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Abstract

We examine the influence of contrast categories on the internal
graded membership structure of natural language categories.
To this end we contrast two exemplar models in their account
of typicality: According to the GCM, typicality is the summed
similarity towards all category members. According to the SD-
GCM, typicality is determined by both the summed similarity
towards all category members and the summed dissimilarity
towards members of contrast categories. For five animal cat-
egories, we contrast the SD-GCM and the GCM in their ac-
count of typicality. Results indicate that the internal category
structure can indeed be co-determined by dissimilarity towards
potential contrast categories.

Keywords: concepts; categories; typicality; contrast cate-
gories; computational models

Introduction
The platypus is a mammal. It can, however, hardly be called
a ”good” mammal: It has webbed feet and a beak resembling
that of a duck, it is venomous like insects and reptiles, it lays
eggs as do birds and fish, and it is semi-aquatic, reminding
one of amphibians. A cow, on the other hand, is a good,
a more representative example of a mammal. Previous re-
search suggests that people are in general agreement as to
what are representative, good examples of a certain category
and which members are bad examples. The graded mem-
bership structure, or typicality gradient, can be observedin
a broad range of everyday natural language categories (e.g.,
Hampton & Gardiner, 1983; Rosch & Mervis, 1975).

Traditionally, typicality is defined as similarity towardsa
category representation: A member of a category is typical
to the extent that it is similar to the category representation.
Different views exist on what the category representation con-
sists of. The two most dominant computational theories of
category representation propose that a category is represented
by a prototype (prototype models; e.g., Hampton, 1993), or
the set of previously encountered members (exemplar mod-
els; e.g., Medin & Schaffer, 1978 ). In general, it is found
across an impressive array of conditions, both in artifical cat-
egory learning experiments and natural language categories
that exemplar representations provide the best description of
human categorization. For present purposes we will therefore
focus on exemplar models.

While the graded membership obviously reflects the inter-
nal structure of a category, natural language categories are
not isolated entities, but generally reside in rich semantic do-
mains. Categories vary along a continuum of interrelated-
ness (Goldstone, 1996). For example,mammals, birds and

insectsall are animal categories and clearly are more interre-
lated than the categoriesmammalsanddoorknobs.

The interrelatedness of natural language categories elicits
the following intriguing question: Is the internal membership
structure of a category determined solely by characteristics
internal to the category, or do other, related categories influ-
ence the category structure? In other words, is the the platy-
pus an atypical member ofmammalsbecause of its apparent
dissimilarity towards other mammals, or does its similarity
towards other animal categories, such asbirds and reptiles,
contribute to its atypicality? The present paper is concerned
with exactly this question and attempts to answer it using suc-
cessful exemplar models that have their roots in artificial cat-
egory learning research.

Contrast category effects

The most likely candidates to exert influence on the internal
structure of other categories, are contrast categories. Contrast
categories are considered to be at the same level of abstrac-
tion, belonging to the same immediate superordinate as the
target category. Further, they are contrastive or incompati-
ble in the sense that one and only one word is applicable to
any member of the category (Miller & Johnson-Laird, 1976).
For example,mammalsandbirdsare contrast categories, both
belonging to the same immediate superordinate category and
they are mutually exclusive (an animal cannot be abird and a
mammalat the same time). We use the termcontrast category
effectfor manifestations of influence of contrast categories on
category based tasks.

The notion of contrast category has a long history in nat-
ural language concept representation literature. For exam-
ple, in their influential family resemblance model, Rosch and
Mervis (1975) assume that typicality of a category member
is its similarity to other category members and its dissimilar-
ity to members of contrast categories. Despite the theoretical
importance attributed to contrast categories, little effort has
been invested in demonstrating the independent role of con-
trast categories in natural language categories, and evidence
is ambiguous. In a thorough test of the independent contribu-
tion of feature overlap with the target category and feature
overlap with contrast categories, using both typicality rat-
ings and classification response times, Verbeemen, Vanover-
berghe, Storms, and Ruts (2001) found no evidence for con-
trast effects. In sharp contrast with the findings of Verbeemen
et al., using a geometric prototype model of concept repre-
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sentation, Ameel and Storms (2006) found evidence that pro-
totypes of interrelated categories tend to move away from the
central tendency, in a direction opposite of the contrast cat-
egories. This finding constitutes evidence in favor of con-
trast effects, since the prototype, i.e., the representation of a
category, is under influence of other categories. In sum, the
debate on the role of contrast categories in natural language
categories is far from settled, and in need of further thorough
and systematic examination.

In artificial category learning, empirical demonstrationsof
contrast category effects are more established (e.g., Davis &
Love, 2010; Goldstone, Steyvers, & Rogosky, 2003; Palmeri
& Nosofsky, 2001; Stewart & Brown, 2005) . For example,
Palmeri and Nosofsky (2001) demonstrated that items resid-
ing at the target’s category boundary most remote from other
categories, were classified most accurately. In other words,
clear category members were both high in similarity towards
the target category and low in similarity towards other rele-
vant categories. Goldstone et al. (2003) manipulated the in-
terrelatedness of categories, and demonstrated a clear contrast
category effect when categories are interrelated.

Interestingly, Stewart and Brown (2005) proposed and
tested an exemplar model, the similarity-dissimilarity gener-
alized context model (SD-GCM), that explicitly implements
dissimilarity towards contrast categories as a component that
co-determines category membership together with similarity
to the target category. The SD-GCM is based on the gener-
alized context model (GCM; Nosofsky, 1986), arguably the
most influential exemplar model, but differs from the GCM
in that the GCM only considers the similarity towards stored
category members.

Outline

The present study examines the role of contrast categories in
the representation of natural language categories. We com-
pare two computational exemplar models developed in artifi-
cial category learning – the GCM and the SD-GCM –, in their
account of the typicality gradient of five animal categories.
The two models both provide a different account of the typ-
icality gradient of a category: According to the GCM, the
typicality of a member should depend solely on the summed
similarity towards other category members. According to the
SD-GCM on the other hand, typicality of a category depends
on both similarity towards category members and dissimilar-
ity towards contrast categories. To evaluate whether contrast
categories play a role in the animal categories, we will there-
fore compare the two models on their ability to account for
the observed typicality gradient in the animal categories.

Models

We will give a brief overview of both the standard GCM
and the SD-GCM, adapted to account for typicality in nat-
ural language categories. Both models are exemplar-based,
which means that they rely on stored exemplars to account
for category-based decision. For natural language categories,

exemplars are generally assumed to be defined at the near-
est subordinate member level (e.g., Komatsu, 1992). For
example, the exemplars of the categorymammalsare ’dog’,
’camel’, ’beaver’, etc.

The generalized context model
The GCM (Nosofsky, 1986) is one of the most influential
exemplar models in categorization research. Originally, the
model was developed to account for categorization decisions,
but it has successfully been adapted for typicality judgments
(Nosofsky, 1988). Typicality of an exemplari for categoryA
is calculated by summing the similarity of that exemplar to
all other exemplars in the category:

tiA = ∑
j∈A

si j (1)

wheresi j is the similarity of exemplari to exemplarj. The
similarity between two exemplars is a function of the distance
of the exemplars in an M-dimensional psychological space.
Formally, the scaled psychological distance is given by:

di j =

(

M

∑
k=1

wk
∣
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wherexik andx jk are the coordinates of exemplarsi and j on
dimensionk, andwk is the dimension weight for dimension
k. We relied on Euclidean distances (r=2), which are gener-
ally accepted to be more appropriate for integral dimensions
(Shepard, 1987). Similarity betweeni and j is derived from
the weighted distance:

si j = exp(−cdi j ) (3)

wherec is the sensitivity parameter. The free parameters in
the GCM consist of M-1 dimension weights and the sensitiv-
ity parameter.

The Similarity-Dissimilarity GCM
The SD-GCM (Stewart & Brown, 2005) is an extension of
the GCM, making the same assumptions concerning underly-
ing representation and similarity (i.e., Equations (2) and(3)
still apply). However, whereas the GCM defines typicality of
item i towards categoryA as the sum of the similarity towards
members of that category, the SD-GCM also takes into ac-
count the dissimilarity ofi towards alternative categories in
the same representational space. Formally, the typicalityof
exemplari to categoryA then is given by:

tiA = ∑
j∈A

si j +∑
l /∈A

(1− sil ) (4)

wheresi j andsil are similarities between exemplari andj and
i andl respectively, withj being an element of categoryA, and
l belonging to an alternate category. Typicality to a category
is thus defined by the sum of the similarity towards mem-
bers of the category plus the summed dissimilarity towards
the other elements in the representational space. It is possible
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to restrict the set of contrast categories, such that only a sub-
set of exemplars in the representational space are included.
For example, in accounting for the typicality of members of
the categorymammals, we might choose to restrict the set
of contrast exemplars tobirds andfish, leaving out the other
potential contrast categoriesinsectsandreptiles.

Data
To compare the models, we chose categories in the animal do-
main, that more or less exhaustively cover the whole domain.
In this way, no potential contrast category was accidentally
missed: Each of the categories can be a contrast category for
all other categories, and for each category all possible contrast
categories are included. Moreover, the animal categories per-
fectly adhere to the definition of contrast categories, belong-
ing to the same immediate superordinate category (animals)
and being mutually exclusive.

Data were taken from a recent norm study of De Deyne et
al. (2008). The set contains five animal categories (birds, fish,
insects, mammalsandreptiles), in total containing 129 exem-
plars. Every category consists of 20 to 33 exemplars. We
used goodness-of-example ratings as a measure of typicality
and a derived similarity measure of categories to constructan
underlying stimulus representation.

Typicality
Goodness-of-example ratings taken from De Deyne et al.
(2008). The exemplars of each category were rated by 28
participants for goodness-of-example for the category they
belonged to on a Likert-rating scale ranging from 1 for very
bad examples to 20 for very good examples. The reliability
of the judgments for each category was evaluated by means
of split-half correlations corrected with the Spearman-brown
formula. The estimated reliability ranged from .91 to .98 . In
the present study the typicality ratings are averaged across
participants, resulting in a single typicality score for each
member of a category.

Pairwise similarity
To allow the SD-GCM to test for potential contrast effects, it
is imperative that the exemplars of all five categories are in
the same similarity representation. This requires a measure
of pairwise similarity between all exemplars in the ANIMAL
domain. To this end we derived a pairwise similarity measure
for all pairs of 129 exemplars in the ANIMAL set. De Deyne
et al. (2008) reports an exemplar by feature matrix containing
all exemplars of the animal domain and all features gener-
ated for its exemplars. The animal domain matrix contains
129 exemplars and 765 features. The features were generated
by 1003 participants for the exemplars of the animal domain
and span a broad range of characteristics (e.g., ’has an exter-
nal skeleton’, ’is a carnivore’, ’runs fast’). Four participants
judged the applicability of each feature for each exemplar (1
referring to applicable, 0 referring to not applicable). The es-
timated reliability of these judgments was .83 (see De Deyne
et al., 2008, p. 1042).

To arrive at a pairwise similarity measure for each pair of
animals, we summed the feature-by-exemplarmatrices across
the 4 participants and then correlated the summed feature vec-
tors of all possible exemplar pairs within a domain.

Results
Both models operate on an underlying geometric similarity
representation, in which exemplars are represented as points
in an M-dimensional space and the distance between two
points in the space is inversely related to the similarity of
the exemplars. After describing how the representations were
derived, we will examine how many, and which, contrast cat-
egories are best used for each of the target categories. To
answer the question whether a category’s internal member-
ship structure can be influenced by contrast categories, we
will compare the SD-GCM with the standard GCM, both in
terms of optimal data fit and generalizability of the models.

Similarity representation

To investigate whether it makes sense to derive a geomet-
ric representation for the present stimuli, the percentageof
triplets in the similarity matrix that violate the trianglein-
equality was calculated. Its very low value (.13 %) indi-
cates that the stimuli can in principle be represented spatially.
To generate the geometric similarity representation, the pair-
wise similarity measure for each pair of the 129 ANIMAL
exemplars was used as input in a SAS non-metric MDS-
analysis (SAS, V9). We considered representations in 2 to 6
dimensions. The appropriateness of the geometric represen-
tation was evaluated using stress as a badness-of-fit measure
(Kruskal & Wish, 1978) for the MDS-solutions.

Table 1: Percentage of triplets violating the triangle inequal-
ity (TIV), and stress-values for the MDS-solutions.

TIV Stress-values
2D 3D 4D 5D 6D

0.13% .18 .12 .07 .06 .04

The stress-values in Table 1 suggest the appropriateness of
the MDS-solutions. Following Kruskal & Wish, 1978, solu-
tions with stress-values exceeding .10 are not considered for
further analyses, leaving representations with Dimensionality
from 4 to 6 for further analysis.

Identifying contrast categories

The notion of contrast categories refers to categories thatare
mutually exclusive and organized under the same superor-
dinate term. Thus, for the animal categories, each category
can have all other animal categories as potential contrast cat-
egories. Before comparing the SD-GCM to the GCM, we will
therefore examine for each concept which are the appropriate
contrast categories, and how many contrast categories should
be included in the SD-GCM. For example, for the category
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mammalsthe contrast category can bebirds, fish, insectsor
mammals, or any combination of these four categories.

To identify the appropriate set of contrast categories, we
optimized the correlation of the observed typicality ratings
with the SD-GCM-based typicality ratings for the category
members, varying the contrast categories included in the
model. We first optimized the SD-GCM’s typicality predic-
tions using only one contrast category. Formammals, the best
contrast category wasbirds. We then allowed two contrast
categories,birds being one of the two, the second category
being the second best contrast category of step one.1. This
procedure was repeated until all four contrast categories were
included. Analyses2 were performed for all five target cate-
gories and the results are presented in Table 2.

Table 2: Optimal correlations between observed typicality
ratings and the SD-GCM-based typicality ratings.

category n of contrast categories
1 2 3 4

mammals .80 .81 .87 .83
birds .88 .88 .89 .89
fish .84 .83 .83 .83
insects .74 .49 .68 .66
reptiles .75 .65 .64 .65

Table 2 reveals the importance of selecting an appropriate
contrast category set. Formammals, best results were found
when including three contrast categories:birds, insectsand
reptiles. For birds, including all other animal categories in
the SD-GCM prediction produced the best result. For the
three remaining categories, best results were found when in-
cluding only one contrast category. Forfish, the appropriate
contrast category wasmammals. For insectsandreptiles, the
appropriate contrast category wasfish.

In sum, the best results were found including a particular
set of contrast categories. For the following analyses, thewe
will always include the appropriate set of contrast categories
as found in these analyses.

Comparing the SD-GCM to the GCM
To evaluate the performance of the SD-GCM in its account
of typicality of the five animal categories, we will compare
the model to the GCM, i.e. an exemplar model that does not
include contrast information in its account of typicality.We
first consider the goodness of fit of both models. In these
analyses we establish whether both models are sufficiently
able to capture the typicality gradient by optimizing the cor-
relation across exemplars between observed and model-based
typicality.

1Note that, unlike in e.g., regression analyses, adding a contrast
category does not necessarily produce better results. Thisdepends
on the structure of the underlying similarity representation.

2For these analyses, the dimensionality of the underlying repre-
sentation was fixed at 4

Goodness of fit. Results of the model fit analyses are pre-
sented in Figure 1(a). For each of the five animal categories,
we calculated the optimal correlation between observed typ-
icality ratings of a category’s members and the model-based
typicality scores of the members, derived from the GCM and
the SD-GCM. For the SD-GCM, we included the most ap-
propriate set of contrast categories for each target category,
following the findings of the previous analyses. The optimal
correlations are presented as a function of the dimensionality
of the underlying stimulus representation.

The SD-GCM captures the observed typicality gradient of
the categories very well, with optimal correlations between
observed and model-based typicality scores rising well above
.8 for stimulus representations of Dimensionality 6 (.88 aver-
aged across categories). Forinsectsin Dimensionalities 4 and
5, andreptilesin Dimensionality 4, the optimal correlation is
just under .8. In contrast, the standard GCM has more dif-
ficulty in providing a good account of the typicality ratings.
While for birdsandfishthe optimal correlations are good, ris-
ing above .7 and .8 respectively, the model has difficulty in the
categoriesinsectsandreptiles, optimal performance dropping
below .7 and inmammals, optimal performance dropping be-
low .6.

In sum, the SD-GCM seems to be able to account for the
typicality gradient of the animal categories. Moreover, the
model provides equally good or better optimal fits to the ob-
served typicality ratings than does the standard GCM. While
providing an acceptable optimal fit is a necessary condition
for a model to be taken seriously, deciding which model cap-
tured the data best cannot rely solely on goodness of fit, since
inherent complexity differences between the models will bias
the conclusion. Rather, model comparison should depend on
a measure of generalizability (Myung, 2000), which balances
the complexity in the models with their ability to fit the em-
pirical data.3 We relied on marginal likelihood as a measure
of generalizability, which considers the averaged rather than
optimal fit (Kass & Raftery, 1995).

Generalizability. Results of the generalizability analyses
are presented in terms of model weights. The model weight
reflects the relative evidence in favor of a particular model,
given a set of models (Lee, 2004). The evidence for a model
is quantified through marginal likelihood. To estimate the
marginal likelihood, we rely on standard non-informative pri-
ors for the parameters. For the dimensional weights in both
the GCM and SD-GCM, a uniform prior in the interval [0,1]
is used, adding the restriction that the dimensional weights
have to sum to 1. For the sensitivity parameter the choice of
prior is less straightforward. We therefore ran the analyses
using different priors: A Uniform distribution and an approx-
imation to the Gamma(0,0) distribution (Lunn, Thomas, Best,
& Spiegelhalter, 2000). All results were qualitatively nearly

3While the models that are compared in the present study are
very similar in terms of number of free parameters and the nature of
the parameters, differences in complexity can still arise from differ-
ences in functional form of the models
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Figure 1: Optimal correlations between observed and model-based typicality scores (panel a) and model weights (panel b) for
the GCM and the SD-GCM.

identical, regardless of the exact choice of the prior. We re-
port the results of the Gamma prior with upper bound set at
10. The SD-GCM makes use of the same contrast sets for
each target category as in the goodness of fit analyses.

Figure 1(b) confirms the results of previous analyses: For
all categories tested, the SD-GCM clearly has better model
weights, which indicates that the SD-GCM provides a more
likely account of the data than does the GCM, also when
considering potential differences in complexity between the
models. This strongly suggests that indeed dissimilarity to
exemplars from (a subset of) contrasting categories consider-
ably improves the account of the typicality gradient of these
categories.

General Discussion
In the present study we have tackled the controversial ques-
tion whether contrast categories co-determine the internal
graded structure of natural language categories, using com-
putational models that have their roots in artificial category
learning tradition. For five animal categories, we contrasted
two exemplar models, the standard GCM and the SD-GCM
in their account of typicality. According the standard GCM,
typicality of an exemplar to a category is the summed simi-
larity to all category members: The more a member is similar
to many other members, the more typical it is of the category.
According to the SD-GCM on the other hand, typicality of an
exemplar derives from both the summed similarity towards
all category members and the summed dissimilarity towards
members of contrast categories: The more a member is sim-
ilar to other members andin the meantimeis dissimilar to
the members of (a set of appropriate) contrast categories, the

more that member will be typical of the category.
We found strong evidence for all categories tested, that

dissimilarity towards the members of contrast categories im-
proved the exemplar based account of typicality of the target
categories. Interestingly, the SD-GCM performed best when
we included a subset of the available contrast categories. For
three categories –fish, insectsandreptiles–, one contrast cat-
egory was found to be optimal. Formammals, three contrast
categories optimized the account of typicality and forbirds
all other animal categories were added as contrast categories.
In sum, to return to our starting example, the present study
provides clear-cut evidence that the platypus is considered to
be an atypical member of themammalcategory, not only be-
cause it is not very similar to the members ofmammals, but
also because it is similar to members ofbirds, insectsand
reptiles.

While the present results are in line with a number of find-
ings in artificial category learning experiments (e.g., Davis &
Love, 2010; Palmeri & Nosofsky, 2001), they directly contra-
dict those of Verbeemen et al. (2001), who found no evidence
for contrast category effects in typicality judgments. Thedif-
ference in approach most likely can explain this difference.
Verbeemen et al. (2001) used a family resemblance approach
and regression analyses to evaluate the role of contrast cate-
gories. In the present study, we applied computational models
that operate on geometric similarity representations and that
are potentially better at accounting for typicality. This is re-
flected in the overall better quality of the optimal correlations
in the present study as compared to Verbeemen et al. How-
ever, it must also be noted that the set of categories tested in
the present study was rather small, and restricted to a single
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semantic domain. Although our approach has proven to be
sensitive to contrast effects, including more categories,from
different semantic domains, in the analyses is imperative to
make more general statements regarding the role of contrast
information.

The choice for the domain of animals was motivated by
the clear hierarchical structure, mutual exclusivity of the cat-
egories, and the complete coverage of the domain, in that all
possible contrast categories could be added (if we restrictour-
selves to the animal domain, following the definition of con-
trast categories). As such, the animal domain was a perfect
arena to test for contrast effects. The present methodology
can, however, be applied to other semantic domains. Ob-
vious candidates are categories that are traditionally consid-
ered contrast categories, e.g., fruits and vegetables or carni-
vores and herbivores. Another interesting candidate domain
is artifacts, yet a number of difficulties arise. For one, some
members of the artifact domain can be classified in multiple
categories (e.g., a knife can be a kitchen utensil, but also a
weapon, or even a tool). Moreover, it is less clear how far the
artifact domain extends: Are vehicles artifacts? Or clothes?
Given that including appropriate contrast categories is essen-
tial, the extension of a domain requires careful consideration.

In a broader perspective, the present findings highlight the
caution that needs to be undertaken when transposing models
from artificial category learning to natural language category
research. While in the former field a number of excellent
models has been developed that carefully implement differ-
ent views on category representation, these models might not
always capture all aspects that are relevant in natural language
categories. For example, the GCM is one of the most influen-
tial and most successful categorization models, but in its ac-
count of typicality (Nosofsky, 1988; Voorspoels, Vanpaemel,
& Storms, 2008) it does not take into account the richness of
the semantic domain in which a natural language category is
embedded.
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