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Abstract

We use contemporary machine learning methods to ex-
plore Piaget’s idea that active interaction across modal-
ities may be the engine for constructing our knowledge
about objects. We identified the existence of modality-
specific invariances as a potential mechanism by which
Piaget’s ideas may be implemented in practice. For ex-
ample, object segmentation and pose invariant recogni-
tion are very difficult in the visual domain but trivial in
the tactile/proprioceptive domain; touching an object
easily delineates its physical boundaries. We can also
grab an object and rotate it without modifying the pro-
prioceptive and tactile information from our hands. We
hypothesize that this information may provide invari-
ants that could be useful for training a visual system to
recognize and segment objects.

To explore this hypothesis we developed the instrumen-
tation necessary to simultaneously collect tactile, propri-
oceptive and visual information of a person interacting
with everyday objects. We then developed a system that
learns pose invariant visual representations using pro-
prioceptive and tactile information as the only training
signal.

The classifiers that developed from this approach were
accurate and robust to variations in pose and to a wide
range of occlusions. They were more accurate (average
2AFC= 0.98) than the classifier trained with human-
specified location information (average 2AFC = 0.93).
This suggests a specific mechanism using multi-modal
information could to construct knowledge about objects,
as originally proposed by Piaget.

Introduction

Pose invariant object recognition is one of the most diffi-
cult computer vision problems, since objects can change
appearance drastically depending on the orientation.
Particularly difficult is to learn the appearance of ob-
jects in an unsupervised manner, i.e., without any labels
telling us where the objects of interest are or whether
they are present in the image at all. Yet humans ap-
pear to have no problems learning the visual appear-
ance of objects relatively independent of their pose and
in a fully unsupervised manner. Developmental psy-
chologists like Piaget (Piaget, 1953), have long argued
that infants construct knowledge about objects based
on the mutual interaction (assimilation and accommo-
dation) between different modalities (grasping, sucking,
looking). Here we take some first steps toward under-
standing how this may work in practice. We focus on
the interaction between tactile and visual modalities and
note that the hands may provide invariants that could
be used to train the visual system. In particular, by

grabbing an object and moving it around, it is possible
to create dramatic changes in the visual appearance of
the object while maintaining invariant information from
the tactile and proprioceptive (joint angles) sensors in
the hand.

Recently several research groups have begun to explore
the interactions between sensory modalities for improv-
ing the performance of systems that interact with ob-
jects. In (Grzyb, Chinellato, Morales, & Pobil, 2009),
the grasping actions of a robotic system are planned by a
visual algorithm that estimates the shape of unmodeled
objects. After this initial planning, the tactile sensors
guide the final approach of the grasp to correct errors in
the visual estimation. Motor commands and visual input
are used in (Gold & Scassellati, 2009) to learn a repre-
sentation of a robot’s arm through contingencies between
the commands and observed motion. In (Saxena, Wong,
& Ng, 2008), a camera is positioned, by a robotic arm, in
several orientations, and the proprioceptive information
from the arm at each orientation helps locate a grasping
point on an object. (Orabona, Caputo, Fillbrandt, &
Ohl, 2009) and (Noceti et al., 2009) directly train a su-
pervised mapping between the visual and haptic sensors
from human interaction with an object. This mapping is
used to estimate missing tactile input from the visual in-
put, and classification using the reconstructed input and
the visual information is more accurate than with the vi-
sual input alone. In (Fitzpatrick & Metta, 2003), object
properties are learned through interaction by making a
robot poke the object and examining changes to the vi-
sual scene after contact. Also, (Sinapov & Stoytchev,
2009) and (Bergquist et al., 2009) train a robot to cate-
gorize household objects using visual paired with acous-
tic and proprioceptive cues during supervised interac-
tion, where object labels were given to the system by
humans.

Here we focus on the problem of using tactile and pro-
prioceptive information from the hand to train a visual
system to recognize objects. First, unsupervised meth-
ods are used to cluster the tactile and proprioceptive
sensory data while freely interacting with two objects: a
drinking glass and a plate. The cluster labels provided
by the hand are then used to train a weakly-supervised
visual object recognition algorithm. This approach does
not use human labels as a training signal, but instead
attempts to learn objects in an unsupervised way, which
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sets it apart from the previous work in multi-modal ob-
ject recognition.

Data Collection
To collect the data required for the project, we developed
a suite of sensors. We first attached 12 piezoresistive
pressure sensors to a sports glove. The pressure sensors
were located at the fingertips, in the palm at the base of
each finger, and the last two at the bottom of the palm,
as shown in Figure 2. These sensors vary their resistance
based on the force applied on their surface. The touch
data was collected at a 1KHz sampling rate.

We also equipped the glove with six PhaseSpace mo-
tion capture (Phasespace Motion Capture, n.d.) LEDs,
placed on the back of the hand, wrist, forearm, and el-
bow. Each of these markers provides a measurement of
the three dimensional position of the arm and hand in
space with a 400Hz sampling rate. These sensors were
then integrated on top of a Cyberglove (Cyberglove Sys-
tems, n.d.), which provided measures of the angles of 18
joints of the hand and fingers at a 150Hz sampling rate.

Visual input was captured using a head-mounted cam-
era. Since the objects were not fixed in place during the
interactions, it was important to ensure that the visual
input matched what the human was seeing while manip-
ulating the objects. To this end, the output from the
head-mounted camera was directed to a pair of VGA
glasses that gave the only view the human had of the in-
teraction. Data were recorded at 20 Hz with a resolution
of 640x480 pixels. Three PhaseSpace LEDs were placed
on the head to capture the 3D position and orientation
of the head with respect to the world (See Figure 3).

Figure 1: Images of the two objects, a drinking glass and
a plate. Because they were both on the table during the
interactions, images can include both objects.

Figure 2: Layout of the 12 force sensors on the fingertips
and palm.

Figure 3: Example images from the interactions with
the objects. Interactions were unscripted, with varying
backgrounds, and could include both objects in the im-
age. The objects were additionally present in multiple
orientations.

The goal of the study was to investigate mechanisms
by which a modality (tactile/proprioceptive) may train
another modality (visual) in an unsupervised manner so
as to construct object concepts. To this end we started
with what we thought would be a relatively simple prob-
lem, to visually recognize the presence of two objects: a
drinking glass and a plate. We collected data from 6
minutes of unscripted human interactions with these ob-
jects, shown in Figure 1.

After the data were collected, each sensor was down-
sampled to the 20Hz rate of the video capture, and the
images were converted to grayscale at a resolution of
320x240 pixels. To make the motion capture informa-
tion invariant to location in space, the three dimensional
coordinates were converted into angles between vectors
defined by the points tracked by the markers on the
arm. The data processing leaves 7521 samples with 5
motion capture angle readings, 18 cyberglove readings,
12 force sensor readings, and the corresponding 320x240
grayscale image. Of these samples, 1152 were during
grasps of the drinking glass, and 1602 from grasps of the
plate.

Learning to Recognize Objects

The problem of recognizing the visual appearance of
the target objects turned out to be much more diffi-
cult than we had originally anticipated. In the past,
we have worked with standard datasets popular in the
computer vision literature in which the task is to recog-
nize hundreds of object categories (Fasel, 2006) and so
were surprised by the difficulty of our dataset. We do
not have a clear explanation yet, but believe that while
our database includes only two target objects, it presents
some difficult challenges: (1) The objects appeared in a
wide range of poses and locations in the image plane.
In many cases, the pose was such that the drinking glass
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looked more like a plate and viceversa (see Figure 4). (2)
The hand was visible and occluded different parts of the
object. The recognition system had to implicitly factor
out the hand and later recognize the target objects on
their own. (3) In a large proportion of images both ob-
jects were visible simultaneously. (4) The target objects
were transparent.

Figure 4: Images of the two objects, a drinking glass
and a plate. From certain angles, these objects look
more similar to each other than to themselves at different
angles.

Unsupervised Clustering
We first tried clustering the data using K-means and
spectral clustering. K-means is one of the simplest
and most popular approaches to unsupervised clustering.
Spectral clustering makes use of the spectrum of the sim-
ilarity matrix of the data and is one of the most popular
algorithms used for unsupervised image segmentation.
We found that, in this case, spectral clustering provided
marginally worse results than K-means and thus here we
focus on the results with the K-means clustering.

Tactile Clustering

The 5 motion capture angles, the 18 cyberglove read-
ings, and the 12 force-sensor readings were normalized
and combined into a single vector for each sample. Clus-
ters were then computed using K = 3, with an aim of
capturing the two object classes plus a background class
for when the hand was not interacting with an object.

After combining all of the tactile sensors and cluster-
ing, the samples were separated into groups as shown in
Table 1. A measure of accuracy can be computed be-
tween the two clusters that correspond to samples when
the glass and plate are held. The measure takes the sum
of the samples that are truly glasses in what is inter-
preted as the glass cluster (the cluster with more glass
images) and the samples that are truly plates in what is
interpreted as the plate cluster, and divides by the total
number of samples in both clusters. This measure gives
the clustering an accuracy of 0.8553.

Thus, the clusters appear to represent the object cat-
egories, albeit imperfectly. These clusters are based
on the haptic information, and therefore do not reflect
which objects are actually in the image. Table 2 shows,

Table 1: Results of clustering samples based on haptic
information. Entries show number of samples in each
cluster separated by true label.

Actually Holding
Glass Plate Neither

Cluster 1 836 72 39
Cluster 2 3 1387 262
Cluster 3 313 143 4466

for each of the two clusters with highest force sensor
values, the number of images that contain each object.
Notice that while these clusters were not generated from
visual information, they separate the objects well; only
4.5% of the images with one object are incorrectly clus-
tered.

Table 2: Number of objects present in the images of
each cluster. Numbers here represent images that con-
tain part or whole of each object.

Neither Glass Plate Both
Cluster 1 2 279 70 596
Cluster 2 3 0 1193 456

Visual Clustering

Table 3 contains the same data as Table 2 but for the
clusters generated from visual information alone. Clus-
ter 2 may be taken to represent plates, but neither of the
other clusters represents a drinking glass cluster. Sim-
ilar results were obtained with spectral clustering ap-
proaches. Thus, for this particular dataset, vision alone
does not seem to easily separate the data into the target
object clusters.

Table 3: Content of the clusters obtained from clus-
tering the visual data (used to train the Plate-Vision
and Glass-Vision classifiers) used as reference for perfor-
mance. Entries are the number of images in each cluster
that contain images of each, neither, or both objects.
For training the classifiers, Cluster 1 and Cluster 2 were
chosen.

Neither Glass Plate Both
Cluster 1 76 450 756 1539
Cluster 2 27 118 1332 424
Cluster 3 74 418 967 1340

No matter which clustering algorithm is used, the im-
ages from the clusters can contain both visual objects.
Given the noisy, unlabeled data of transparent objects
at different orientations, it seems a difficult task for a
classifier to learn to distinguish the objects from these
data.
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Learning The Visual Appearance of
Objects

Here we attempted to use the labels obtained from the
clustering of a modality to train another modality. Since
the clustering methods (tactile or visual) are unlikely to
perfectly separate the data into the target object classes,
it is important to choose a learning algorithm that can
operate in the presence of a large number of errors in the
training labels. In addition, the clustering algorithms
provide information about image types but no informa-
tion about where the object is in the image. Thus a
learning algorithm is needed that can work with such
weak labels.

We chose the Segmental Boltzman Fields (SBF) al-
gorithm (Fasel, Fortenberry, & Movellan, 2005; Fasel,
2006). This approach assumes that images are gener-
ated as a collection of rectangular patches. Each of these
patches generates either the background or the object of
interest from the respective distributions describing the
pixel values in a patch. To perform inference, each pos-
sible patch in an image is assigned a probability based
on the likelihood the pixels in the patch were generated
by the object distribution. This likelihood is combined
with a prior probability that an object was contained
in that image patch. Training this model involves the
estimation of the likelihood ratio between these two dis-
tributions for image patches.

After the tactile/proprioceptive clustering separated
the data into three groups, the two groups that had the
highest mean readings on the force sensors were used as
the labeled groups. This procedure relies on the assump-
tion that the system prefers situations where objects are
present in the hand to when the hands are empty. Call
the two clusters A and B. Two classifiers were trained.
One of these was trained using A as positive, foreground,
examples and B as negative, background, examples. The
classifier trained this way can then be assumed to rec-
ognize objects contained in A. The other classifier was
trained using B as positive examples and A as negative
examples, so that it will recognize the object in B.

Segmental Boltzman Fields

The model of foreground (images that contain the object
of interest) and background images (images to that do
not contain the object) specified in (Fasel et al., 2005;
Fasel, 2006) gives a log likelihood function for a fore-
ground image x as follows

L(x|f, b̂) = log

ns∑
j=1

ef(xj)Kj(b̂)− log
n∑

k=1

ef(x̃k) + log(n)

where f and b̂ are the foreground and background mod-
els, xj is segment j from image x, ns is the number
of segments in the positive image, n is the number of
segments in the background image set, x̃k is segment k

from the background images, and Kj(b̂) is a measure of
how well the background explains the image assuming it
contains segment j. Additionally, f is of the form

f(x) =

t∑
i=1

αihi(x).

In the current case, each hi(x) is a step function of the
output from a Haar-like feature applied to image seg-
ment x which can take values of ±1, and αi is a real-
valued weight. The goal of learning is to find the model
f that maximizes the log likelihood L. However, be-
cause computing the K terms is intractable, we instead
will attempt to maximize

L(x|f, b̂) = log

ns∑
j=1

ef(xj) − log
n∑

k=1

ef(x̃k)

since we are concerned only with the choice of f , and the
K terms are always positive and constant with respect
to this choice.

This likelihood function is maximized using functional
gradient ascent by boosting the components of the fore-
ground model, hi(x).

Results

In order to get a standard benchmark, we first developed
a plate and a drinking glass detector using a supervised
learning approach. For these supervised approaches, the
objects were cropped by hand from the images separated
by the tactile clustering. The negative sets for these
classifiers were the whole, uncropped images from the
other cluster (glass for plate, and vice versa). These sets,
positive and negative, were given to the SBF algorithm
(Fasel, 2006), which learned supervised classifiers from
them. The classifiers trained this way are called Super-
vised classifiers in tables 4 and 5. The performance of
the classifiers was measured in terms of the performance
in a 2 alternative forced choice task (2AFC).

We then developed visual classifiers using the labels
provided by the tactile/proprioceptive clusters. The two
classifiers, one for each cluster, were trained on subsets
of 64 images chosen at random from the pool of images
separated by the clustering. The classifiers were evalu-
ated on two sets of data: The first set contained images
of the instrumented hand grasping the objects, similar to
the data on which the classifiers were trained. The sec-
ond set contained images of the objects alone, without
the instrumented hand present in the image. It also con-
tained two distractor objects, a pen and a mug. Neither
of these distractor objects was present in the training
set. This second set was designed to rule out the possi-
bility that the system was learning to recognize the fact
that the hands look different when grasping different ob-
jects, rather than learning the appearance of the objects
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themselves. The classifiers trained using the tactile clus-
ters are called Tactile in the tables. Results presented
below are from classifiers for each category that had the
highest cross-validated performance on the training set.

As an additional control, we developed classifiers
trained using clusters generated from the images alone,
without any tactile information. The images were split
into three clusters. Since there was no signal to dis-
tinguish which contained an object and which did not,
the clusters that best contained instances of the plate
and glass were selected by hand, and trained with SBF.
The content of these clusters is described in Table 3.
These classifiers represent how how well the objects
could be learned from the dataset’s visual information
alone. These are called the Vision classifiers in the ta-
bles.

Table 4: Performance of the classifiers on the data con-
taining the hand manipulating the objects. These data
were similar to the data on which the classifiers were
trained.

2AFC
Tactile Vision Supervised
0.968 0.782 0.938

Table 5: Performance of the two classifiers on the data
with the objects alone. These data were tested to show
that the classifier had not learned to recognize the hand.

2AFC
Tactile Vision Supervised
0.983 0.529 0.935

Object Localization

The SBF algorithm provides posterior probability maps
representing the presence or absence of target objects.
The intensity of a pixel on these maps indicates the prob-
ability that that particular pixel renders the object of
interest. In addition, the algorithm can select the most
probable location of the target object.

Figure 5 shows the estimated locations for the clas-
sifier trained to identify glasses. The first two images
show examples of what the classifier estimated for im-
ages with and without the hand. The classifier seems to
have picked out the curve of the glass rim in the first
image, but manages to cover a more complete area of
the glass when the hand is present. In the third im-
age, notice that when the glass is viewed horizontally,
the classifier is not confident enough to predict that the
object is present in the image.

Figure 6 shows posterior probability maps from the
classifier that learned to detect images with plates. The
first three images are examples of when the classifier
identified the plate well. These images contain the plate

Figure 5: Example localization estimated by the Glass
classifier. Each image contains a box around the area it
estimates is most likely to have generated the image of
the object. The lower section of the images is a heatmap
of the probability that an object is present in the im-
age at each location. This heatmap is normalized indi-
vidually for each image, so direct comparisons between
heatmaps are difficult.

at different orientations, and the classifier manages to
locate the plate even in a side-on view. The fourth im-
age shows a mistake. The base of the glass and some of
the background (not shown) are occasionally selected as
the location of the object in the image.

Figure 6: Example localization estimated by the Plate
classifier.

Conclusion
The goal of this project was to use contemporary ma-
chine learning methods to investigate Piaget’s idea that
active interaction across modalities may be the engine
for the construction of object knowledge (Piaget, 1953).
We identified the existence of modality-specific invari-
ances as a potential mechanism by which Piaget’s ideas
may be implemented in practice. For example, object
segmentation and pose invariant recognition are very
difficult in the visual domain but trivial in the tac-
tile/proprioceptive domain. This creates an opportunity
for tactile information to be used to learn the location
and appearance of objects in images.

To test these ideas we developed the instrumentation
necessary to simultaneously collect tactile, propriocep-
tive and visual information of a person interacting with
two everyday objects (a drinking glass and a plate).
While the dataset we obtained contained only two tar-
get objects, there were a large number of occlusions (due
to the presence of the hands) and a wide variety of 3D
poses. When given the supervised location of the object,
the relatively mediocre results (average 2AFC of 0.93)
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of the resulting classifier indicate that the task was not
easy.

We then used a simple unsupervised clustering method
on the tactile/proprioceptive information to separate the
observed data into three clusters. These clusters roughly
mapped into episodes of interaction with each of the two
target objects and episodes in which the target objects
were not present. The information provided by unsu-
pervised clustering in the tactile/proprioceptive channel
was then used to train a visual classifier.

The classifiers that developed out of this approach
were accurate and robust to variations in pose and to
a wide range of occlusions. They were more accurate
(average 2AFC= 0.98) than the classifiers trained in a
supervised manner (average 2AFC = 0.93). If confirmed
by future studies, this would be a remarkable result, sug-
gesting that tactile information may indeed provide crit-
ical invariances for the construction of object detectors
in the visual domain. Additionally, the superiority of the
tactile and visual classifier over the visual only classifier
lends support to the idea that multi-modal integration
may be better than individual sensory modalities when
used to generate object knowledge.

The results are a first step. We need to study how the
proposed approach scales up as we add a larger num-
ber of objects. In this project, we addressed the percep-
tion problem decoupled from the motor control problem,
i.e., we let a human move his hands and change his vi-
sual input at will. In practice infants face a combined
perceptual and control problem and they may use this
opportunity to optimize the knowledge gained about ob-
jects. In some conditions they may choose to move an
object in front of their eyes while maintaining a constant
hold of the object. In such cases, the tactile system may
provide useful invariances to train the visual system. In
other conditions, they may choose to look at a stationary
object while touching it in different locations, when the
visual system would provide invariances to train the tac-
tile system. One of our immediate goals is to formalize
this problem from the point of view of information max-
imization approaches to motor control (Butko & Movel-
lan, 2010). We are also planning to test such formalism
on Diego-San, a humanoid robot we developed to help us
understand cognitive development from a computational
point of view.
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