clambda)

for (i in 1:ni) { betal[il ~ dnorm(0,.001) }

Figure 1: WinBUGS code for the Rasch model.

Detecting Local Item Dependencies

The Rasch model assumes that categorization decisions are
made independently from one another. It not only shares this
assumption with many competing categorization models, but
also with the majority of other item response models. As a
consequence, many means of detecting violations of indepen-
dence have been put forward in the item response models lit-
erature. In this section we will employ two of these to investi-
gate whether such violations also characterize categorization
data. The subsequent section will be devoted to the substan-
tive interpretation of these results. In order to detect LIDs we
first need to apply the Rasch model to the categorization data
that were described earlier. This entails a replication of the
modeling exercise conducted by Verheyen et al. (2010).

We implemented the Rasch model in WinBUGS (Lunn,
Thomas, Best, & Spiegelhalter, 2000) using the code that is
provided in Figure 1. Note that a normal distribution is de-
fined over the 6.’s. We opted to estimate the standard de-
viation of this distribution for every category, instead of in-
cluding a separate scaling parameter o for every category as
was done in Verheyen et al. (2010). We employ the poste-
rior means across 5 chains with 10,000 samples each as point
estimates for the various model parameters.

Graphical Model Evaluation

One way of assessing whether the categorization data present
with LIDs is graphical in nature and incorporates the rational
behind parametric bootstrapping (Tuerlinckx & De Boeck,
2004). Figure 2 includes the results of applying this proce-
dure to the categorization data of the sciences category. For
all possible item pairs in the category, the empirical log odds

ratio was computed:
log( (nn + .5)(n00+.5))
(nl() + .5)(1/101 + 5)

and converted in a gray-scale value. (In Equation (2) nj; is
defined as the observed frequency of a joint (1,1)-response
for the item pair under study, and so on.) These values were
subsequently placed in the upper triangular part of the left
most square matrix in Figure 2. The lighter a square in the
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matrix, the higher the value for the corresponding empiri-
cal log odds ratio is. If the Rasch model is able to capture
the dependencies the categorization data present with, the
square matrix on the left should not differ greatly from the
four square matrices on the right. They represent the log odds
ratios obtained from four simulated data sets. Each of these
data sets was constructed using the parameter estimates that
resulted from fitting the Rasch model to the empirical cate-
gorization data. It would appear that the matrix holding the
empirical log odds ratios contains somewhat more structure
than the matrices holding the simulated log odds ratios do.
The results in Figure 2 would thus suggest that there are de-
pendencies present in the categorization data that the Rasch
model doesn’t capture. The same conclusion follows inspec-
tion of similar figures for the remaining categories.

Although the graphical model evaluation procedure has
the benefit that it provides an overview of discrepancies per-
taining to dependencies at a glance, the extent of the dis-
crepancies remains subject to interpretation. One could of
course look deeper into the matrices to find out for which
item pairs the greatest differences emerge, but no principled
means of deciding which of these differences constitute sub-
stantial ones is readily available. The following method for
detecting LIDs provides a manner to remedy this.

Correlations between Standardized Residuals

Given the parameter estimates of an applied model, evidence
of local dependence between two items can also be obtained
by calculating the correlation between the residuals of the ob-
served and expected responses (Andrich & Kreiner, 2010).
This correlation provides a window into the association be-
tween items that is left unexplained by the model with its as-
sumption of independence. Following the estimation of the
Rasch parameters we thus obtained the correlation between
the standardized residuals for each pair of items in a cate-
gory. Wright (1977) provides the following formula for the
computation of individual standardized residuals:

Xei = Pci

RES,; = with wg; = Pci X (1 _pci) (3)

Wei

In a regular search for LIDs the item pairs with the highest
correlations between their residuals are identified as violating
the independence assumption. It is common practice to set
a .05 significance criterion for this (e.g., Andrich & Kreiner,
2010). If we were to employ this heuristic 4 item pairs from
the fish category would be identified as locally dependent.
For the categories of insects, furniture, tools, fruits, vegeta-
bles, sciences, and sports, these numbers equal 5, 5, 2, 1,
4, 2, and 35, respectively. Together they constitute evidence
that violations of the independence assumption exist in the
categorization data. The results add to those of the graphi-
cal model evaluation procedure in that they are explicit about
the item pairs one should sit up and take notice of. Table 1
holds for every category an example of an item pair with sig-
nificantly correlated residuals. The nature of these items sug-
gests that item-item similarity might be responsible for their
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Figure 2: Log odds ratio plot of the empirical categorization data (first matrix) and four data sets simulated from the Rasch
model estimates (matrices two to five) for the category of sciences.

Table 1: Examples of item pairs that violate independence.

Category Items
fish crab lobster
insects mosquito wasp
furniture  dishwasher refrigerator
tools pitchfork rake
fruits acorn pine cone
vegetables lettuce spinach
sciences  psychology  sociology
sports billiards darts

dependence. In categorizing items as furniture or not, partic-
ipants might consistently provide the same response to dish-
washer as to refrigerator because their similarity as electrical
appliances is recognized. The answers towards the items psy-
chology and sociology with respect to sciences might be de-
pendent because both are social sciences. Similar arguments
can be constructed for the other item pairs in Table 1.

Understanding Local Item Dependencies
Correlation Analyses

Identifying some item pairs as dependent (and implicitly all
others as independent) by means of significance tests has a
certain amount of arbitrariness to it. After all, the pattern
of correlations between residuals might carry more informa-
tion than is revealed by merely separating the significant ones
from the insignificant ones. Alternatively, one can make use
of all the dependency estimates. These can then be related to
the ratings of item-item similarity we collected.

As a first approximation of the relationship between the de-
pendency estimates and the item-item similarities their Pear-
son correlation was calculated. The correlation was estab-
lished at .43 for fish, at .57 for insects, at .34 for furniture,
at .29 for tools, at .30 for fruits, at .35 for vegetables, at .54
for sciences, and at .26 for sports. All of these correlations
are significant at the .0001 level of significance (according to
one-tailed z-tests).

Of course, the significance of a correlation of .26 should
not be overstated in light of the large number of observations
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(N =276). The correlation between the dependency estimates
and item-item similarity is by no means perfect. However,
one does need to take into consideration that these correla-
tions with item-item similarity were obtained after typicality
was partialled out. Indeed, application of the Rasch model
to the categorization data in Verheyen et al. (2010) yielded J;
estimates that correlated between .94 and .98 with rated typi-
cality. As a consequence it is safe to say that the information
conveyed by the residuals is typicality-free. Provided that
typicality is one of the major organizing principles of simi-
larity ratings that have been obtained in the context of a se-
mantic category (e.g., Verheyen, Ameel, & Storms, 2007) we
believe it to be substantial that reliable correlations with item-
item similarity remain after the variable is partialled out. It
suggests that in addition to item-category similarity (i.e., typ-
icality) item-item similarities inform categorization decisions
in natural language categories. That is to say, a categorization
decision pertaining to one item isn’t necessarily independent
from a categorization decision pertaining to another item.

Procrustes Analyses

It might be more appropriate to scale the dependency esti-
mates and similarity ratings than to employ the raw data. The
scaled association in which a particular item features is in-
formed by all the available information about that item (i.e.,
the various other associations in which the item features)
and therefore considered more reliable. For instance, when
multidimensional scaling (MDS) is employed to approximate
associations in a geometrical space, the coordinates of the
items are determined such that the distances between them
optimally reflect their association (the greater the association
between two items, the smaller their distance in the space).
Since the distances in the space have to fulfill the triangle in-
equality, the positioning of two items is co-determined by the
other associations in which the items feature. Using MDS
to spatially represent dependencies/similarities has the added
advantage that it entails the prevailing means of representa-
tion that many models of categorization subscribe to (e.g.,
exemplar models, Nosofsky, 1984; prototype models, Smith
& Minda, 1998; ...) and many researchers have used to pre-
dict category-related behaviors (e.g., processing of analogies,



Rumelhart & Abrahamsen, 1973; inductive strength, Rips,
1975, ...).

The estimated item dependencies and the rated item-item
similarities for the eight categories were therefore subjected
to nonmetric multidimensional scaling. Configurations were
obtained in dimensionality 2 to 6.
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Figure 3: Comparison of empirically observed procrustes er-
rors (vertical lines) with distributions of procrustes errors for
randomly generated configurations (histograms).

Whether the MDS solutions for the dependency estimates
correspond to those for the item-item similarities can be eval-
uated through procrustes analyses (Borg & Groenen, 2005).
In a procrustes analysis two spatial representations resulting
from MDS are fitted as closely to each other as possible using
linear transformations. The analysis yields an error measure
that reflects the degree of mismatch that remains after these
transformations. For each category we employed procrustes
analyses to fit each spatial configuration of the dependency
estimates (#5, dimensionality 2 to 6) to each spatial config-

'MDS yields an error measure called stress that expresses the
deviance of the estimated distances from the observed associations.
Empirically observed stress values can be compared against stress
values that were obtained for random data to establish whether there
is any structure present at all in the data that is being scaled. Struc-
tured data are expected to present with lower stress values than data
without any real structure. This is of particular importance to the de-
pendency estimates for which we took up the task of demonstrating
that they contain information that has traditionally been overlooked.
We subjected 10,000 sets of uniformly distributed random associa-
tions between 24 items to the same nonmetric MDS procedure the
dependency estimates were subjected to. The lowest stress value that
was obtained in 2 dimensions equaled .294. In dimensionalities 3 to
6 the lowest stress values equaled .204, .140, .109, and .088, respec-
tively. The stress values obtained for the dependency estimates were
invariably lower than the lowest values obtained through scaling of
the random data. The dependency estimates can thus be discerned
from random data. If the independence assumption would be justi-
fied, the correlations among the residuals following the application
of the Rasch model should not present with structure. Clearly, the
above simulations support our earlier findings that they do. In ad-
dition, the simulations do not suffer from the multiple comparison
problem, which is an issue in the significance testing of the correla-
tions between residuals.
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uration of the item-item similarities (#5). The 25 procrustes
errors that were in this manner obtained for every category
were compared against the procrustes errors that were ob-
tained through the comparison of randomly generated spatial
configurations with the same dimensionalities. Spatial con-
figurations of items in a particular dimensionality were con-
structed by randomly sampling the coordinates of the items
on all dimensions from a uniform distribution between 0 and
1000. Twenty-four items were included; the same as the num-
ber of items in the empirical data. This procedure was re-
peated 10,000 times in each of the dimensionalities 2 to 6.
These randomly generated spatial configurations were then
subjected to the same procrustes analyses we employed to
compare the spatial representations for the item dependen-
cies and the item-item similarities. If the configurations for
the latter two data sets carry alignable information, the result-
ing error from the procrustes analysis should be less than that
obtained from the randomly generated configurations.

In the 200 (8 categories x 5 x 5 dimensionalities) com-
parisons that were conducted, the empirically observed pro-
crustes errors fell 192 times (96%) below the 5% value of
the distributions of procrustes errors generated from random
configurations. This constitutes strong evidence that the com-
monalities that the procrustes analyses picked up are not due
to coincidence. That is to say, the configurations that rep-
resent the item dependencies share structure with the con-
figurations that represent the item-item similarities. Again,
one needs to take into consideration that this correspondence
emerges despite the fact that the dependency estimates are
typicality-free. For four of the categories Figure 3 locates
the empirically observed procrustes error in the distribution
of procrustes errors from comparing random configurations.
Each vertical line represents the procrustes error from com-
paring one dependency configuration with one similarity con-
figuration. The dimensionalities of these configurations were
chosen according to the elbow criterion?>. Each histogram
represents the procrustes errors from 10,000 comparisons of
random configurations with the same dimensionalities as the
empirical ones. The 8 comparisons in which the cutoff was
not met, arose from 3 categories. The two-dimensional con-
figuration for the item-item similarities of the fools category
was responsible for 5 of these 8. This result might point to-
wards a poor representation of the similarities in only two
dimensions. (According to the elbow criterion the represen-
tation of these similarities requires three dimensions.)

Discussion

In the preceding sections we have put the assumption that cat-
egorization decisions for different items are made indepen-
dently from one another to the test. The Rasch model, with
its assumption of independence, was applied to categorization

2When the stress values are plotted as a function of dimensional-
ity, the resulting curve may exhibit a noticeable elbow. From that di-
mensionality onward the decrease in stress is thought to reflect error
fitting. The elbow is therefore believed to indicate the “appropriate”
dimensionality. See Verheyen et al. (2007) for details.



data for eight natural language categories. The subsequent
investigation of the residuals learned that departures from the
independence assumption indeed occur. Accordingly, these
dependencies should be explicitly acknowledged in the vari-
ous frameworks that are being used to explain categorization
behavior. The Rasch model is part of the class of item re-
sponse models. Tuerlinckx and De Boeck (2004) have pro-
posed a range of item response models that allow LIDs to be
taken into account. We will focus here on a restricted ver-
sion of what they term a nonrecursive model for LIDs. In this
model dependencies between items are handled by express-
ing the probability that a positive response is given to item i
conditionally on the responses to all other items:

logit(pci | xgi)) =Bi—0c+ ) xcj8ij )

Jj#i
where the vector xgi) contains all responses of participant ¢
except the one to item i. We assume parameter J;; to equal
o ji+

Based upon the results reported earlier, we expect that
item-item similarity would provide the most promising inter-
pretation of the & parameters in Equation (4). If this model
were to be found appropriate for categorization data and if
its parameters were indeed to correlate with similarity judg-
ments, the model would be the first one that we know of that
allows similarities to be computed from categorization data
instead of the other way around. We believe this would con-
stitute quite an achievement as the structural information car-
ried by similarities is usually required by categorization mod-
els to properly predict categorization decisions. Indeed, most
categorization models - like the Generalized Context Model
(GCM, Nosofsky, 1984) for instance - require at their input
the similarities of the items that are to be categorized. In the
GCM this input takes the shape of a multidimensional space
of which the dimensions are elongated or shrunken appropri-
ately to allow correct categorization. Several well-motivated
processes drive these transformations of the input space, but
it is clear that in natural language categories much of the cat-
egorization burden is achieved through the use of the already
highly structured similarity space. We do not wish to detract
from the merits of the GCM and other similar categorization
models, but at the very least it is a bit odd that these sim-
ilarities are regarded as mere input, external to the model,
and are therefore not taken into account when the complex-
ity of the model is determined. Contrary to this, we hope to
construct a model of categorization that is explicit about the
parametric complexity it entails and does not require similar-
ity as its input. To the contrary, if the model would prove able
to predict item-item similarities, this would accommodate the
long standing concern that traditional models of categoriza-
tion are unjustified in using similarity as an explanatory con-
struct (Goodman, 1972; Murphy & Medin, 1985) and would
support authors like Quine (1977) who have suggested that it
could be the knowledge that two items are or are not in the
same category that drives judgments about their similarity.
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