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Abstract 

Recent research indicates that perceptual learning (PL) 
interventions in real-world domains (i.e., mathematics, 
science) can produce strong learning gains, transfer, and 
fluency. Although results on domain-relevant assessments 
suggest characteristic PL effects, seldom have real-world PL 
interventions been explicitly tested for their effects on basic 
information extraction. We trained participants to classify 
Chinese characters, based on either (1) overall configurations 
(structures), (2) featural relations (components), or (3) non-
relational information (stroke-count control). Before and after 
training, we tested for changes in information extraction using 
a visual search task. Search displays contained all novel 
exemplars, involved manipulations of target-distractor 
similarity using structures and components, and included 
heterogeneous and homogeneous distractors. We found robust 
improvements in visual search for structure and component 
PL training relative to the control. High-level PL 
interventions produce changes in basic information extraction, 
and sensitivity induced by PL for both relational structure and 
specific components transfers to novel structural categories. 
 

Keywords: perceptual learning; educational technology; 
visual search; categorization. 

Introduction 
Research on expertise has shown that experts effortlessly 
attend to relevant features and relations (Gibson, 1969), that 
experts extract larger “chunks” of information, discover 
higher-order invariance, and do so with low attentional load 
(Gibson, 1969; Schneider & Shiffrin, 1977). Such changes 
in information extraction as a result of experience constitute 
perceptual learning (Gibson, 1969; for a recent review, see 
Kellman & Garrigan, 2009). 

Much contemporary research on perceptual learning (PL) 
has focused on basic sensory discriminations; however, PL 
effects are not confined to low-level tasks (Garrigan & 
Kellman, 2008; Kellman & Garrigan, 2009). In fact, the 
natural function of PL is to improve the extraction of 
information from complex objects and events (Kellman & 
Garrigan, 2009).  PL also likely involves discovery of 
abstract relational structures. Such high-level PL is a crucial 
component of expertise in many domains including reading 
(Baron, 1978; Yeh et al., 2003), chess (Chase & Simon, 
1973), and X-ray interpretation (Chi, Feltovich & Glaser, 
1981). In addition, recent research indicates an important 
role for PL in high-level symbolic domains, such as 

mathematics and science (e.g., Goldstone, Landy & Son, 
2008; Kellman et al., 2008).  

In recent research, Kellman and colleagues have shown 
that PL can be systematically engineered and accelerated 
using appropriate computer-based technology (e.g., 
Kellman, Massey & Son, 2010). Their approach to PL 
methods takes the form of perceptual learning modules 
(PLMs). Rather than focusing on memorization of instances, 
PLMs employ unique instances and systematic variations in 
the learning set to promote the learning of invariant or 
diagnostic structures characterizing a category or concept. 
Learners engage in short, interactive episodes focused on 
discrimination or classification. Because specific instances 
seldom or never repeat in PLMs, learners pick up structural 
invariance and can generalize it to new instances (Kellman 
et al., 2010).  Recent work suggests that relatively brief 
PLM interventions can produce dramatic learning gains in 
challenging mathematical domains, such as fraction learning 
and algebra problem solving (Kellman et al., 2008; Kellman 
et al., 2010). 

Purpose of Current Work 
In applying PL to complex, symbolic, real-world learning 
domains, a critical question arises - how do we tell that the 
driver in these effects is really PL? Kellman, Massey & Son 
(2010) set out characteristic design features of perceptual 
learning interventions and some signature effects that 
implicate PL. Yet, realistic learning domains are complex 
and involve synergies between conceptual knowledge and 
perception of structure.  Here we sought evidence of PL 
effects in a high-level, realistic learning domain, by 
explicitly testing after PLM use for basic changes in 
information extraction. 

We trained PL for complex patterns in Chinese characters 
using a paradigm similar to that used to train PL in math and 
science learning (Kellman et al., 2010). Since Chinese 
characters are logographic and have both local and global 
structure, we were able to train participants to recognize 
characters at 3 different levels of hierarchical organization: 
stroke, component, and structure. Participants in two PL 
conditions matched characters by component (featural 
relations) or overall structure (global configuration). 
Importantly, in the case of matching by structure, local 
components were free to vary.  Other studies have shown 
that an expert’s ability to use relevant ‘chunks’ based on 
components and configural structure has to be nourished by 
literacy development and cannot be obtained solely through 
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maturation (Yeh et al., 2003), making Chinese characters 
ideal for our aims. A condition in which learners judged 
characters' stroke count (high or low) served as a non-
structural control task. 

 Before and after training, we directly tested for basic 
information processing changes using a visual search task. 
The visual search task was a transfer task: It tested search 
efficiencies for stimuli that were never presented in the 
learning phase. We found consistent and reliable effects on 
visual search efficiency from structure and component 
training, relative to the stroke-count control condition, 
including some effects specifically related to different types 
of PL training. A key finding was that training to classify 
based on structure led to markedly improved visual search 
performance when targets and distractors shared a common 
structure, even for novel structures. 

Method 

Participants  
108 undergraduates participated in the experiment for 
course credit. All reported normal or corrected-to-normal 
vision. No participant reported any prior experience learning 
Chinese characters. 

Materials 
1136 images of actual Chinese characters were used (1102 
in the training phase, and 34 as novel items in the visual 
search task).  Images were presented in .png format in white 
SimSun 36-point font on a black background. The visual 
search task was presented using the Psychophysics Toolbox 
(Brainard, 1997), and the learning phase was a perceptual 
learning module (PLM) presented within a web-based Flash 
environment. 

Learning Phase In the learning phase, participants learned 
to classify Chinese characters in a PLM, which consisted of 
many short classification trials. On each trial, a given 
character appeared in the upper middle part of the screen 
with two separated characters presented below (Figure 1). 
Participants were instructed to select which of the two lower 
characters was in the same category as the upper character. 
The task was a discovery task, in that learners had to 
discover structural characteristics that led to correct answers 
and were guided only by accuracy feedback. (No further 
information about the category was provided.) There were 
three between-subject conditions: (1) Structure PLM, (2) 
Component PLM, and (3) Stroke PLM. Strokes are simple 
features such as dots, lines, and curves. The characters used 
in this study ranged from 5 – 17 strokes, and were sorted 
into three categories of stroke count: Low, Medium, and 
High. In the Stroke PLM condition, two characters were 
defined as a ‘match’ (same category) if they shared either 
Low or High stroke counts. Incorrect answer choices also 
contained those with Medium stroke count. A component 
(or radical) refers to the sub-character unit formed by a 
group of strokes that recurs in different characters. Most 

components occur in a certain position within characters, 
but the components used in this study varied in their 
positions within a character. For example, the component 口 
can occur on the left (e.g., 吃), right (e.g., 和), bottom (e.g., 
吉), or top (e .g., 員). The proportions of the component 
usually change when the character structure changes. 
Irrespective of its structure and the number of strokes or 
components, each character occupies a roughly constant 
square-shaped size. The Component PLM group learned to 
classify characters based on whether they contained the 
same radical: 土, as in 圣 and 址, or 日, as in 易 and 旼.  
Incorrect answer choices also contained characters 
involving other components.  

The arrangement of different components at various 
positions forms the structure of the character. Yeh et al. 
(2003) showed, using hierarchical cluster analysis, that 
expert readers tend to categorize characters into 5 
categories: Horizontal, Vertical, P-shaped, L-shaped, and 
Enclosed. Participants in the Structure PLM group learned 
to categorize characters into Horizontal (e.g., 即, 快) and 
Vertical (e.g., 思, 季) structure categories. Two characters 
were characterized as a ‘match’ if they contained the same 
structure. P-shaped, L-shaped, and Enclosed structures were 
used as incorrect answer choices in the PLM.  

Crucially, all training conditions used the same pool of 
Chinese characters. Structure PLM training involved 
abstract PL, because the relevant categories depended across 
trials on relations rather than recurring concrete features 
(Garrigan & Kellman, 2008). The Component PLM 
involved learning of more concrete features, but it was also 
considered as a type of abstract PL because the components 
involved shape characteristics rather than discrete features, 
and varied in size and proportions across characters within a 

Figure 1: Sample PLM trial. On each trial, participants 
selected one of two choices to match a given Chinese 
character (on top). (a) In the Structure PLM training 

condition, characters ‘matched’ if they contained the same 
configural structure (Vertical shown). (b) In the Component 
PLM training condition, characters ‘matched’ if they shared 

the same component (日 shown). 
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category; thus, some invariants of shape had to be extracted, 
apart from fixed positions, sizes, or even aspect ratios.  The 
Stroke PLM served as a baseline condition by allowing 
participants to interact with the same stimuli, but in a 
classification task in which the components and structural 
characteristics were not relevant.  

Visual Search Task Visual search has been used widely to 
study PL effects (e.g., Shiffrin and Lightfoot, 1997; Sigman 
& Gilbert, 2000). A typical trial requires participants to 
search for a target within a field of distractors that differ 
from the target in certain features. The number of the 
distractors is varied, creating different numbers of total 
items (i.e., set sizes). The dependence of the reaction time 
(RT) on the number of items (the “search slope”) is an 
indication of search efficiency: the larger the slope the less 
efficient is the search (Wolfe, 1998). In this task, 
participants searched for a character of a learned structure or 
component, among an array of characters that belonged to a 
different category of structure and/or component. This task 
consisted of novel characters, never seen in the learning 
phase, including those of an untrained structure and 
component category. 

Four different target-distractors pairs were created by 
varying the structure and component factors in a 2 
(structure: same or different) x 2 (component: same or 
different) design. Thus, target characters were paired with 
the following four kinds of distractors: (a) characters that 
shared the same structure and one component with the target 
(SsCs: same structure, same component); (b) characters that 
shared the same structure with the target but had different 
components from those of the target (SsCd); (c) characters 
that differed from the target in structure but shared one 
component with the target (SdCs); (d) characters that 
differed from the target in both structure and components 
(SdCd).  

To control orthographic complexity, only characters with 
8-10 strokes were included. Eight characters were chosen as 
targets, each having 9 strokes: (Horizontal) 垟, 垙, 昤, and 
昹, and (Vertical) 垡, 垩, 昱, and 昝.  Half of each group 
contained radical 土, and the other half contained radical 日. 

The search displays contained 3, 8, or 13 characters 
randomly positioned in a 4 x 4 matrix (with jitter). For each 
target-distractor pair, the three set sizes were repeated 10 
times, with an equal number of target-present and target-
absent trials. This generated 240 trials, in which targets and 
distractors were novel exemplars of trained or familiar 
categories. These are referred to as F-F trials. 

To investigate the transfer effects of PLM training, 240 
more trials were added. 90 of which involved search for 
exemplars of a trained category among untrained category 
items (F-U trials). Here, the Structure PLM group searched 
for a target of a Horizontal or Vertical (trained) structure 
among distractors of a L-shaped structure (untrained 
distractors). Distractors shared or did not share a component 
with those of the target. The Component PLM group 
searched for a target that contained a trained component, 
among distractors without those components, but instead 
contained an untrained component 口. Likewise, distractor 
items shared or did not share the same structure with those 
of the target. The opposite pairings generated 90 more trials 
that involved search for untrained targets among trained 
distractors (U-F trials). The remaining 60 trials involved 
untrained targets and untrained distractors (U-U trials). 
These involved targets and distractors with component 口 
and L-shaped structure. 

In this task, similarity among distractors within a given 
display was controlled as a between-subject factor. Half of 
the participants searched homogeneous displays, in which 
all distractors were identical. The other half searched 
heterogeneous displays, in which distractors are different 

Figure 2: (a) Visual search procedure. This example depicts a set size 8 target-present trial with heterogeneous 
distractors. The target and distractors shown share the same structure and component (SsCs trial). The inter-trial interval 

was 1000ms. (b) Sample search displays with heterogeneous distractors. In visual search, target and distractors differed 
based on structures and components. Homogeneous displays contained identical distractors. 
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exemplars of a particular category. Each participant 
received 480 trials, given in four blocks corresponding to 
the search conditions: SsCs, SsCd, SdCs, SdCd. All other 
variables were randomized within each block. The order of 
the blocks given was randomized across all participants. The 
same visual search task was given twice to participants in all 
training conditions. 

Procedure 
The experiment began with a visual search task (pretest), 
followed by a PLM learning phase, and ended with another 
visual search task (posttest). A search trial progression is 
shown in Figure 2. Participants were asked to indicate, as 
accurately and quickly as they could, whether the search 
field contained the target. No feedback was provided after 
each trial, but an overall accuracy feedback was presented at 
the end of the task. 

In the learning phase, participants were presented with 
classification trials in a PLM format. On each trial, they 
were instructed to select one of two characters that matched 
a given character presented in the upper middle of the 
screen. Correct responses were those that appropriately 
matched the given character, which were dependent upon 
the learning condition randomly assigned to the participant. 
Accuracy and RT feedback was given after each trial, after 
each block of 20 trials, and when participants reached a 
designated achievement level. 

To complete the Structure and Component PLMs, 
participants were required to reach a predetermined learning 
criterion of 10 consecutive perfect classifications, with RT ≤ 
3 seconds, for each type of classification1. The Stroke PLM 
was designed to terminate after 290 trials, if participants did 
not reach the learning criterion sooner.2 The learning phase 
took no more than 45 minutes. After the learning phase, 
participants were given the posttest visual search task.  

Dependent Measures, Data Analysis and Hypotheses 
Based on Kellman and colleagues’ prior work, we expected 
the PLMs to produce robust classification learning, and as a 
result, changes in perceptual sensitivity that would be 
evident in the transfer task of visual search.  We expected 
greater improvement in search slope at posttest for search 
trials that required participants to distinguish between 
trained categories. We considered visual search times for 
correct responses only. To compare performance between 
pretest and posttest, we calculated the search slope 
difference, or the decrement of RT per search item, for each 
participant separately for each search trial type based on 

                                                
1 Types of classification consisted of combinations of category 

members and distractors that differed by structure, component, and 
stroke-count. For example, one type of classification for those in 
the Structure PLM was matching a Low stroke-count Horizontal 
character with a High stroke-count Horizontal target.  

2 This number was determined by a pilot study as the average 
number of trials needed for participants in other learning 
conditions to complete their training. 

structure and component similarity. This was the primary 
measure in the study.  
    As no previous work, to our knowledge, has tested 
transfer effects on visual search from PL classification 
training, we did not know exactly what effects to expect. 
We hypothesized that the Structure and Component PLM 
training would produce greater effects than the Stroke PLM 
control condition. However, even in the Stroke PLM 
condition, some PL may have occurred through mere 
exposure (Gibson, 1967; Logan, 1988). Furthermore, we 
hypothesized that PL effects should support transfer: 
Discrimination and fluency improvements relating to 
structure might improve structure discrimination in general, 
including with novel structures. 

Results 

PLM Data 
The average number of classification trials to complete 
Structure PLM was 323 trials (range 114 - 727), Component 
PLM was 398 trials (range 188 - 675), and Stroke PLM was 
273 trials (range 197-290). 14 of 36 participants were able 
to complete Stroke PLM with fewer than 290 trials.  

Visual Search Data 

Accuracy Error rates were low at pretest (mean 8.5%) and 
posttest (mean 7.7%). There was no reliable correlation 
between the error rates and the mean RTs obtained in each 
of the target-distractor pairs. Thus, there was no speed-
accuracy trade-off.  

Preliminary Analyses The mean RTs for correct responses 
for heterogeneous and homogeneous distractor displays at 
pretest were 2510 ms and 1697 ms, respectively, and at 
posttest were 2093 ms and 1437 ms, respectively. 

Figures 3 & 4 present the main results. PLM training 
showed robust effect on visual search performance across 
all transfer trial types, regardless of whether targets and 
distractors were exemplars of untrained categories (Figure 
3). One-way analyses of variance (ANOVAs) on search 
slope differences by transfer trial types (F-F, F-U, U-F, U-
U) showed no differences between transfer trial types, for 
both heterogeneous displays (F(3, 212) = 1.84, ns), and for 
homogeneous displays (F(3, 212) = 2.47, ns). Thus, we 
combined all transfer trials in the following analyses. 
 
General Effects of Relational PLM Training As expected, 
PLM training based on relational configurations produced 
significantly more improvements in visual search than 
Stroke PLM training across all trial types. This pattern was 
confirmed by analyses of PLM conditions in two separate 
mixed measures ANOVAs on search slope differences: 
PLM (Structure vs. Stroke and Component vs. Stroke) x 
display (homogeneous, heterogeneous) x transfer trial types 
(F-F, F-U, U-F, U-U). Structure PLM and Component PLM 
training each produced reliably greater increases in search 
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efficiency than Stroke PLM (F(1, 68) = 6.39, p <.05 and 
F(1, 68) = 5.08, p <.05, respectively), regardless of whether 
targets and distractors involved structure and components 
that had been seen in PLM training and whether the search 
displays contained heterogeneous or homogeneous 
distractors (See Figure 3). 

As expected, Structure and Component PLM training 
produced significant changes on visual search based on 
structure and component similarity. The effect of Structure 
PLM training was most notable in displays with 
heterogeneous distractors, while Component PLM training 
produced significant changes in search with homogeneous 
displays. This pattern was confirmed by a significant 
interaction of structure-similarity (same structure, different 
structure) x PLM (Structure, Component, Stroke) x display 
(homogeneous, heterogeneous) in a mixed measures 
ANOVA on search slope differences (F(2, 102) = 3.96, p < 
.05). Follow-up findings demonstrated that the differential 
effects on search improvement in each display type were 
due to the type of classification training. 

 For heterogeneous displays, the most improved 
performance was found with Structure PLM training for 
search when targets and distractors shared the same 
structure. (See Figure 4, left panel.) Performance in this case 
was reliably better than when targets and distractors did not 
share a common structure (t(17) = -2.48, p < .05; same-
structure: 86 ms/item, different-structure: 54 ms/item). As 
Figure 4 shows, no such pattern was present in the Stroke-
count PLM group or in the Component PLM group.  

For homogeneous displays, Component PLM training 
produced reliably more improvement for displays in which 
targets and distractors shared the same structure than when 
they did not (t(17) = -3.31, p < .05; same-structure: 58 
ms/item, different-structure: 32 ms/item). (See Figure 4, 
right panel.)  

Discussion and Conclusion 
Our results provide a crucial link between basic research in 
PL and applications of PL to instructional technology, in 
two ways.  First, PLM training in complex, real-world 
domains produces basic changes in information extraction 
as shown in a visual search task. Second, these changes 
involve abstract relations rather than the concrete features 
used in many PL studies. Consistent with our expectations, 
PLM training of abstract relations in Chinese characters 
produced specific changes in visual search, and sensitivity 
induced by PL for both configural structures and relational 
components transferred to novel relational categories. No 
specific characters seen in PLM training were used in visual 
search; improvements in visual search were therefore based 
on improved processing of relational structures. 

The most general effects were that both PLMs involving 
classifications of abstract relations produced greater 
improvements in visual search than a control condition, 
using the same stimuli, that did not require processing of 
relations. These effects held across all trial types. 

Figure 3: Improvements in search efficiency (ms/item) 
across different transfer conditions as a function of 

PLM training. Structure and Component PLM training led 
to more reductions in search slopes than Stroke PLM across 

all transfer conditions. (Error bars: ±1 SE) 
 

Figure 4:  Improvements in search efficiency (ms/item) 
as a function of PLM training.  Structure and Component 
PLMs led to most improvement in search efficiency when 

target and distractors shared the same structure, for 
heterogeneous and homogeneous displays, respectively.  

(Error bars: ± 1 SE) 
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As expected, structure-focused classification training 
produced specific changes in visual search performance 
when search was based on structural similarity. 
Interestingly, however, we found most improvement in 
search when target and distractors shared the same structure 
than when they differed by structure. This effect was 
consistent across transfer trial types. One possibility is that 
expertise of certain categories resulting from structural 
classification training may have allowed participants to set 
aside the category-identifying information, when it was not 
relevant, to facilitate search for a particular target. This 
advantage was specific to search with heterogeneous 
distractors. It could be that structure classification enabled 
learners to process the overall structures of new characters 
more effectively, allowing them to see relevant parts within 
complex arrangements.  This advantage may have been 
confined to cases of heterogeneous distractors because this 
condition posed more varied challenges for finding the 
relevant information.  

An advantage with same-structure search was also found 
with component-focused training. The Component PLM 
produced more efficient searches when target and distractors 
shared the same structure than when they differed by 
structure, but unlike with the Structure PLM, the effect 
occurred only for homogeneous distractor displays. One 
likely possibility was that component-based training may 
have allowed people to concurrently learn about structure. 
Although components can appear in various locations 
within each character, their size and shape varied depending 
on the character structure. Thus, to learn about the invariant 
relations defining each component, participants needed to 
attend to the location of each component and picked up 
structural relations as a result. While adequate to improve 
search for homogeneous distractors, this component training 
may not have provided enough facility with overall 
structures to benefit variable search among distractors in 
heterogeneous displays. 

In sum, our data provide strong indications that PL 
training produced changes in sensitivity seen in a transfer 
task of visual search.  Some effects were clearly specific to 
PL training for structural relations or specific components in 
that the PLM conditions led to different patterns of 
improvement. Future studies will be needed to fully 
understand these results, but the intricacy of the patterns we 
observed suggests that PL training may have interesting, 
unanticipated effects on information pickup.  

The improved sensitivity in visual search induced by PL 
for both relational structure and specific components shows 
that classification experience in complex domains does lead 
to basic changes in information extraction. Our findings, 
and future research in studying transfer effects from PL, 
may help us to understand how PL leverages basic 
information processing improvements to underwrite 
expertise in complex, real-world learning domains. 
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