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Abstract

Philosophers and linguists have suggested that the meaning of
a concept can be represented by a rule or function that picks
out examples of the concept across all possible worlds. We
turn this idea into a computational model of concept learning,
and demonstrate that this model helps to account for two as-
pects of human learning. Our first experiment explores how
humans learn relational concepts such as “taller” that are de-
fined with respect to a context set. Our second experiment ex-
plores modal inferences, or inferences about whether states of
affairs are possible or impossible. Our model accounts for the
results of both experiments, and suggests that possible worlds
semantics can help to explain how humans learn and use con-
cepts.

Keywords: concepts and categories; modal reasoning; possi-
ble worlds semantics

Knowledge about concepts and categories must support

many kinds of operations. Consider simple relational con-

cepts such as “taller” or ‘heavier.” A learner who has acquired

these concepts should be able to use them for classification:

given a pair of objects, she should be able to pick out the

member of the pair that is taller than the other. The learner

may also be able to solve the problem of generation: for ex-

ample, she may be able to draw a pair of objects where one

is taller than the other. The learner may even be able to use

these concepts for modal reasoning, or reasoning about pos-

sibility and necessity. She may recognize, for example, that

no possible pair (x, y) can satisfy the requirement that x is

taller than y and that y is taller than x, but that it is possible

for x to be taller than y and y to be heavier than x. The three

problems just introduced demand increasingly more from the

learner: classification requires that she supply one or more

category labels, generation requires that she generate one or

more instance of a concept, and modal reasoning requires that

she make an inference about all possible instances of a con-

cept, including many that have never been observed. This

paper describes a formal model of concept learning that helps

to explain how people solve all three of these problems, al-

though we focus here on classification and modal reasoning.

Our model relies on possible worlds semantics, an ap-

proach that is often discussed by philosophers and lin-

guists (Kripke, 1963; Lewis, 1973) but has received less at-

tention in the psychological literature. The worlds we con-

sider are much simpler than those typically discussed in the

philosophical literature, and we focus on problems where

each world includes a handful of objects that vary along

a small number of dimensions. Figure 1 shows an exam-

ple where the world under consideration is represented as a

solid rectangle, and where three possible worlds are shown as

dashed rectangles. We explore the idea that a concept corre-

sponds to a rule represented in a compositional language of

x is a C ↔ x is identical to some other object

Figure 1: One actual world (solid rectangle) and three possi-

ble worlds (dashed rectangles). Each world contains between

two and four objects, and the black triangles indicate which

objects are instances of concept C. The geometric objects

used for this illustration and for our experiments are based on

stimuli developed by Kemp and Jern (2009).

thought—for example, the rule in Figure 1 picks out dupli-

cate objects. Given this setup, we explore how concepts can

be learned from observing a small number of worlds, and how

these concepts can be used to decide whether a statement is

possible (true in some possible worlds) or necessary (true in

all possible worlds).

Our approach builds on previous accounts of concept learn-

ing, and is related most closely to previous rule-based mod-

els that rely on logic as a representation language (Nosof-

sky, Palmeri, & McKinley, 1994; Feldman, 2000; Good-

man, Tenenbaum, Feldman, & Griffiths, 2008; Kemp & Jern,

2009). Most of these models, however, do not allow the cate-

gory label of an object to depend on its context, or the world

to which it belongs. For example, models of Boolean concept

learning (Feldman, 2000) cannot capture relational concepts

such as “duplicate,” since Boolean logic cannot express rules

that rely on comparisons between objects. Previous accounts

of relational categorization and analogical reasoning (Gen-

tner, 1983; Doumas, Hummel, & Sandhofer, 2008) often

work with richer representation languages, and can therefore

capture the idea that the category label of an object may de-

pend on its role within the world (or configuration) to which

it belongs. These accounts, however, are limited in another

respect. In most cases they are able to compare two or more

worlds that are provided as input, but they cannot generate

new worlds, or account for inferences that require computa-

tions over the space of all possible worlds. In particular, we

believe that previous psychological models will not account

for the modal inferences that we explore.

Although previous accounts of concept learning have not
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Table 1: Templates used to construct a hypothesis space of

rules. An instance of a given template can be created by

choosing an element from each set enclosed in braces, re-

placing each occurrence of Di with a dimension (e.g. D1)

and replacing each occurrence of vk with a value (e.g. 1).

focused on modal inferences, these inferences have been

studied in several other contexts (Osherson, 1977; Nichols,

2006). Our approach is related most closely to the men-

tal model approach developed by Johnson-Laird and col-

leagues (Johnson-Laird, 1982; Bell & Johnson-Laird, 1998;

Evans, Handley, Harper, & Johnson-Laird, 1999), who ar-

gue, for example, that a proposition is rated as possible if

a reasoner can construct a mental model (or world) which

makes the proposition true. The mental models approach is

broadly compatible with our own, and both can be seen as at-

tempts to explore the psychological implications of possible

worlds semantics. There are, however, at least two impor-

tant differences between these approaches. First, the mental

model account of modal reasoning has focused almost exclu-

sively on deductive inferences, but we focus on inductive in-

ferences, or inferences to conclusions that do not follow with

certainty given the available evidence. Second, mental model

approaches are often contrasted with approaches that rely on

rules expressed in some compositional language of thought.

Our approach relies critically on a representation language,

and we show that a syntactic prior over expressions in this

language is a useful way to capture human inductive biases.

The next section introduces our computational model and

we then evaluate it in two behavioral experiments. Our first

experiment demonstrates that our model helps to explain how

people learn simple relational concepts such as “duplicate.”

Our second experiment focuses on modal reasoning, and we

ask participants to learn two concepts then to decide whether

statements about these concepts are possible or impossible.

A possible worlds account of concept learning

Philosophers and psychologists often distinguish between

two aspects of a concept’s meaning—its extension and its in-

tension. The extension of a concept is the set of objects in the

actual world that are instances of the concept. For example,
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Figure 2: (a) A graphical model that can be used for learning

a rule r. World wi is generated given rule r and count vector

ni which specifies the size of wi and the number of elements

in wi that must be assigned positive labels by rule r. Label

vector li indicates which members of wi are assigned posi-

tive labels by rule r. (b) Graphical model for Experiment 2.

Rules rA and rB capture two concepts that may or may not

be different. Hypothesis h indicates whether rB is identical

to rA or drawn independently from P (r).

the extension of the concept C in Figure 1 includes the two

members of the actual world that are marked with black trian-

gles. The extension of a concept may be the empty set—for

example, in Figure 1, the extension of the concept “black ob-

jects” is the empty set, since none of the objects in the actual

world is black.

Two concepts may have the same extension in a given

world but may nevertheless be different. For example, the

concepts of unicorns and griffins have the same extension in

our world—the empty set—but intuition suggests that these

concepts are nevertheless different. One reason why the con-

cepts must be different is that we can imagine possible worlds

which include both unicorns and griffins, and where the ex-

tensions of these concepts are different. The intension of a

concept includes the information that allows us to pick out

its extension in every possible world—for example, know-

ing that unicorns have horns might help to decide which ob-

jects in a given world qualify as unicorns. Formal approaches

to semantics often formalize the intension of a concept as a

function that picks out its extension in every possible world,

and we adopt this perspective here. These functions could be

represented in many different ways, and our working hypoth-

esis is that intensions correspond to rules that are mentally

represented in a language of thought. For example, the rule

in Figure 1 serves to pick out an extension (i.e. the set of Cs)

in each possible world.

The rule in Figure 1 is primarily expressed in English, but

the representation language that we will explore is a simple

version of predicate logic. Table 1 shows three templates that

can be used to generate the rules we consider. In all cases,

C(·) is the concept of interest, and each possible rule can

be used to decide whether an object x is an instance of C.

Di represents the ith dimension and vk represents the kth

value along a dimension: for example, if D1 is the dimension

of color and value v1 along this dimension indicates black,

then the rule ∀x C(x) ↔ D1(x) = v1 indicates that x is
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a C if and only if x is black. The language includes four

Boolean connectives: and (∧), or (∨), if (→), and if and only

if (↔). The language also includes four relations for com-

paring values along the dimensions (=, 6=, <,>), and incor-

porates quantification over the objects within a world (∀y)

and over dimensions (∀Q). The three templates in Table 1

capture all simple rules with at most one instance of quantifi-

cation over objects and at most one instance of quantification

over dimensions. Our hypothesis space of rules includes all

instances of the templates in Table 1 along with all conjunc-

tions that can be generated by combining up to three of these

instances. Note that some rules have identical intensions—in

other words, they pick out the same set of objects in each pos-

sible world. We strip out rules with identical intensions, and

include only the shortest rule for any given intension.

We now develop a probabilistic framework for learning and

using intensions. Suppose that C is a concept of interest,

and that rule r captures the intension of C. Suppose that a

learner observes one or more worlds wi, and let li be a bi-

nary label vector that indicates which objects in world wi are

instances of C. Given these observations, the posterior distri-

bution P (r|w1:k, l1:k) will represent an ideal learner’s beliefs

about the rule r after observing k worlds and label vectors for

these worlds. We work with the posterior distribution induced

by the graphical model in Figure 2a.

We assume that rule r is generated from a prior P (r)
that favors simple rules, and use a description-length prior

P (r) ∝ λ|r|, where |r| is the number of symbols in rule r.

For all applications of the model we set λ = 0.5. To gen-

erate a world wi, we first generate a vector ni that specifies

the total number of objects in the world and the number that

are instances of C, then sample uniformly at random among

all worlds that are consistent with ni and r. Our assump-

tion that wi is generated given ni is a natural extension of

previous accounts of concept learning which assume that the

examples observed are randomly sampled from the set of pos-

itive instances (Tenenbaum & Griffiths, 2001). For simplicity,

we assume that worlds have at most four objects, and use a

uniform prior P (ni) over all count vectors that satisfy this

constraint. Finally, we assume that each label vector li is de-

terministically generated given world wi and rule r. The joint

distribution over all variables can be summarized as follows:

P (r) ∝ λ|r|

P (ni) ∝ 1

P (wi|r, ni) =

{ 1
c(r,ni)

if ni is consistent with wi and r

0 otherwise

P (li|r, wi) =

{

1 if li is consistent with wi and r

0 otherwise

where c(r, ni) is the number of worlds that are consistent with

ni and r.

Computing the predictions of our model will be chal-

lenging in general, but for all applications in this paper we

can carry out inference by enumerating the entire hypothe-

sis space of rules and the entire set of possible worlds. Fu-

ture work can attempt to develop sampling methods that effi-

ciently compute the predictions of the model, but before be-

ginning this enterprise it is important to explore whether our

approach makes accurate predictions about human behavior.

The next two sections describe experiments that highlight two

distinctive aspects of our model.

Experiment 1: Learning relational concepts

Allowing for multiple worlds provides a natural way to han-

dle relational concepts such as “biggest” or “duplicate” that

depend on the world or the set of objects currently under con-

sideration. Our first experiment explores how people learn

several basic concepts, including three relational concepts.

All of our participants are adults, but developmental psychol-

ogists have established that even young children are able to

learn simple relational concepts. The concepts we consider

are based on a developmental study of Smith (1984), and we

demonstrate that our model is able to learn all of the concepts

that she discusses.

Materials and Method. 14 adults participated for course

credit and interacted with a custom-built computer interface.

Participants were told that they would be learning about the

preferences of six aliens (i.e. learning six concepts). For each

alien three worlds containing three objects each were simulta-

neously presented on screen. The worlds used for each alien

are shown in Figure 3, where each column corresponds to a

world. The first five concepts are loosely inspired by the con-

cepts studied by Smith (1984). For example, Smith’s version

of 3d used worlds that included objects such as a green plane,

a red apple, and a yellow pig, and the underlying concept was

“green plane.” The objects in each world were arranged ver-

tically on screen, and were initially ordered as shown in Fig-

ure 3, where each column corresponds to a world. Within

each world, the objects could be dragged around and re-

ordered, and participants were invited to sort them however

they liked.

For all six aliens, the first two worlds had labels indicating

whether or not the alien liked each object. Participants were

asked to predict the alien’s preferences by choosing a binary

label for each object in the third world. After labeling the

third world, participants provided a short written description

of the current alien’s preferences. The order of the six aliens

(i.e. concepts) was counterbalanced across participants, and

the roles of the three dimensions (ball position, color, and

size) were also counterbalanced.

Model predictions. Let w1:3 represent the three worlds

and l1:2 represent the two observed label vectors. We com-

pute the distribution P (l3|w1:3, l1:2) by integrating over all

possible rules r. For each concept, the black bars in Figure 3

show the posterior probability that each object in the third

world is an instance of the concept.

Results. For each concept the white bars in Figure 3 show

the proportion of participants who chose positive labels for

the objects in the third world. Responses were consistent in
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0 0.5 1
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0 0.5 1
probability

Human
Model
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probability

(a) C: color = v3 (c) C: ball matches some other object

(f) C: ball position intermediate

(b) C: ball = v3

(e) C: duplicate(d) C: ball = v3 ∧ color = v3 ∧ size = v5

Figure 3: Stimuli and results for Experiment 1. In each panel, the three columns show three worlds that include three objects

each. The objects in the first two worlds have category labels, and the bar charts show model predictions and human inferences

about the labels of the objects in the third world. The black bars show probabilities generated by the model, and the white bars

show the proportion of participants that chose a positive label for a given object.

all cases with the predictions of the model. If we create binary

prediction vectors by thresholding the model predictions at

0.5, then 10 or more of the 14 responses for each concept

were identical to the model predictions.

The written descriptions provided further evidence that

participants were able to infer sensible rules and the concept

descriptions in Figure 3 are based on the most common de-

scriptions provided in the experiment. In several cases, how-

ever, participants provided rules that were more specific than

the descriptions in Figure 3. For example, in condition 3a,

one participant indicated that the alien liked small objects of

a certain color.

Experiment 1 explored how participants learn relational

concepts then apply them in new contexts, but did not address

the topic of modal reasoning. Three worlds were shown on

screen for each problem, and participants were not required

to think about alternative worlds that they had not observed.

Our second experiment focuses directly on modal reasoning,

and uses a task where participants must go beyond the hand-

ful of worlds observed on screen and make inferences about

the full space of possible worlds.

Experiment 2: Modal reasoning

Understanding the meaning of multiple concepts should al-

low a learner to predict which relationships between these

concepts are possible and which are necessary. For example,

any mother must also be a woman, and it is possible for the

same person to be a mother and a grandmother. In our second

experiment we asked participants to learn two concepts CA

and CB then asked them to rate the possibility of statements

involving these concepts.

Materials and Method. 15 adults participated for course

credit and interacted with the same computer interface devel-

oped for Experiment 1. Participants were told that they would

be learning about the preferences of five pairs of aliens. For

each pair they were shown four worlds with four objects, and

these worlds are shown as columns in Figure 4. The objects

in the first two worlds were labeled to indicate the prefer-

ences of the first alien, and the objects in the remaining two

worlds were labeled to indicate the preferences of the second

alien. After observing these worlds, participants were asked

to provide written descriptions of the preferences of the two

aliens. Participants were then asked to rate the possibility

of the six statements shown at the bottom right of Figure 4.

These ratings were elicited using questions that referred to

the preferences of the two aliens rather than concepts CA and

CB : for example, ratings for statement six were based on the

question “Do Mr. X and Mr. Y have identical preferences?,”

where X and Y were names for the two aliens in the current

pair. All ratings were provided on a seven point scale with

the endpoints labeled “Probably not” and “Probably.” For all

cases except statement 6, participants who chose a rating of 4

or above were asked to generate an example of a four-object

world that satisfied the constraints in the statement. These

worlds were generated using buttons that could add or remove

objects from the screen, and could adjust the appearance of

the objects along each of the three dimensions. The presenta-

tion order of the five pairs of concepts and the six possibility

statements was counterbalanced across participants, and the

role of the three dimensions was also counterbalanced.

Model predictions. Let w1:4 represent the four worlds and

lA1:2 and lB3:4 represent the label vectors for these worlds. Our

approach to the task is captured by the graphical model in Fig-

ure 2b, where hypothesis h = 1 if rules rA and rB are identi-

cal and h = 0 if the rules are drawn independently from P (r).
If rules rA and rB are known with certainty, than each of the
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(e) CA: ball = v3, CB : ball = v3 ∧ color = v1 ∧ size = v4

(b) CA: ball = v4, CB : color = v2

(d) CA: duplicate, CB : singleton(c) CA = CB : ball = v4 ∧ color = v4 ∧ size = v5

(a) CA: ball = v4, CB : ball = v2

Figure 4: Stimuli and results for Experiment 2. In each panel the four columns show four worlds that include four objects each.

The objects in the first two worlds are labeled with respect to concept CA (upper right triangles), and the remaining two worlds

are labeled with respect to concept CB (lower right triangles). The bar charts show model predictions and human inferences

about the six questions shown at the bottom right of the figure. Model predictions (black bars) are probabilities, and human

inferences (white bars) are shown as mean judgments on a 7 point scale. Error bars show the standard error of the mean.

six statements in Figure 4 is either true or false—for example,

statement 1 is true if there is at least one world with an object

assigned a positive label by both rA and rB . We compute the

posterior probability of each statement using a uniform prior

P (h) and integrating out rules rA and rB and hypothesis h.

If desired, each of the six statements could be expressed in

a logical language with operators that express necessity and

possibility, and our approach could be combined with an ex-

plicit formal semantics for modal logic (Kripke, 1963). This

degree of formalization does not seem useful for our current

purposes, but may be useful in other contexts.

For each pair of categories, the black bars in Figure 3 show

the posterior probabilities of the six possibility statements.

Note that each pair of categories leads to a qualitatively dif-

ferent pattern of predictions.

Results. The white bars in Figure 4 show average human

ratings for the six possibility statements. Responses for the

five different pairs of categories are qualitatively different,

and in all cases there is a relatively close correspondence be-

tween human ratings and model predictions.

Consider first the difference between pairs 4a and 4b. Both

pairs include concepts that correspond to single values along

a dimension: for example, concept CA in both cases picks

out objects with value v4 along the ball position dimension.

In pair 4a, concept CB corresponds to a different value along

the ball position dimension, which means that it is impossible

for an object to simultaneously be a CA and a CB . The first

bar in Figure 4a suggests that participants were able to make

this inference. In pair 4b, however, concept CB corresponds

to a value along a different dimension, and participants were

confident that there could be an object that was a CA and

a CB . Note that participants never observed an object with

labels for both concepts, which means that they had to go

beyond their direct experience when making inferences about

the compatibility of the two concepts.

Pairs 4c and 4e form a second natural comparison set. In
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both cases, concept CB includes only objects with a specific

value along each dimension. In 4c, concept CA specifies

the same values along each dimension, and participants were

confident that concepts CA and CB were identical (bar 6). In

4e, concept CA specifies values along only one dimension,

and the CA objects are a superset of the CB objects. Partici-

pants inferred that CA and CB are different concepts (bar 6),

that every CB is a CA (bar 4), but that some CA objects are

not CB objects (bar 5).

The main discrepancy between model predictions and hu-

man responses occurs for pair 4d and the first possibility judg-

ment. The model infers that CA includes duplicates and CB

includes singletons, and concludes that no object can be both

a CA and a CB . Eight out of 15 participants made a similar

inference, and chose ratings of 2 or below on a seven point

scale, but five participants chose ratings of 6 or above, pro-

ducing a mean rating of around 3.5. Many of these five par-

ticipants gave complex disjunctive definitions when describ-

ing concept CA, suggesting that they may have focused on

the individual characteristics of the positive examples with-

out reflecting on the relationships of these positive examples

to the other objects in the world.

Although we know of no previous studies that combine

modal reasoning and concept learning, previous work on

modal reasoning has explored how people arrive at conclu-

sions given premises supplied by the experimenter. For ex-

ample, given that all artists are beekeepers and that Lisa is

a beekeeper, it is possible that Lisa is an artist (Evans et al.,

1999). The mental models approach can account for infer-

ences of this kind, but note that our task is rather more chal-

lenging. We explored cases where the “premises” for modal

reasoning (i.e. the meanings of the concepts) are not supplied

but must instead be learned from a small number of examples.

In order to handle the inductive aspect of our task, a computa-

tional approach must incorporate a human-like inductive bias,

and the mental models approach is not well-equipped to sat-

isfy this criterion. Our results, however, suggest that human

inferences can be accurately predicted by combining a pos-

sible worlds framework with a description length prior over

logical rules.

Conclusion

We developed a model of concept learning that relies on the

notion of possible worlds and evaluated it in two experiments.

Our first experiment suggests that our approach helps to ex-

plain how humans learn relational concepts such as “bigger”

or “duplicate.” Our second experiment demonstrates that hu-

mans readily make modal inferences about concepts, and il-

lustrates that a possible worlds approach can account for this

ability.

Although modal reasoning is an especially natural appli-

cation for a possible worlds approach, the same approach

should help to illuminate other aspects of human learning and

reasoning. Philosophers and linguists have used the possi-

ble worlds framework to clarify the meaning of counterfac-

tual statements (Lewis, 1973), and to characterize the con-

tent of claims about belief, desire, and knowledge (Hintikka,

1962). The psychological implications of these projects have

received relatively little attention, but the possible worlds ap-

proach is a promising way to study the many different ways

in which human concepts are put to use.
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