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Abstract 

This paper presents a series of simulations performed with the 
AMBR model that demonstrate how deduction, induction, and 
analogy can emerge from the interaction of several simple 
mechanisms. First, a case of deductive reasoning is 
demonstrated when a problem is solved based on general 
knowledge. The system represents the target in different ways 
depending on the goal, and different solutions are generated. 
Second, the constructed solutions of the problems are 
remembered and later on used as a base for remote analogy. 
Finally, on the basis of the analogy made, a generalized 
solution of the class of problems is induced. One important 
characteristic of the model is that representation of the task, 
problem-solving, and learning are not viewed as separate 
modules. Instead, they are different aspects of one and the 
same joined work of the basic mechanisms of the architecture. 

Keywords: cognitive modeling, analogy, deduction, 
generalization. 

Introduction  

It has been suggested that analogy is the core of human 

cognition (Hofstadter, 2001; Holyoak, Gentner, & Kokinov, 

2001). The reason is that “relational reasoning” can be 

found in a variety of cognitive processes. 

Traditionally, however, models of analogy-making have 

been isolated from and contrasted to models of deductive 

reasoning (Gentner, 1983, 1989; Holyoak & Thagard, 1989, 

Hummel & Holyoak, 1997, Hofstadter, 1995). Somehow 

gradually analogy-making became a separate and important 

domain of study (Gentner, Holyoak, Kokinov, 2001). 

When the AMBR model was first launched (Kokinov, 

1988) it was suggested as a unified model of deduction, 

induction, and analogy. It has been claimed that deduction, 

induction, and analogy “are not separate cognitive 

mechanisms, but rather a slightly different manifestations of 

the same basic mechanisms” (Kokinov, 1988). A few 

experiments have been run to demonstrate that deduction, 

induction, and analogy have common properties – being 

primed by recent experience (Kokinov, 1990), and 

transferred knowledge being evaluated on the basis of the 

structural correspondence between the target and the 

memorized base (Kokinov, 1992). Even though AMBR was 

suggested as a unified model of these three “kinds” of 

reasoning, the line of its further development has gone in 

different directions like exploring the relations between 

analogy and memory (Kokinov, 1994a, Kokinov & Petrov, 

2001, Grinberg & Kokinov, 2003; Petkov & Kokinov, 

2009), analogy and perception (Petkov & Shahbazyan, 

2007, Petkov  & Kokinov, 2009; Kokinov, Vankov & 

Bliznashki, 2009), analogy and judgement (Petkov & 

Kokinov, 2006). In this paper we return to the initial idea to 

model the three traditionally considered separate types of 

reasoning (since the time of Aristotle) by the same 

mechanisms.  

Meanwhile other models of analogy started to explore the 

relations between analogy and induction (schema 

generalization). The SME has been used in the 

generalization of structurally similar situations (Kuehne, 

Forbus, Gentner, & Quinn, 2000; Lovett, Lockwood, 

Dehghani, & Forbus, 2007). The LISA model and its close 

relative DORA have been specifically addressing the 

generalization problem and its integration with the 

analogical mapping (Hummel & Holyoak, 2003; Doumas, 

Hummel, & Sandhofer, 2008).  

There are not that many attempts to integrate analogy and 

deduction with the exception of PI (Holland, Holyoak, 

Nisbett, & Thagard, 1986) and of integrating the SME and 

qualitative reasoning (Forbus, 2001). 

The current paper describes an attempt to demonstrate 

that deduction, induction, and analogy can be produced by a 

common pool of simple mechanisms (those postulated in the 

DUAL architecture) and that only the context and the 

specific interplay between these mechanisms will determine 

which of these processes will emerge out of the 

computational process. Thus this is an attempt to model 

examples of these three processes in a single simulation 

experiment – without tuning the parameters or changing the 

mechanisms for each of the cases. 

Brief description of the DUAL architecture 

The DUAL architecture was launched (Kokinov, 1994b, 

1994c) as a general cognitive architecture that will provide 

mechanisms for modeling various cognitive processes. 

The knowledge in DUAL is represented by a huge 

number of interconnected micro-agents. Each agent‟s 

symbolic aspect represents a small piece of knowledge 

while its level of activation represents the relevance of this 

piece of knowledge to the current context. The activation 

spreads through the network as in connectionists networks. 

There are two sources of activation – INPUT and GOAL 

nodes. Each agent may also have a residual activation that 
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slowly decreases in time. Thus, the pattern of activation 

dynamically represents the current context. The agents may 

perform symbolic operations – creation of new agents; 

changing weights of links, passing markers – with speed, 

proportional to their activation level.  

Each active instance-agent emits a marker through the 

class hierarchy. The marker spreads up with a speed, 

proportional to the relevance of the respective concepts. 

When two markers cross somewhere, a hypothesis for 

correspondence between the two origins is created locally. 

In other words, the system performs a micro-analogy – it 

„notices‟ that there is something in common between two 

items, and makes a micro-generalization of them. 

The hypotheses are created independently by local 

computations; the hypothesis nodes interconnect themselves 

with supporting or inhibitory links; and a constraint 

satisfaction network gradually emerges. 

When some agents are mapped to the arguments of a 

certain relation, the relations involving theses nodes try to 

be transferred, enveloping the respective agents. Initially, 

the relations are transferred as anticipation-agents – a 

hypothesis that something is present in the environment or 

that a certain action can be performed. The anticipation may 

be verified by a simulated perceptual system. The agents on 

the GOAL list in turn activate further the chains of relations 

that lead to achieving the goals. 

Finally, large structures emerge from the local dynamic 

interactions. Many pressures (for consistency, for goal 

completion) work in parallel to resolve the competition 

between the coalitions of hypotheses. Finally, some 

hypotheses win the competition (in different moments of 

time), whereas many losers fizzle out. The most promising 

hypotheses and anticipations remain in memory for further 

usage. Thus, the system learns during the problem solving 

and new generalizations and coalitions of generalizations 

enrich the system‟s memory. 

All mechanisms in DUAL work in parallel and influence 

each other. There is no separation between the processes of 

retrieval, mapping, formulation of hypotheses and 

anticipations; achieving the goal, and learning. Instead, they 

run in parallel and influence each other. 

 

 

Domain of the simulations 

In order to demonstrate some of DUAL‟s important abilities 

in a coherent set of simulations, we decided to apply the 

model to a series of negotiation problems which require a 

trade-off solution (see Gentner, Loewenstein, Thompson, & 

Forbus, 2009). An example of a trade-off problem is the 

classical story of the two sisters quarrelling over an orange 

(see Figure 1 for a simplified representation) which is 

compared to the conflict between Egypt and Israel. 

 

 
 

 

Figure  1. Simplified representation of the problem: two 

sisters quarrel for an orange and do not recognize that they 

want different parts of it and can divide it. 

 

Simulation 1: Transfer of a solution from 

general knowledge (Deduction) 

 

The first simulation (Simulation 1A) models the mind of the 

first sister. Her goal is to make a shake, having an orange. 

Thus, there are two agents that receive initial activation: a 

representation of an orange is on the INPUT; a 

representation of a shake is on the GOAL (Fig. 2).  

 

Figure 2. Part of the initial state of the first simulation.  

 

The activation spreads through the class hierarchy – to the 

concepts of „orange‟ and „shake‟; upward to the more 

abstract concepts; and then back to some of their instances. 

Relatively easily, the general knowledge of the recipe for 

shake is activated (Fig. 3). There are other instances of 

orange and shake in the recipe and the mechanisms for 

marker-passing, the creation of hypotheses, and transfer do 

their job to produce the mapping between the given 

products and the recipe. Soon, the relations that are 

necessary for completion of the situation are transferred 

back from the recipe knowledge (Fig. 4). Namely, the sister 

should take the orange; this implies that she can squeeze out 
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the juice; this in turn is a necessary condition for making a 

shake. 

Of course, some other instances of orange may be 

activated, mapped to the target, and some other relations 

may be transferred. The completion of the causal chain from 

the initial situation to the goal, however, increases 

dramatically the activation of the agents from this chain. 

Furthermore, the pressure of this active chain causes the 

respective mapping to win the competition. Thus, the 

system „solves‟ the problem. As a consequence, the 

hypotheses and anticipations, relevant to this „solution‟ are 

transformed into permanent agents and remain in the 

memory of AMBR for further use. The others fizzle out. 

 

Figure 3. Part of representation of the general knowledge 

of the model. 

 

Figure 4. Part of the dynamically created representation of 

the situation. Some agents (dashed) are transferred from 

general knowledge. 

 

The simulation has finished at the time of 68.06 AMBR 

cycles (compare with the longer duration of the other two 

simulations). 

Simulation 1B is performed to simulate the mind of the 

second sister. It is analogous to the first one, except for the 

goal. Thus an orange is on the INPUT list, while a cake is 

on the GOAL list, and the system successfully transferred 

and learned a respective relational chain from the general 

knowledge: the sister should take the orange, should peel it, 

and should use the pieces of peel for making the cake. 

The simulations successfully demonstrate the ability of 

the model to select from an un-separated general knowledge 

the relevant relations; to transfer them; and to combine them 

into a coherent solution. This approach differs from the 

traditional analogy-making models, in which the base 

situation is separated from the other knowledge. 

 

Simulation 2: Context sensitivity and the role 

of the goal (Deduction) 

Simulation 2 simulates the mind of a third person – a 

judge. There is again an orange on the INPUT, but an agent, 

which represents the relation that both sisters should be 

satisfied, is attached on the GOAL (Fig.5). The same long-

term memory that has been used for the previous simulation 

is used. 

Figure 5. Part of the system‟s representation of the 

situation for simulation 2 (only a part of the chain is shown). 

 

The goal, however, is different and this changes 

dramatically the further representation of the situation by 

the system. It is easy for the model to activate the recipes 

for making shake and cake, and to transfer the respective 

relations. In other words, it can combine the two solutions 

from the previous simulations. However, this is not enough 

for achieving the goal, because it is not possible that the two 

sisters take the orange at the same time. Thus, no chain of 

relations to the goal is created and the activation continues 

to spread. Since both the juice and the peel are active, 

another piece of knowledge „springs up into the mind‟ of the 

model. The juice, the peel, the seeds, etc. are all parts of an 

orange. Now knowledge of how to separate an orange into 

its parts becomes active. Another chain of transferred 

relations reaches the goal, wins the competition, and finally, 
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a completely different representation of the situation has 

been made by the system (Fig. 6). 

The simulation has finished at time 84.00; which is longer 

than the first one. 

The second simulation additionally demonstrated the 

ability of the system to use the basic DUAL mechanisms for 

solving problems that formally are not problems for 

analogy-making, but rather deductive tasks. Further, the 

simulation highlights the importance of the context-

sensitivity of DUAL. Depending on the goal of the system, 

different relations may be transferred into the representation 

of the situation. The initial and the final representation of 

the situation may be viewed as two ends of a continuum of 

dynamic re-representations of the situation until the goal is 

reached. 

 

Figure 6. The long-term memory has been enriched with a 

new base after the simulation 2 (compare with figure 1). 

 

The process of learning is not a separate sub-process. 

Instead, it is a natural consequence of the problem solving 

process. The set of winner hypotheses (the solution) is 

formed dynamically - its elements emerge at different 

moments of time. The increase of the relevance of these 

elements is modeled for different reasons (for the sake of 

the reasoning process). However, a side effect is that the 

system actually learns the solution for further usage. 

The next simulation tests how to use this learned cases. 

 

Simulation 3: Remote analogy and 

generalization of the solutions 

In the third simulation a representation of the classical 

Israel-Egypt problem is created and attached to the input of 

the system. The mind of a „judge‟ is simulated. Thus, an 

instance of the relation „both are satisfied‟ is attached to the 

GOAL. DUAL-agents for Israel and Egypt are attached to 

the INPUT (Fig. 7). One instance of orange is also attached 

to the INPUT, simulating that the judge is by accident in 

front of a table with oranges on it. This is done to help the 

system retrieve the story about the two sisters. It is also hard 

for people to make such remote analogies (Gick & Holyoak, 

1980) because it is difficult to activate the respective remote 

bases. May be a certain non-trivial context is necessary in 

order remote analogies to be initiated. The mechanisms of 

DUAL are context-sensitive and thus certain contexts may 

help them make the appropriate remote analogy. 

 

Figure 7. The initial state of the third simulation. 

 

Egypt wants more land and taking the desert will satisfy 

it. Israel wants peace and taking the desert will ensure it. All 

this knowledge is encoded in the long-term memory as 

general knowledge, analogically to the encoding of the 

sister‟s recipes. Simulating the point of view of Egypt 

(putting „land‟ on the GOAL), the system would transfer the 

respective relations from the general knowledge and would 

conclude that it should take the desert. The same is for the 

Israeli point of view. 

However, there is a constraint that both Israel and Egypt 

should be satisfied on the GOAL list. The system cannot 

solve this problem by retrieving and applying general 

knowledge only. It cannot succeed in the same way as in 

simulation 2, because there is no such general knowledge in 

LTM that land and peace are two separate properties of the 

desert. 

Thus, the model makes an analogy between the target and 

the base learned in the second simulation – how to divide 

the orange. Note that this analogy-making does not wait 

until the general knowledge is fully exhausted and 

deduction has failed (like in PI). Instead, everything runs in 

parallel.  

Of course, initially the contextual orange is mapped to the 

sister‟s orange, and the goal agent – „both satisfied‟ to the 

base‟s goal. However, soon the pressure for consistency 

ensures the right mapping: Israel and Egypt correspond to 

the sisters; and the desert to the orange. 
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The chain of relations to the goal is closed when the 

proposal to use separately the two properties of the desert (it 

can be used to live on; it can be used as a buffer zone for 

ensuring peace, if it is demilitarized) is generated. We have 

not yet simulated how the transferred separation of the 

desert properties may be used for solving the task. i.e. how 

can the land be used for living by Egypt and at the same 

time be demilitarized for ensuring peace for Israel. This is 

part of our further work but it was already demonstrated that 

DUAL is able to combine relations from general knowledge 

in order to complete a representation of a certain situation. 

Generalization of the solution is simulated. Every winner 

hypothesis has a justification (which was the reason for its 

creation). Actually, this justification is the common super-

class for the two mapped elements. Thus, every winner 

hypothesis is a super-class of the base and target elements 

and in turn a subclass of the common superclass found.  

Thus, it is a generalization of the two mapped elements. At 

the same time, the links among hypotheses, created from the 

structural correspondence mechanisms, keep all these 

winning hypotheses together – as a coalition that represents 

the whole generalized solution. Part of it is shown on Fig. 8. 

 

 
Figure 8. Part of the generalized solution obtained by the 

system during the third simulation (not all elements are 

shown). 

 

The simulation finished at time 165.18; much later than 

the previous two simulations. 

The third simulation demonstrates two abilities of 

AMBR. First, it is able to use simultaneously general 

knowledge and remote analogous situations for problem-

solving. Second, it is demonstrated that a generalization of 

the solution may emerge from the process of problem-

solving without any specialized learning mechanisms. 

 

Conclusion 

The idea to use analogy-making for solving complex 

problems is not new to the research in the field of cognitive 

science and artificial intelligence. Computational models of 

analogy-making have been applied successfully in solving 

mathematical problems (Anderson & Thompson, 1989), 

negotiation problems (Gentner, Loewenstein, Thompson & 

Forbus, 2009), everyday physics problems (Klenk & 

Forbus, 2007), designs problems (Davis, Goel & 

Nersessian, 2009). The goal of the current paper was to 

show that the mechanisms underlying analogy-making are 

universal enough to be able to solve any kind of problems, 

including ones which are traditionally thought to be out of 

the scope of analogy-making. To this end, we attempted to 

show that the basic mechanisms of the DUAL architecture 

can be used to model a variety of reasoning tasks. 

A series of simulations has been run in the domain of 

trade-off problems with the AMBR model without any 

changing and tuning in between. The model demonstrated 

its ability to use general knowledge in a deductive way in 

order to solve a specific task; to remember the solution, and 

then retrieve it and use it as a remote analogy to solve 

another problem, and finally construct a generalized 

solution to a class of trade-off problems. The simulations 

are run sequentially and continuously so that the results of 

the previous reasoning become available for subsequent 

problem solving by memorizing and learning. The model is 

yet to be further extended and specific predictions will be 

generated by further simulations, these predictions will then 

be tested against psychological data. At this point, the 

simulations are a proof of concept. They demonstrate that 

AMBR can model deductive, inductive, and analogical 

reasoning via the same simple mechanisms and that 

depending on the task and context each of these cognitive 

processes can emerge. 
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