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Abstract

Recent research indicates that perceptual learning (PL)
interventions in real-world domains (i.e., mathematics,
science) can produce strong learning gains, transfer, and
fluency. Although results on domain-relevant assessments
suggest characteristic PL effects, seldom have real-world PL
interventions been explicitly tested for their effects on basic
information extraction. We trained participants to classify
Chinese characters, based on either (1) overall configurations
(structures), (2) featural relations (components), or (3) non-
relational information (stroke-count control). Before and after
training, we tested for changes in information extraction using
a visual search task. Search displays contained all novel
exemplars, involved manipulations of target-distractor
similarity using structures and components, and included
heterogeneous and homogeneous distractors. We found robust
improvements in visual search for structure and component
PL training relative to the control. High-level PL
interventions produce changes in basic information extraction,
and sensitivity induced by PL for both relational structure and
specific components transfers to novel structural categories.
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Introduction

Research on expertise has shown that experts effortlessly
attend to relevant features and relations (Gibson, 1969), that
experts extract larger “chunks” of information, discover
higher-order invariance, and do so with low attentional load
(Gibson, 1969; Schneider & Shiffrin, 1977). Such changes
in information extraction as a result of experience constitute
perceptual learning (Gibson, 1969; for a recent review, see
Kellman & Garrigan, 2009).

Much contemporary research on perceptual learning (PL)
has focused on basic sensory discriminations; however, PL
effects are not confined to low-level tasks (Garrigan &
Kellman, 2008; Kellman & Garrigan, 2009). In fact, the
natural function of PL is to improve the extraction of
information from complex objects and events (Kellman &
Garrigan, 2009). PL also likely involves discovery of
abstract relational structures. Such high-level PL is a crucial
component of expertise in many domains including reading
(Baron, 1978; Yeh et al., 2003), chess (Chase & Simon,
1973), and X-ray interpretation (Chi, Feltovich & Glaser,
1981). In addition, recent research indicates an important
role for PL in high-level symbolic domains, such as
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mathematics and science (e.g., Goldstone, Landy & Son,
2008; Kellman et al., 2008).

In recent research, Kellman and colleagues have shown
that PL can be systematically engineered and accelerated
using appropriate computer-based technology (e.g.,
Kellman, Massey & Son, 2010). Their approach to PL
methods takes the form of perceptual learning modules
(PLMs). Rather than focusing on memorization of instances,
PLMs employ unique instances and systematic variations in
the learning set to promote the learning of invariant or
diagnostic structures characterizing a category or concept.
Learners engage in short, interactive episodes focused on
discrimination or classification. Because specific instances
seldom or never repeat in PLMs, learners pick up structural
invariance and can generalize it to new instances (Kellman
et al., 2010). Recent work suggests that relatively brief
PLM interventions can produce dramatic learning gains in
challenging mathematical domains, such as fraction learning
and algebra problem solving (Kellman et al., 2008; Kellman
etal., 2010).

Purpose of Current Work

In applying PL to complex, symbolic, real-world learning
domains, a critical question arises - how do we tell that the
driver in these effects is really PL? Kellman, Massey & Son
(2010) set out characteristic design features of perceptual
learning interventions and some signature effects that
implicate PL. Yet, realistic learning domains are complex
and involve synergies between conceptual knowledge and
perception of structure. Here we sought evidence of PL
effects in a high-level, realistic learning domain, by
explicitly testing after PLM use for basic changes in
information extraction.

We trained PL for complex patterns in Chinese characters
using a paradigm similar to that used to train PL in math and
science learning (Kellman et al., 2010). Since Chinese
characters are logographic and have both local and global
structure, we were able to train participants to recognize
characters at 3 different levels of hierarchical organization:
stroke, component, and structure. Participants in two PL
conditions matched characters by component (featural
relations) or overall structure (global configuration).
Importantly, in the case of matching by structure, local
components were free to vary. Other studies have shown
that an expert’s ability to use relevant ‘chunks’ based on
components and configural structure has to be nourished by
literacy development and cannot be obtained solely through



maturation (Yeh et al., 2003), making Chinese characters
ideal for our aims. A condition in which learners judged
characters' stroke count (high or low) served as a non-
structural control task.

Before and after training, we directly tested for basic
information processing changes using a visual search task.
The visual search task was a transfer task: It tested search
efficiencies for stimuli that were never presented in the
learning phase. We found consistent and reliable effects on
visual search efficiency from structure and component
training, relative to the stroke-count control condition,
including some effects specifically related to different types
of PL training. A key finding was that training to classify
based on structure led to markedly improved visual search
performance when targets and distractors shared a common
structure, even for novel structures.

Method

Participants

108 undergraduates participated in the experiment for
course credit. All reported normal or corrected-to-normal
vision. No participant reported any prior experience learning
Chinese characters.

Materials

1136 images of actual Chinese characters were used (1102
in the training phase, and 34 as novel items in the visual
search task). Images were presented in .png format in white
SimSun 36-point font on a black background. The visual
search task was presented using the Psychophysics Toolbox
(Brainard, 1997), and the learning phase was a perceptual
learning module (PLM) presented within a web-based Flash
environment.

Learning Phase In the learning phase, participants learned
to classify Chinese characters in a PLM, which consisted of
many short classification trials. On each trial, a given
character appeared in the upper middle part of the screen
with two separated characters presented below (Figure 1).
Participants were instructed to select which of the two lower
characters was in the same category as the upper character.
The task was a discovery task, in that learners had to
discover structural characteristics that led to correct answers
and were guided only by accuracy feedback. (No further
information about the category was provided.) There were
three between-subject conditions: (1) Structure PLM, (2)
Component PLM, and (3) Stroke PLM. Strokes are simple
features such as dots, lines, and curves. The characters used
in this study ranged from 5 — 17 strokes, and were sorted
into three categories of stroke count: Low, Medium, and
High. In the Stroke PLM condition, two characters were
defined as a ‘match’ (same category) if they shared either
Low or High stroke counts. Incorrect answer choices also
contained those with Medium stroke count. A component
(or radical) refers to the sub-character unit formed by a
group of strokes that recurs in different characters. Most
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Figure 1: Sample PLM trial. On each trial, participants
selected one of two choices to match a given Chinese
character (on top). (a) In the Structure PLM training

condition, characters ‘matched’ if they contained the same

configural structure (Vertical shown). (b) In the Component

PLM training condition, characters ‘matched’ if they shared
the same component (H shown).
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components occur in a certain position within characters,
but the components used in this study varied in their
positions within a character. For example, the component H
can occur on the left (e.g., 7)), right (e.g., 1), bottom (e.g.,
), or top (e .g., B). The proportions of the component
usually change when the character structure changes.
Irrespective of its structure and the number of strokes or
components, each character occupies a roughly constant
square-shaped size. The Component PLM group learned to
classify characters based on whether they contained the
same radical: 1., as in 3¢ and 3, or H, as in & and HX.
Incorrect answer choices also contained characters
involving other components.

The arrangement of different components at various
positions forms the structure of the character. Yeh et al.
(2003) showed, using hierarchical cluster analysis, that
expert readers tend to categorize characters into 5
categories: Horizontal, Vertical, P-shaped, L-shaped, and
Enclosed. Participants in the Structure PLM group learned
to categorize characters into Horizontal (e.g., Bl, &) and
Vertical (e.g., [, Z¥) structure categories. Two characters
were characterized as a ‘match’ if they contained the same
structure. P-shaped, L-shaped, and Enclosed structures were
used as incorrect answer choices in the PLM.

Crucially, all training conditions used the same pool of
Chinese characters. Structure PLM training involved
abstract PL, because the relevant categories depended across
trials on relations rather than recurring concrete features
(Garrigan & Kellman, 2008). The Component PLM
involved learning of more concrete features, but it was also
considered as a type of abstract PL because the components
involved shape characteristics rather than discrete features,
and varied in size and proportions across characters within a



category; thus, some invariants of shape had to be extracted,
apart from fixed positions, sizes, or even aspect ratios. The
Stroke PLM served as a baseline condition by allowing
participants to interact with the same stimuli, but in a
classification task in which the components and structural
characteristics were not relevant.

Visual Search Task Visual search has been used widely to
study PL effects (e.g., Shiffrin and Lightfoot, 1997; Sigman
& Gilbert, 2000). A typical trial requires participants to
search for a target within a field of distractors that differ
from the target in certain features. The number of the
distractors is varied, creating different numbers of total
items (i.e., set sizes). The dependence of the reaction time
(RT) on the number of items (the “search slope”) is an
indication of search efficiency: the larger the slope the less
efficient is the search (Wolfe, 1998). In this task,
participants searched for a character of a learned structure or
component, among an array of characters that belonged to a
different category of structure and/or component. This task
consisted of novel characters, never seen in the learning
phase, including those of an untrained structure and
component category.

Four different target-distractors pairs were created by
varying the structure and component factors in a 2
(structure: same or different) x 2 (component: same or
different) design. Thus, target characters were paired with
the following four kinds of distractors: (a) characters that
shared the same structure and one component with the target
(SsCs: same structure, same component); (b) characters that
shared the same structure with the target but had different
components from those of the target (SsCd); (c) characters
that differed from the target in structure but shared one
component with the target (SdCs); (d) characters that
differed from the target in both structure and components
(SdCd).

To control orthographic complexity, only characters with
8-10 strokes were included. Eight characters were chosen as
targets, each having 9 strokes: (Horizontal) ¥, B¢, #%, and
Wk, and (Vertical) &, ¥, &' and 4. Half of each group
contained radical +, and the other half contained radical H.

The search displays contained 3, 8, or 13 characters
randomly positioned in a 4 x 4 matrix (with jitter). For each
target-distractor pair, the three set sizes were repeated 10
times, with an equal number of target-present and target-
absent trials. This generated 240 trials, in which targets and
distractors were novel exemplars of trained or familiar
categories. These are referred to as F-F trials.

To investigate the transfer effects of PLM training, 240
more trials were added. 90 of which involved search for
exemplars of a trained category among untrained category
items (F-U trials). Here, the Structure PLM group searched
for a target of a Horizontal or Vertical (trained) structure
among distractors of a L-shaped structure (untrained
distractors). Distractors shared or did not share a component
with those of the target. The Component PLM group
searched for a target that contained a trained component,
among distractors without those components, but instead
contained an untrained component 1. Likewise, distractor
items shared or did not share the same structure with those
of the target. The opposite pairings generated 90 more trials
that involved search for untrained targets among trained
distractors (U-F trials). The remaining 60 trials involved
untrained targets and untrained distractors (U-U trials).
These involved targets and distractors with component [
and L-shaped structure.

In this task, similarity among distractors within a given
display was controlled as a between-subject factor. Half of
the participants searched homogeneous displays, in which
all distractors were identical. The other half searched
heterogeneous displays, in which distractors are different
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Figure 2: (a) Visual search procedure. This example depicts a set size 8 target-present trial with heterogeneous
distractors. The target and distractors shown share the same structure and component (SsCs trial). The inter-trial interval
was 1000ms. (b) Sample search displays with heterogeneous distractors. In visual search, target and distractors differed
based on structures and components. Homogeneous displays contained identical distractors.
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exemplars of a particular category. Each participant
received 480 trials, given in four blocks corresponding to
the search conditions: SsCs, SsCd, SdCs, SdCd. All other
variables were randomized within each block. The order of
the blocks given was randomized across all participants. The
same visual search task was given twice to participants in all
training conditions.

Procedure

The experiment began with a visual search task (pretest),
followed by a PLM learning phase, and ended with another
visual search task (posttest). A search trial progression is
shown in Figure 2. Participants were asked to indicate, as
accurately and quickly as they could, whether the search
field contained the target. No feedback was provided after
each trial, but an overall accuracy feedback was presented at
the end of the task.

In the learning phase, participants were presented with
classification trials in a PLM format. On each trial, they
were instructed to select one of two characters that matched
a given character presented in the upper middle of the
screen. Correct responses were those that appropriately
matched the given character, which were dependent upon
the learning condition randomly assigned to the participant.
Accuracy and RT feedback was given after each trial, after
each block of 20 trials, and when participants reached a
designated achievement level.

To complete the Structure and Component PLMs,
participants were required to reach a predetermined learning
criterion of 10 consecutive perfect classifications, with RT <
3 seconds, for each type of classification'. The Stroke PLM
was designed to terminate after 290 trials, if participants did
not reach the learning criterion sooner.” The learning phase
took no more than 45 minutes. After the learning phase,
participants were given the posttest visual search task.

Dependent Measures, Data Analysis and Hypotheses
Based on Kellman and colleagues’ prior work, we expected
the PLMs to produce robust classification learning, and as a
result, changes in perceptual sensitivity that would be
evident in the transfer task of visual search. We expected
greater improvement in search slope at posttest for search
trials that required participants to distinguish between
trained categories. We considered visual search times for
correct responses only. To compare performance between
pretest and posttest, we calculated the search slope
difference, or the decrement of RT per search item, for each
participant separately for each search trial type based on

! Types of classification consisted of combinations of category
members and distractors that differed by structure, component, and
stroke-count. For example, one type of classification for those in
the Structure PLM was matching a Low stroke-count Horizontal
character with a High stroke-count Horizontal target.

2 This number was determined by a pilot study as the average
number of trials needed for participants in other learning
conditions to complete their training.
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structure and component similarity. This was the primary
measure in the study.

As no previous work, to our knowledge, has tested
transfer effects on visual search from PL classification
training, we did not know exactly what effects to expect.
We hypothesized that the Structure and Component PLM
training would produce greater effects than the Stroke PLM
control condition. However, even in the Stroke PLM
condition, some PL may have occurred through mere
exposure (Gibson, 1967; Logan, 1988). Furthermore, we
hypothesized that PL effects should support transfer:
Discrimination and fluency improvements relating to
structure might improve structure discrimination in general,
including with novel structures.

Results

PLM Data

The average number of classification trials to complete
Structure PLM was 323 trials (range 114 - 727), Component
PLM was 398 trials (range 188 - 675), and Stroke PLM was
273 trials (range 197-290). 14 of 36 participants were able
to complete Stroke PLM with fewer than 290 trials.

Visual Search Data

Accuracy Error rates were low at pretest (mean 8.5%) and
posttest (mean 7.7%). There was no reliable correlation
between the error rates and the mean RTs obtained in each
of the target-distractor pairs. Thus, there was no speed-
accuracy trade-off.

Preliminary Analyses The mean RTs for correct responses
for heterogeneous and homogeneous distractor displays at
pretest were 2510 ms and 1697 ms, respectively, and at
posttest were 2093 ms and 1437 ms, respectively.

Figures 3 & 4 present the main results. PLM training
showed robust effect on visual search performance across
all transfer trial types, regardless of whether targets and
distractors were exemplars of untrained categories (Figure
3). One-way analyses of variance (ANOVAs) on search
slope differences by transfer trial types (F-F, F-U, U-F, U-
U) showed no differences between transfer trial types, for
both heterogeneous displays (F(3, 212) = 1.84, ns), and for
homogeneous displays (F(3, 212) = 2.47, ns). Thus, we
combined all transfer trials in the following analyses.

General Effects of Relational PLM Training As expected,
PLM training based on relational configurations produced
significantly more improvements in visual search than
Stroke PLM training across all trial types. This pattern was
confirmed by analyses of PLM conditions in two separate
mixed measures ANOVAs on search slope differences:
PLM (Structure vs. Stroke and Component vs. Stroke) x
display (homogeneous, heterogeneous) x transfer trial types
(F-F, F-U, U-F, U-U). Structure PLM and Component PLM
training each produced reliably greater increases in search
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Figure 3: Improvements in search efficiency (ms/item)
across different transfer conditions as a function of
PLM training. Structure and Component PLM training led
to more reductions in search slopes than Stroke PLM across

all transfer conditions. (Error bars: +1 SE)

efficiency than Stroke PLM (F(1, 68) = 6.39, p <.05 and
F(1, 68) = 5.08, p <.05, respectively), regardless of whether
targets and distractors involved structure and components
that had been seen in PLM training and whether the search
displays contained heterogeneous or homogeneous
distractors (See Figure 3).

As expected, Structure and Component PLM training
produced significant changes on visual search based on
structure and component similarity. The effect of Structure
PLM training was most notable in displays with
heterogeneous distractors, while Component PLM training
produced significant changes in search with homogeneous
displays. This pattern was confirmed by a significant
interaction of structure-similarity (same structure, different
structure) x PLM (Structure, Component, Stroke) x display
(homogeneous, heterogeneous) in a mixed measures
ANOVA on search slope differences (F(2, 102) =3.96, p <
.05). Follow-up findings demonstrated that the differential
effects on search improvement in each display type were
due to the type of classification training.

For heterogeneous displays, the most improved
performance was found with Structure PLM training for
search when targets and distractors shared the same
structure. (See Figure 4, left panel.) Performance in this case
was reliably better than when targets and distractors did not
share a common structure (#(17) = -2.48, p < .05; same-
structure: 86 ms/item, different-structure: 54 ms/item). As
Figure 4 shows, no such pattern was present in the Stroke-
count PLM group or in the Component PLM group.

For homogeneous displays, Component PLM training
produced reliably more improvement for displays in which
targets and distractors shared the same structure than when
they did not (#(17) = -3.31, p < .05; same-structure: 58
ms/item, different-structure: 32 ms/item). (See Figure 4,
right panel.)

Discussion and Conclusion

Our results provide a crucial link between basic research in
PL and applications of PL to instructional technology, in
two ways. First, PLM training in complex, real-world
domains produces basic changes in information extraction
as shown in a visual search task. Second, these changes
involve abstract relations rather than the concrete features
used in many PL studies. Consistent with our expectations,
PLM training of abstract relations in Chinese characters
produced specific changes in visual search, and sensitivity
induced by PL for both configural structures and relational
components transferred to novel relational categories. No
specific characters seen in PLM training were used in visual
search; improvements in visual search were therefore based
on improved processing of relational structures.

The most general effects were that both PLMs involving
classifications of abstract relations produced greater
improvements in visual search than a control condition,
using the same stimuli, that did not require processing of
relations. These effects held across all trial types.
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Figure 4: Improvements in search efficiency (ms/item)
as a function of PLM training. Structure and Component
PLMs led to most improvement in search efficiency when
target and distractors shared the same structure, for
heterogeneous and homogeneous displays, respectively.
(Error bars: = 1 SE)
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As expected, structure-focused classification training
produced specific changes in visual search performance
when search was based on structural similarity.
Interestingly, however, we found most improvement in
search when target and distractors shared the same structure
than when they differed by structure. This effect was
consistent across transfer trial types. One possibility is that
expertise of certain categories resulting from structural
classification training may have allowed participants to set
aside the category-identifying information, when it was not
relevant, to facilitate search for a particular target. This
advantage was specific to search with heterogeneous
distractors. It could be that structure classification enabled
learners to process the overall structures of new characters
more effectively, allowing them to see relevant parts within
complex arrangements. This advantage may have been
confined to cases of heterogeneous distractors because this
condition posed more varied challenges for finding the
relevant information.

An advantage with same-structure search was also found
with component-focused training. The Component PLM
produced more efficient searches when target and distractors
shared the same structure than when they differed by
structure, but unlike with the Structure PLM, the effect
occurred only for homogeneous distractor displays. One
likely possibility was that component-based training may
have allowed people to concurrently learn about structure.
Although components can appear in various locations
within each character, their size and shape varied depending
on the character structure. Thus, to learn about the invariant
relations defining each component, participants needed to
attend to the location of each component and picked up
structural relations as a result. While adequate to improve
search for homogeneous distractors, this component training
may not have provided enough facility with overall
structures to benefit variable search among distractors in
heterogeneous displays.

In sum, our data provide strong indications that PL
training produced changes in sensitivity seen in a transfer
task of visual search. Some effects were clearly specific to
PL training for structural relations or specific components in
that the PLM conditions led to different patterns of
improvement. Future studies will be needed to fully
understand these results, but the intricacy of the patterns we
observed suggests that PL training may have interesting,
unanticipated effects on information pickup.

The improved sensitivity in visual search induced by PL
for both relational structure and specific components shows
that classification experience in complex domains does lead
to basic changes in information extraction. Our findings,
and future research in studying transfer effects from PL,
may help us to understand how PL leverages basic
information processing improvements to underwrite
expertise in complex, real-world learning domains.
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