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Abstract insectsall are animal categories and clearly are more interre-
We examine the influence of contrast categories on the iltern lated than the categoriesammalsanddoorknobs . .
graded membership structure of natural language categorie The interrelatedness of natural language categoriesselici
To this end we contrast two exemplar models in their account  the following intriguing question: Is the internal membsps
of typicality: According to the GCM, typicality is the sumuihe . .
similarity towards all category members. Accordingtotie s~ Structure of a category determined solely by charactesisti
GCM, typicality is determined by both the summed similarity ~ internal to the category, or do other, related categorif#s-in

:Owargs all Cagegoryf merpbetfs atnd the Sugm‘f%d dis§imi||arit¥ ence the category structure? In other words, is the the-platy
owards members of contrast categories. For five animal cat- : .
egories, we contrast the SD-GCM and the GCM in their ac- PUS @n atypical member aiammalsecause of its apparent

count of typicality. Results indicate that the internalecairy dissimilarity towards other mammals, or does its similarit
StrUCtL!re can indeed be CQ'determined by d|5$|mllar|tﬁm towards Other anima| Categories7 sucrbads and rept”es
EOtem'aoll contrast Ca:tegor'fs' s tvpicalit wrast cat contribute to its atypicality? The present paper is conegrn
eywords: concepts; categories; typicality; contrast cate- : . . o
gories; computational models with exactly this question and attempts _to answer it usirg su
cessful exemplar models that have their roots in artificd c

Introduction egory learning research.

The platypus is a mammal. It can, however, hardly be Ca”e‘tontrast category effects
a "good” mammal: It has webbed feet and a beak resembling
that of a duck, it is venomous like insects and reptiles yis la The most likely candidates to exert influence on the internal
eggs as do birds and fish, and it is semi-aquatic, remindingtructure of other categories, are contrast categoriestré&xi
one of amphibians. A cow, on the other hand, is a goodgategories are considered to be at the same level of abstrac-
a more representative example of a mammal. Previous rdion, belonging to the same immediate superordinate as the
search suggests that people are in general agreement astasget category. Further, they are contrastive or incompat
what are representative, good examples of a certain categoble in the sense that one and only one word is applicable to
and which members are bad examples. The graded merany member of the category (Miller & Johnson-Laird, 1976).
bership structure, or typicality gradient, can be obseimed For examplemammalsndbirdsare contrast categories, both
a broad range of everyday natural language categories (e.dpelonging to the same immediate superordinate category and
Hampton & Gardiner, 1983; Rosch & Mervis, 1975). they are mutually exclusive (an animal cannot tierd and a
Traditionally, typicality is defined as similarity towards ~mammabht the same time). We use the tecontrast category
category representation: A member of a category is typica¢ffectfor manifestations of influence of contrast categories on
to the extent that it is similar to the category represenati category based tasks.
Different views exist on what the category representatamn c The notion of contrast category has a long history in nat-
sists of. The two most dominant computational theories ofural language concept representation literature. For exam
category representation propose that a category is regegse ple, in their influential family resemblance model, RoscH an
by a prototype (prototype models; e.g., Hampton, 1993), oMervis (1975) assume that typicality of a category member
the set of previously encountered members (exemplar mods its similarity to other category members and its dissamil
els; e.g., Medin & Schaffer, 1978 ). In general, it is found ity to members of contrast categories. Despite the thexadeti
across an impressive array of conditions, both in artifie#l ¢ importance attributed to contrast categories, little effas
egory learning experiments and natural language categorideen invested in demonstrating the independent role of con-
that exemplar representations provide the best desaripfio trast categories in natural language categories, and rexéde
human categorization. For present purposes we will thezefo is ambiguous. In a thorough test of the independent contribu
focus on exemplar models. tion of feature overlap with the target category and feature
While the graded membership obviously reflects the interoverlap with contrast categories, using both typicality ra
nal structure of a category, natural language categories aings and classification response times, Verbeemen, Vanhover
not isolated entities, but generally reside in rich sentasd  berghe, Storms, and Ruts (2001) found no evidence for con-
mains. Categories vary along a continuum of interrelatedtrast effects. In sharp contrast with the findings of Verbeem
ness (Goldstone, 1996). For examplgmmalsbirds and et al., using a geometric prototype model of concept repre-
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sentation, Ameel and Storms (2006) found evidence that preexemplars are generally assumed to be defined at the near-

totypes of interrelated categories tend to move away fram thest subordinate member level (e.g., Komatsu, 1992). For

central tendency, in a direction opposite of the contrast ca example, the exemplars of the categargmmalsare 'dog’,

egories. This finding constitutes evidence in favor of con-camel’, ’beaver’, etc.

trast effects, since the prototype, i.e., the represemiaif a .

category, is under influence of other categories. In sum, tht-al-he generalized context model

debate on the role of contrast categories in natural largguagthe GCM (Nosofsky, 1986) is one of the most influential

categories is far from settled, and in need of further thghou exemplar models in categorization research. Originétlg, t

and systematic examination. model was developed to account for categorization ded@sion
In artificial category learning, empirical demonstratiofis ~ but it has successfully been adapted for typicality judgisien

contrast category effects are more established (e.g.sBavi (Nosofsky, 1988). Typicality of an exemplafor categoryA

Love, 2010; Goldstone, Steyvers, & Rogosky, 2003; Palmeris calculated by summing the similarity of that exemplar to

& Nosofsky, 2001; Stewart & Brown, 2005) . For example, all other exemplars in the category:

Palmeri and Nosofsky (2001) demonstrated that items resid-

ing at the target's category boundary most remote from other tin = zAS i (1)

categories, were classified most accurately. In other words 1€

clear category members were both high in similarity towardswvheres; is the similarity of exemplar to exemplarj. The

the target category and low in similarity towards other rele similarity between two exemplars is a function of the dis&n

vant categories. Goldstone et al. (2003) manipulated the irof the exemplars in an M-dimensional psychological space.

terrelatedness of categories, and demonstrated a cleaason Formally, the scaled psychological distance is given by:

category effect when categories are interrelated.
Interestingly, Stewart and Brown (2005) proposed and M

tested an exemplar model, the similarity-dissimilaritpge dij = <Z Wi | Xik — Xjk|r> (2)

alized context model (SD-GCM), that explicitly implements k=1

dissimilarity towards contrast categories as a compomentt wherexy andxj are the coordinates of exemplamnd j on

co-determines category membership together with sirtylari dimensionk, andw is the dimension weight for dimension

to the target category. The SD-GCM is based on the genek. We relied on Euclidean distances (r=2), which are gener-

alized context model (GCM; Nosofsky, 1986), arguably theally accepted to be more appropriate for integral dimerssion

most influential exemplar model, but differs from the GCM (Shepard, 1987). Similarity betweémand j is derived from

in that the GCM only considers the similarity towards storedthe weighted distance:

category members.

r

§j = exp(—cd;) 3)

) _wherec is the sensitivity parameter. The free parameters in
The present study examines the role of contrast categories {,e GCM consist of M-1 dimension weights and the sensitiv-
the representation of natural language categories. We COMY, harameter.

pare two computational exemplar models developed in artifi-

cial category learning —the GCM and the SD-GCM —, in theirThe Similarity-Dissimilarity GCM

account of the typicality gradient of five animal categories The SD-GCM (Stewart & Brown, 2005) is an extension of
The two models both provide a different account of the typthe GCM, making the same assumptions concerning underly-
icality gradient of a category: According to the GCM, the jng representation and similarity (i.e., Equations (2) &8id
typicality of a member should depend solely on the summedi|| apply). However, whereas the GCM defines typicality of
similarity towards other category members. According ® th jtemi towards categonp as the sum of the similarity towards
SD-GCM on the other hand, typicality of a category dependsnembers of that category, the SD-GCM also takes into ac-
on both similarity towards category members and dissimilar count the dissimilarity of towards alternative categories in

ity towards contrast categories. To evaluate whether ashtr the same representational space. Formally, the typicafity
categories play a role in the animal categories, we willgéher exemplaii to categoryA then is given by:

fore compare the two models on their ability to account for
the observed typicality gradient in the animal categories. tia = Z\Sj + z (1-s1) (4)
ic A

Outline

Models wheres;j ands; are similarities between exemplaandj and
We will give a brief overview of both the standard GCM i andl respectively, with) being an element of categofy and
and the SD-GCM, adapted to account for typicality in nat-l belonging to an alternate category. Typicality to a catggor
ural language categories. Both models are exemplar-based, thus defined by the sum of the similarity towards mem-
which means that they rely on stored exemplars to accouriiers of the category plus the summed dissimilarity towards
for category-based decision. For natural language categor the other elements in the representational space. Itisipess
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to restrict the set of contrast categories, such thatonljbas  To arrive at a pairwise similarity measure for each pair of
set of exemplars in the representational space are includednimals, we summed the feature-by-exemplar matricesgcros
For example, in accounting for the typicality of members ofthe 4 participants and then correlated the summed feature ve
the categorymammals we might choose to restrict the set tors of all possible exemplar pairs within a domain.

of contrast exemplars toirds andfish, leaving out the other

potential contrast categoriesectsandreptiles Results

Data Both models operate on an underlying geometric similarity

o ) representation, in which exemplars are represented asspoin
To compare the models, we chose categories in the animal d@; a4 M-dimensional space and the distance between two

main, that more or less exhaustively cover the whole domainygints in the space is inversely related to the similarity of
In this way, no potential contrast category was accidentall the exemplars. After describing how the representatioms we
missed: Each of the categories can be a contrast category fHEzrived, we will examine how many, and which, contrast cat-
all other categories, and for each category all possible@sh  ¢qories are best used for each of the target categories. To
categories are included. Moreover, the animal categoBes p answer the question whether a category’s internal member-
fectly adhere to the definition of contrast categories, B&0  ship structure can be influenced by contrast categories, we
ing to the same immediate superordinate category (animalg)j| compare the SD-GCM with the standard GCM, both in

and being mutually exclusive. terms of optimal data fit and generalizability of the models.
Data were taken from a recent norm study of De Deyne et

al. (2008). The set contains five animal categorigsl§, fish,  Similarity representation

insectsmammalandreptiley, in total containing 129 exem- To investigate whether it makes sense to derive a geomet-

plars. Every category con3|sts_ of 20 to 33 exemplars._ W.e|c representation for the present stimuli, the percentg#ge
used goodness-of-example ratings as a measure of typicalif . : o . . .
) L . riplets in the similarity matrix that violate the triangie-
and a derived similarity measure of categories to consamict . -
equality was calculated. Its very low value (.13 %) indi-

underlying stimulus representation. cates that the stimuli can in principle be representedalpati
Typicality To generate the geometric similarity representation, tie p
Goodness-of-example ratings taken from De Deyne et aIWise similarity measure fqr each pair of the 129 ANIMAL
(2008). The exemplars of each category were rated by 2 xemplars was used as input in a SAS non-metric MDS-
participants for goodness-of-example for the category the"’l.m’llys'.S (SAS, V9). We cpnsmered representatlo_ns in 210 6
dimensions. The appropriateness of the geometric represen

belonged to on a Likert-rating scale ranging from 1 for very i luated usi { bad it
bad examples to 20 for very good examples. The reliabilit)}a lon was evaluated using stress as a badness-ol-iit neeasur

of the judgments for each category was evaluated by mear{grUSkaI & Wish, 1978) for the MDS-solutions.
of split-half correlations corrected with the Spearmaavior

the present study the typicality ratings are averaged acrosy (T|v), and stress-values for the MDS-solutions.
participants, resulting in a single typicality score forcka

member of a category. TIV Stress-values
L L 2D 3D 4D 5D 6D
Pairwise similarity 0.13% .18 .12 .07 .06 .04

To allow the SD-GCM to test for potential contrast effects, i
is imperative that the exemplars of all five categories are in
the same similarity representation. This requires a measur he stress-values in Table 1 suggest the appropriateness of
of pairwise similarity between all exemplars in the ANIMAL the MDS-solutions. Following Kruskal & Wish, 1978, solu-
domain. To this end we derived a pairwise similarity measurdions with stress-values exceeding .10 are not considered f
for all pairs of 129 exemplars in the ANIMAL set. De Deyne further analyses, leaving representations with Dimeragityn

et al. (2008) reports an exemplar by feature matrix comagini from 4 to 6 for further analysis.

all exemplars of the animal domain and all features gener- s .
ated for its exemplars. The animal domain matrix containédentlfylng contrast categories

129 exemplars and 765 features. The features were generatéde notion of contrast categories refers to categoriesatteat

by 1003 participants for the exemplars of the animal domaimutually exclusive and organized under the same superor-
and span a broad range of characteristics (e.g., 'has an extalinate term. Thus, for the animal categories, each category
nal skeleton’, ’is a carnivore’, 'runs fast’). Four parpaints can have all other animal categories as potential contadst c
judged the applicability of each feature for each exemplar ( egories. Before comparing the SD-GCM to the GCM, we will
referring to applicable, O referring to not applicable)eTs-  therefore examine for each concept which are the apprepriat
timated reliability of these judgments was .83 (see De Deyneontrast categories, and how many contrast categoriesdshou
etal., 2008, p. 1042). be included in the SD-GCM. For example, for the category
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mammalghe contrast category can béads, fish insectsor ~ Goodness of fit. Results of the model fit analyses are pre-
mammalsor any combination of these four categories. sented in Figure 1(a). For each of the five animal categories,
To identify the appropriate set of contrast categories, wave calculated the optimal correlation between observed typ
optimized the correlation of the observed typicality rgin icality ratings of a category’s members and the model-based
with the SD-GCM-based typicality ratings for the categorytypicality scores of the members, derived from the GCM and
members, varying the contrast categories included in théhe SD-GCM. For the SD-GCM, we included the most ap-
model. We first optimized the SD-GCM's typicality predic- propriate set of contrast categories for each target catego
tions using only one contrast category. Rmmmalsthe best  following the findings of the previous analyses. The optimal
contrast category wadsirds. We then allowed two contrast correlations are presented as a function of the dimensignal
categorieshirds being one of the two, the second categoryof the underlying stimulus representation.
being the second best contrast category of step'orkhis The SD-GCM captures the observed typicality gradient of
procedure was repeated until all four contrast categorégew the categories very well, with optimal correlations betwee
included. Analyseswere performed for all five target cate- observed and model-based typicality scores rising welabo
gories and the results are presented in Table 2. .8 for stimulus representations of Dimensionality 6 (.88rav
aged across categories). fmsectan Dimensionalities 4 and
) . . ... 5, andreptilesin Dimensionality 4, the optimal correlation is
:;?r::széng?r:?sa:j?ggﬂégggz dbt(i/t;\ifaelgyc;l;fiirgvsed tyIOICa“tyjust under .8. In contrast, the standard GCM has more dif-
' ficulty in providing a good account of the typicality ratings

category  n of contrast categories While for birdsandfishthe optimal correlations are good, ris-

1 2 3 4 ing above .7 and .8 respectively, the model has difficulthen t
mammals .80 .81 .87 .83 categoriesnsectsandreptiles optimal performance dropping
birds 88 88 89 .89 below .7 and iiTmammalsoptimal performance dropping be-
fish 84 83 .83 .83 low .6.
insects 74 49 68 .66 In sum, the SD-GCM seems to be able to account for the
reptiles 75 65 .64 .65 typicality gradient of the animal categories. Moreoveg th

model provides equally good or better optimal fits to the ob-
served typicality ratings than does the standard GCM. While

Table 2 reveals the importance of selecting an appropriatgroviding an acceptable optimal fit is a necessary condition
contrast category set. Forammalsbest results were found  for a model to be taken seriously, deciding which model cap-
when including three contrast categoridstds, insectsand  tyred the data best cannot rely solely on goodness of fitesinc
reptiles For birds, including all other animal categories in jnherent complexity differences between the models wikbi
the SD-GCM prediction produced the best result. For thehe conclusion. Rather, model comparison should depend on
three remaining categories, best results were found when iy measure of generalizability (Myung, 2000), which balance
cluding only one contrast category. Hesh the appropriate the complexity in the models with their ability to fit the em-
contrast category wasammals Forinsectsandreptiles the  pijrical data.® We relied on marginal likelihood as a measure
appropriate contrast category wesh of generalizability, which considers the averaged rathant

In sum, the best results were found including a particulapptimal fit (Kass & Raftery, 1995).
set of contrast categories. For the following analysesyhe
will always include the appropriate set of contrast catisgor
as found in these analyses.

Generalizability. Results of the generalizability analyses
are presented in terms of model weights. The model weight
reflects the relative evidence in favor of a particular model
Comparing the SD-GCM to the GCM given a set of models (Lee, 2004). The evidence for a model

To evaluate the performance of the SD-GCM in its accoun{S quantified through marginal likelihood. To estimate the

of typicality of the five animal categories, we will compare marginal likelihood, we rely on standard non-informativie p

the model to the GCM, i.e. an exemplar model that does no rs for the parameters. For the dimensional weights in both
include contrast information in its account of typicalityle the GCM and SD-GCM, a uniform prior in the interval [0,1]

first consider the goodness of fit of both models. In thes Is used, adding the resriction _the_lt the dimensional we_ight
analyses we establish whether both models are sufficientl ave to sum to 1. For the sensitivity parameter the choice of
able to capture the typicality gradient by optimizing the-co

rior is less straightforward. We therefore ran the analyse
relation across exemplars between observed and modej-baslésmg different priors: A Uniform distribution and an apgfo
typicality.

imation to the Gamma(0,0) distribution (Lunn, Thomas, Best
& Spiegelhalter, 2000). All results were qualitatively rga
INote that, unlike in e.g., regression analyses, adding &asn

category does not necessarily produce better results. depiends Swhile the models that are compared in the present study are
on the structure of the underlying similarity represeitati very similar in terms of number of free parameters and theraaif

2For these analyses, the dimensionality of the underlyipgere  the parameters, differences in complexity can still anisenfdiffer-
sentation was fixed at 4 ences in functional form of the models
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Figure 1: Optimal correlations between observed and mbdséd typicality scores (panel a) and model weights (parferb
the GCM and the SD-GCM.

identical, regardless of the exact choice of the prior. We remore that member will be typical of the category.
port the results of the Gamma prior with upper bound set at We found strong evidence for all categories tested, that
10. The SD-GCM makes use of the same contrast sets fafissimilarity towards the members of contrast categories i
each target category as in the goodness of fit analyses. proved the exemplar based account of typicality of the targe
Figure 1(b) confirms the results of previous analyses: Fotategories. Interestingly, the SD-GCM performed best when
all categories tested, the SD-GCM clearly has better modake included a subset of the available contrast categori@s. F
weights, which indicates that the SD-GCM provides a morehree categoriesfish insectsandreptiles—, one contrast cat-
likely account of the data than does the GCM, also wheregory was found to be optimal. Forammalsthree contrast
considering potential differences in complexity betwele® t categories optimized the account of typicality and thands
models. This strongly suggests that indeed dissimilagty t all other animal categories were added as contrast caésgori
exemplars from (a subset of) contrasting categories censid In sum, to return to our starting example, the present study
ably improves the account of the typicality gradient of thes provides clear-cut evidence that the platypus is consitiere
categories. be an atypical member of teammalcategory, not only be-
. . cause it is not very similar to the membersnedmmals but
General Discussion also because it is similar to membershifds, insectsand
In the present study we have tackled the controversial quegeptiles
tion whether contrast categories co-determine the interna While the present results are in line with a number of find-
graded structure of natural language categories, using conngs in artificial category learning experiments (e.g., Bdv
putational models that have their roots in artificial catggo Love, 2010; Palmeri & Nosofsky, 2001), they directly contra
learning tradition. For five animal categories, we contgdst dict those of Verbeemen et al. (2001), who found no evidence
two exemplar models, the standard GCM and the SD-GCMor contrast category effects in typicality judgments. Tife
in their account of typicality. According the standard GCM, ference in approach most likely can explain this difference
typicality of an exemplar to a category is the summed simi-Verbeemen et al. (2001) used a family resemblance approach
larity to all category members: The more a member is similaiand regression analyses to evaluate the role of contrast cat
to many other members, the more typical it is of the categorygories. In the present study, we applied computational isode
According to the SD-GCM on the other hand, typicality of anthat operate on geometric similarity representations aatl t
exemplar derives from both the summed similarity towardsare potentially better at accounting for typicality. Tresre-
all category members and the summed dissimilarity towardflected in the overall better quality of the optimal corriglas
members of contrast categories: The more a member is sinin the present study as compared to Verbeemen et al. How-
ilar to other members anith the meantimes dissimilar to  ever, it must also be noted that the set of categories tested i
the members of (a set of appropriate) contrast categohies, t the present study was rather small, and restricted to aesing|
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semantic domain. Although our approach has proven to b&oldstone, R., Steyvers, M., & Rogosky, B. (2003). Concep-
sensitive to contrast effects, including more categofiesn tual interrelatedness and caricaturgimory & Cognition
different semantic domains, in the analyses is imperatve t 2003, 31 (2), 16918@1(2), 169-180.

make more general statements regarding the role of contrablampton, J. (1993). Categories and concepts: Theoretical

information. views and inductive data analysis. In I. Van Mechelen,
The choice for the domain of animals was motivated by J. Hampton, R. Michalski, & P. Theuns (Eds.), (pp. 67-95).
the clear hierarchical structure, mutual exclusivity o tat- Academic Press.

egories, and the complete coverage of the domain, in that allampton, J., & Gardiner, M. M. (1983). Measures of internal
possible contrast categories could be added (if we restiiet category structure: A correlational analysis of normative
selves to the animal domain, following the definition of con- data.British Journal of Psychology'4, 491-516.
trast categories). As such, the animal domain was a perfeétass, R. E., & Raftery, A. E. (1995). Bayes factodsurnal
arena to test for contrast effects. The present methodology of the American Statistical Associati®0, 773-795.
can, however, be applied to other semantic domains. ObKomatsu, L. K. (1992). Recent views of conceptual structure
vious candidates are categories that are traditionallgiden Psychonomic Bulletil 12 500-526.
ered contrast categories, e.g., fruits and vegetablesroi-ca Kruskal, J., & Wish, M. (1978).Multidimensional scaling
vores and herbivores. Another interesting candidate domai (E. M. Uslaner, Ed.). SAGE publications, inc.
is artifacts, yet a number of difficulties arise. For one, som Lee, M. (2004). A Bayesian analysis of retention functions.
members of the artifact domain can be classified in multiple Journal of Mathematical Psychologg8, 310-321.
categories (e.g., a knife can be a kitchen utensil, but also bunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000)
weapon, or even a tool). Moreover, it is less clear how far the WinBUGS: A Bayesian modelling framework: Concepts,
artifact domain extends: Are vehicles artifacts? Or clethe  structure, and extensibilityStatistics and Computind.0,
Given that including appropriate contrast categoriessees 325-337.
tial, the extension of a domain requires careful considemat Medin, D., & Schaffer, M. (1978). Context theory of classi-
In a broader perspective, the present findings highlight the fication learning.Psychological Reviey85, 207—-238.
caution that needs to be undertaken when transposing mode\iller, G., & Johnson-Laird, P. (1976)Language and per-
from artificial category learning to natural language catgg ception Harvard University Press.
research. While in the former field a number of excellentMyung, I. J. (2000). The importance of complexity in model
models has been developed that carefully implement differ- selection. Journal of Mathematical Psycholog$4, 190-
ent views on category representation, these models might no 204.
always capture all aspects that are relevantin naturaliagey Nosofsky, R.  (1986). Attention, similarity, and the
categories. For example, the GCM is one of the most influen- identification-categorization relationshipJournal of Ex-
tial and most successful categorization models, but indts a  perimental Psychology: Generdll5 39-57.
count of typicality (Nosofsky, 1988; Voorspoels, Vanpaéme Nosofsky, R. (1988). Similarity, frequency, and categ@y-r
& Storms, 2008) it does not take into account the richness of resentationsJournal of Experimental Psychology: Learn-
the semantic domain in which a natural language category is ing, Memory, and Cognitigri4, 54—65.
embedded. Palmeri, T. J., & Nosofsky, R. (2001). Central tendencies,
extreme points, and prototype enhancement effects in ill-
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chology 7, 573—-605.
References Shepard, R. (1987). Toward a universal law of generaliratio
Ameel, E., & Storms, G. (2006). From prototypes to carica- for psychological scienceScience237, 1317-1323.
tures: Geometrical models for concept typicalipurnal  Stewart, N., & Brown, G. D. A. (2005). Similarity and dis-
of Memory & Languagess, 402-421. similarity as evidence in perceptual categorizatidournal
Davis, T., & Love, B. C. (2010). Memory for category in-  of Mathematical Psycholog¢9, 403-409.
formation is idealized through contrast with competing op-Verbeemen, T., Vanoverberghe, V., Storms, G., & Ruts, W.
tions. Psychological Scieng@1, 234-242. (2001). The role of contrast categories in natural language
De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., Dry, conceptsJournal of Memory and Languagé4, 618-643.
M. J., Voorspoels, W., et al. (2008). Exemplar by featurevoorspoels, W., Vanpaemel, W., & Storms, G. (2008). Ex-
applicability matrices and other dutch normative data for emplars and prototypes in natural language concepts: a
semantic concept8ehavior Research Method#0, 1030- typicality-based evaluationPsychonomic Bulletin & Re-
1048. view, 15, 630-637.
Goldstone, R. (1996). Isolated and interrelated concepts.
Memory & Cognition 24, 608-628.

536



