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Abstract

Philosophers and linguists have suggested that the meaning of
a concept can be represented by a rule or function that picks
out examples of the concept across all possible worlds. We
turn this idea into a computational model of concept learning,
and demonstrate that this model helps to account for two as-
pects of human learning. Our first experiment explores how
humans learn relational concepts such as “taller” that are de-
fined with respect to a context set. Our second experiment ex-
plores modal inferences, or inferences about whether states of
affairs are possible or impossible. Our model accounts for the
results of both experiments, and suggests that possible worlds
semantics can help to explain how humans learn and use con-
cepts.

Keywords: concepts and categories; modal reasoning; possi-
ble worlds semantics

Knowledge about concepts and categories must support
many kinds of operations. Consider simple relational con-
cepts such as “taller” or ‘heavier.” A learner who has acquired
these concepts should be able to use them for classification:
given a pair of objects, she should be able to pick out the
member of the pair that is taller than the other. The learner
may also be able to solve the problem of generation: for ex-
ample, she may be able to draw a pair of objects where one
is taller than the other. The learner may even be able to use
these concepts for modal reasoning, or reasoning about pos-
sibility and necessity. She may recognize, for example, that
no possible pair (z,y) can satisfy the requirement that z is
taller than y and that y is taller than x, but that it is possible
for x to be taller than y and y to be heavier than z. The three
problems just introduced demand increasingly more from the
learner: classification requires that she supply one or more
category labels, generation requires that she generate one or
more instance of a concept, and modal reasoning requires that
she make an inference about all possible instances of a con-
cept, including many that have never been observed. This
paper describes a formal model of concept learning that helps
to explain how people solve all three of these problems, al-
though we focus here on classification and modal reasoning.

Our model relies on possible worlds semantics, an ap-
proach that is often discussed by philosophers and lin-
guists (Kripke, 1963; Lewis, 1973) but has received less at-
tention in the psychological literature. The worlds we con-
sider are much simpler than those typically discussed in the
philosophical literature, and we focus on problems where
each world includes a handful of objects that vary along
a small number of dimensions. Figure 1 shows an exam-
ple where the world under consideration is represented as a
solid rectangle, and where three possible worlds are shown as
dashed rectangles. We explore the idea that a concept corre-
sponds to a rule represented in a compositional language of
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xis a C' < zx is identical to some other object

Figure 1: One actual world (solid rectangle) and three possi-
ble worlds (dashed rectangles). Each world contains between
two and four objects, and the black triangles indicate which
objects are instances of concept C. The geometric objects
used for this illustration and for our experiments are based on
stimuli developed by Kemp and Jern (2009).

thought—for example, the rule in Figure 1 picks out dupli-
cate objects. Given this setup, we explore how concepts can
be learned from observing a small number of worlds, and how
these concepts can be used to decide whether a statement is
possible (true in some possible worlds) or necessary (true in
all possible worlds).

Our approach builds on previous accounts of concept learn-
ing, and is related most closely to previous rule-based mod-
els that rely on logic as a representation language (Nosof-
sky, Palmeri, & McKinley, 1994; Feldman, 2000; Good-
man, Tenenbaum, Feldman, & Griffiths, 2008; Kemp & Jern,
2009). Most of these models, however, do not allow the cate-
gory label of an object to depend on its context, or the world
to which it belongs. For example, models of Boolean concept
learning (Feldman, 2000) cannot capture relational concepts
such as “duplicate,” since Boolean logic cannot express rules
that rely on comparisons between objects. Previous accounts
of relational categorization and analogical reasoning (Gen-
tner, 1983; Doumas, Hummel, & Sandhofer, 2008) often
work with richer representation languages, and can therefore
capture the idea that the category label of an object may de-
pend on its role within the world (or configuration) to which
it belongs. These accounts, however, are limited in another
respect. In most cases they are able to compare two or more
worlds that are provided as input, but they cannot generate
new worlds, or account for inferences that require computa-
tions over the space of all possible worlds. In particular, we
believe that previous psychological models will not account
for the modal inferences that we explore.

Although previous accounts of concept learning have not
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Table 1: Templates used to construct a hypothesis space of
rules. An instance of a given template can be created by
choosing an element from each set enclosed in braces, re-
placing each occurrence of D; with a dimension (e.g. D;)
and replacing each occurrence of vy with a value (e.g. 1).
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focused on modal inferences, these inferences have been
studied in several other contexts (Osherson, 1977; Nichols,
2006). Our approach is related most closely to the men-
tal model approach developed by Johnson-Laird and col-
leagues (Johnson-Laird, 1982; Bell & Johnson-Laird, 1998;
Evans, Handley, Harper, & Johnson-Laird, 1999), who ar-
gue, for example, that a proposition is rated as possible if
a reasoner can construct a mental model (or world) which
makes the proposition true. The mental models approach is
broadly compatible with our own, and both can be seen as at-
tempts to explore the psychological implications of possible
worlds semantics. There are, however, at least two impor-
tant differences between these approaches. First, the mental
model account of modal reasoning has focused almost exclu-
sively on deductive inferences, but we focus on inductive in-
ferences, or inferences to conclusions that do not follow with
certainty given the available evidence. Second, mental model
approaches are often contrasted with approaches that rely on
rules expressed in some compositional language of thought.
Our approach relies critically on a representation language,
and we show that a syntactic prior over expressions in this
language is a useful way to capture human inductive biases.
The next section introduces our computational model and
we then evaluate it in two behavioral experiments. Our first
experiment demonstrates that our model helps to explain how
people learn simple relational concepts such as “duplicate.”
Our second experiment focuses on modal reasoning, and we
ask participants to learn two concepts then to decide whether
statements about these concepts are possible or impossible.

A possible worlds account of concept learning

Philosophers and psychologists often distinguish between
two aspects of a concept’s meaning—its extension and its in-
tension. The extension of a concept is the set of objects in the
actual world that are instances of the concept. For example,
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Figure 2: (a) A graphical model that can be used for learning
arule r. World w; is generated given rule r and count vector
n; which specifies the size of w; and the number of elements
in w; that must be assigned positive labels by rule r. Label
vector [; indicates which members of w; are assigned posi-
tive labels by rule r. (b) Graphical model for Experiment 2.
Rules r* and r? capture two concepts that may or may not
be different. Hypothesis h indicates whether 2 is identical
to 7 or drawn independently from P(r).

i=3,4

the extension of the concept C' in Figure 1 includes the two
members of the actual world that are marked with black trian-
gles. The extension of a concept may be the empty set—for
example, in Figure 1, the extension of the concept “black ob-
jects” is the empty set, since none of the objects in the actual
world is black.

Two concepts may have the same extension in a given
world but may nevertheless be different. For example, the
concepts of unicorns and griffins have the same extension in
our world—the empty set—but intuition suggests that these
concepts are nevertheless different. One reason why the con-
cepts must be different is that we can imagine possible worlds
which include both unicorns and griffins, and where the ex-
tensions of these concepts are different. The intension of a
concept includes the information that allows us to pick out
its extension in every possible world—for example, know-
ing that unicorns have horns might help to decide which ob-
jects in a given world qualify as unicorns. Formal approaches
to semantics often formalize the intension of a concept as a
function that picks out its extension in every possible world,
and we adopt this perspective here. These functions could be
represented in many different ways, and our working hypoth-
esis is that intensions correspond to rules that are mentally
represented in a language of thought. For example, the rule
in Figure 1 serves to pick out an extension (i.e. the set of C's)
in each possible world.

The rule in Figure 1 is primarily expressed in English, but
the representation language that we will explore is a simple
version of predicate logic. Table 1 shows three templates that
can be used to generate the rules we consider. In all cases,
C(-) is the concept of interest, and each possible rule can
be used to decide whether an object x is an instance of C.
D; represents the ith dimension and vy represents the kth
value along a dimension: for example, if D; is the dimension
of color and value v; along this dimension indicates black,
then the rule Vo C(x) < Di(x) = v; indicates that x is
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a C if and only if z is black. The language includes four
Boolean connectives: and (A), or (V), if (—), and if and only
if («»). The language also includes four relations for com-
paring values along the dimensions (=, #, <, >), and incor-
porates quantification over the objects within a world (Vy)
and over dimensions (V). The three templates in Table 1
capture all simple rules with at most one instance of quantifi-
cation over objects and at most one instance of quantification
over dimensions. Our hypothesis space of rules includes all
instances of the templates in Table 1 along with all conjunc-
tions that can be generated by combining up to three of these
instances. Note that some rules have identical intensions—in
other words, they pick out the same set of objects in each pos-
sible world. We strip out rules with identical intensions, and
include only the shortest rule for any given intension.

We now develop a probabilistic framework for learning and
using intensions. Suppose that C' is a concept of interest,
and that rule r captures the intension of C'. Suppose that a
learner observes one or more worlds w;, and let [; be a bi-
nary label vector that indicates which objects in world w; are
instances of C'. Given these observations, the posterior distri-
bution P(r|ws.k, l1.) will represent an ideal learner’s beliefs
about the rule r after observing k£ worlds and label vectors for
these worlds. We work with the posterior distribution induced
by the graphical model in Figure 2a.

We assume that rule r is generated from a prior P(r)
that favors simple rules, and use a description-length prior
P(r) o< \I"l, where |r| is the number of symbols in rule 7.
For all applications of the model we set A = 0.5. To gen-
erate a world w;, we first generate a vector n; that specifies
the total number of objects in the world and the number that
are instances of C, then sample uniformly at random among
all worlds that are consistent with n; and r. Our assump-
tion that w; is generated given n; is a natural extension of
previous accounts of concept learning which assume that the
examples observed are randomly sampled from the set of pos-
itive instances (Tenenbaum & Griffiths, 2001). For simplicity,
we assume that worlds have at most four objects, and use a
uniform prior P(n;) over all count vectors that satisfy this
constraint. Finally, we assume that each label vector [; is de-
terministically generated given world w; and rule r. The joint
distribution over all variables can be summarized as follows:

P(r) oc Al
P(n;) «1
1 . . . .
—=—— if n; is consistent with w; and r
P(w;|r,n;) = c(r,nq) v ¢
(wilr, mi) { 0 otherwise
1 if [; is consistent with w; and r

Plifrwi) = { 0 otherwise
where c(r, n;) is the number of worlds that are consistent with
n; and r.

Computing the predictions of our model will be chal-
lenging in general, but for all applications in this paper we
can carry out inference by enumerating the entire hypothe-
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sis space of rules and the entire set of possible worlds. Fu-
ture work can attempt to develop sampling methods that effi-
ciently compute the predictions of the model, but before be-
ginning this enterprise it is important to explore whether our
approach makes accurate predictions about human behavior.
The next two sections describe experiments that highlight two
distinctive aspects of our model.

Experiment 1: Learning relational concepts

Allowing for multiple worlds provides a natural way to han-
dle relational concepts such as “biggest” or “duplicate” that
depend on the world or the set of objects currently under con-
sideration. Our first experiment explores how people learn
several basic concepts, including three relational concepts.
All of our participants are adults, but developmental psychol-
ogists have established that even young children are able to
learn simple relational concepts. The concepts we consider
are based on a developmental study of Smith (1984), and we
demonstrate that our model is able to learn all of the concepts
that she discusses.

Materials and Method. 14 adults participated for course
credit and interacted with a custom-built computer interface.
Participants were told that they would be learning about the
preferences of six aliens (i.e. learning six concepts). For each
alien three worlds containing three objects each were simulta-
neously presented on screen. The worlds used for each alien
are shown in Figure 3, where each column corresponds to a
world. The first five concepts are loosely inspired by the con-
cepts studied by Smith (1984). For example, Smith’s version
of 3d used worlds that included objects such as a green plane,
ared apple, and a yellow pig, and the underlying concept was
“green plane.” The objects in each world were arranged ver-
tically on screen, and were initially ordered as shown in Fig-
ure 3, where each column corresponds to a world. Within
each world, the objects could be dragged around and re-
ordered, and participants were invited to sort them however
they liked.

For all six aliens, the first two worlds had labels indicating
whether or not the alien liked each object. Participants were
asked to predict the alien’s preferences by choosing a binary
label for each object in the third world. After labeling the
third world, participants provided a short written description
of the current alien’s preferences. The order of the six aliens
(i.e. concepts) was counterbalanced across participants, and
the roles of the three dimensions (ball position, color, and
size) were also counterbalanced.

Model predictions. Let wi.3 represent the three worlds
and /;.o represent the two observed label vectors. We com-
pute the distribution P(l5|ws.3,01.2) by integrating over all
possible rules r. For each concept, the black bars in Figure 3
show the posterior probability that each object in the third
world is an instance of the concept.

Results. For each concept the white bars in Figure 3 show
the proportion of participants who chose positive labels for
the objects in the third world. Responses were consistent in
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Figure 3: Stimuli and results for Experiment 1. In each panel, the three columns show three worlds that include three objects
each. The objects in the first two worlds have category labels, and the bar charts show model predictions and human inferences
about the labels of the objects in the third world. The black bars show probabilities generated by the model, and the white bars
show the proportion of participants that chose a positive label for a given object.

all cases with the predictions of the model. If we create binary
prediction vectors by thresholding the model predictions at
0.5, then 10 or more of the 14 responses for each concept
were identical to the model predictions.

The written descriptions provided further evidence that
participants were able to infer sensible rules and the concept
descriptions in Figure 3 are based on the most common de-
scriptions provided in the experiment. In several cases, how-
ever, participants provided rules that were more specific than
the descriptions in Figure 3. For example, in condition 3a,
one participant indicated that the alien liked small objects of
a certain color.

Experiment 1 explored how participants learn relational
concepts then apply them in new contexts, but did not address
the topic of modal reasoning. Three worlds were shown on
screen for each problem, and participants were not required
to think about alternative worlds that they had not observed.
Our second experiment focuses directly on modal reasoning,
and uses a task where participants must go beyond the hand-
ful of worlds observed on screen and make inferences about
the full space of possible worlds.

Experiment 2: Modal reasoning

Understanding the meaning of multiple concepts should al-
low a learner to predict which relationships between these
concepts are possible and which are necessary. For example,
any mother must also be a woman, and it is possible for the
same person to be a mother and a grandmother. In our second
experiment we asked participants to learn two concepts C'4
and Cp then asked them to rate the possibility of statements
involving these concepts.

Materials and Method. 15 adults participated for course
credit and interacted with the same computer interface devel-
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oped for Experiment 1. Participants were told that they would
be learning about the preferences of five pairs of aliens. For
each pair they were shown four worlds with four objects, and
these worlds are shown as columns in Figure 4. The objects
in the first two worlds were labeled to indicate the prefer-
ences of the first alien, and the objects in the remaining two
worlds were labeled to indicate the preferences of the second
alien. After observing these worlds, participants were asked
to provide written descriptions of the preferences of the two
aliens. Participants were then asked to rate the possibility
of the six statements shown at the bottom right of Figure 4.
These ratings were elicited using questions that referred to
the preferences of the two aliens rather than concepts C'4 and
Cp: for example, ratings for statement six were based on the
question “Do Mr. X and Mr. Y have identical preferences?,”
where X and Y were names for the two aliens in the current
pair. All ratings were provided on a seven point scale with
the endpoints labeled “Probably not” and “Probably.” For all
cases except statement 6, participants who chose a rating of 4
or above were asked to generate an example of a four-object
world that satisfied the constraints in the statement. These
worlds were generated using buttons that could add or remove
objects from the screen, and could adjust the appearance of
the objects along each of the three dimensions. The presenta-
tion order of the five pairs of concepts and the six possibility
statements was counterbalanced across participants, and the
role of the three dimensions was also counterbalanced.
Model predictions. Let wy.4 represent the four worlds and
144, and 12, represent the label vectors for these worlds. Our
approach to the task is captured by the graphical model in Fig-
ure 2b, where hypothesis h = 1 if rules 4 and r are identi-
cal and h = 0 if the rules are drawn independently from P(r).
If rules r 4 and rp are known with certainty, than each of the
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Figure 4: Stimuli and results for Experiment 2. In each panel the four columns show four worlds that include four objects each.
The objects in the first two worlds are labeled with respect to concept C'4 (upper right triangles), and the remaining two worlds
are labeled with respect to concept C'p (lower right triangles). The bar charts show model predictions and human inferences
about the six questions shown at the bottom right of the figure. Model predictions (black bars) are probabilities, and human
inferences (white bars) are shown as mean judgments on a 7 point scale. Error bars show the standard error of the mean.

six statements in Figure 4 is either true or false—for example,
statement 1 is true if there is at least one world with an object
assigned a positive label by both r 4 and 5. We compute the
posterior probability of each statement using a uniform prior
P(h) and integrating out rules r 4 and rp and hypothesis h.
If desired, each of the six statements could be expressed in
a logical language with operators that express necessity and
possibility, and our approach could be combined with an ex-
plicit formal semantics for modal logic (Kripke, 1963). This
degree of formalization does not seem useful for our current
purposes, but may be useful in other contexts.

For each pair of categories, the black bars in Figure 3 show
the posterior probabilities of the six possibility statements.
Note that each pair of categories leads to a qualitatively dif-
ferent pattern of predictions.

Results. The white bars in Figure 4 show average human
ratings for the six possibility statements. Responses for the
five different pairs of categories are qualitatively different,
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and in all cases there is a relatively close correspondence be-
tween human ratings and model predictions.

Consider first the difference between pairs 4a and 4b. Both
pairs include concepts that correspond to single values along
a dimension: for example, concept C'4 in both cases picks
out objects with value v4 along the ball position dimension.
In pair 4a, concept C'p corresponds to a different value along
the ball position dimension, which means that it is impossible
for an object to simultaneously be a C'4 and a Cg. The first
bar in Figure 4a suggests that participants were able to make
this inference. In pair 4b, however, concept Cp corresponds
to a value along a different dimension, and participants were
confident that there could be an object that was a C4 and
a Cp. Note that participants never observed an object with
labels for both concepts, which means that they had to go
beyond their direct experience when making inferences about
the compatibility of the two concepts.

Pairs 4c and 4e form a second natural comparison set. In



both cases, concept C'p includes only objects with a specific
value along each dimension. In 4c, concept C4 specifies
the same values along each dimension, and participants were
confident that concepts C'4 and C'p were identical (bar 6). In
4e, concept C'4 specifies values along only one dimension,
and the C'4 objects are a superset of the C'p objects. Partici-
pants inferred that C'4 and Cp are different concepts (bar 6),
that every C'p is a C'4 (bar 4), but that some C'4 objects are
not C'p objects (bar 5).

The main discrepancy between model predictions and hu-
man responses occurs for pair 4d and the first possibility judg-
ment. The model infers that C'4 includes duplicates and C'p
includes singletons, and concludes that no object can be both
a C4 and a Cg. Eight out of 15 participants made a similar
inference, and chose ratings of 2 or below on a seven point
scale, but five participants chose ratings of 6 or above, pro-
ducing a mean rating of around 3.5. Many of these five par-
ticipants gave complex disjunctive definitions when describ-
ing concept C'4, suggesting that they may have focused on
the individual characteristics of the positive examples with-
out reflecting on the relationships of these positive examples
to the other objects in the world.

Although we know of no previous studies that combine
modal reasoning and concept learning, previous work on
modal reasoning has explored how people arrive at conclu-
sions given premises supplied by the experimenter. For ex-
ample, given that all artists are beekeepers and that Lisa is
a beekeeper, it is possible that Lisa is an artist (Evans et al.,
1999). The mental models approach can account for infer-
ences of this kind, but note that our task is rather more chal-
lenging. We explored cases where the “premises” for modal
reasoning (i.e. the meanings of the concepts) are not supplied
but must instead be learned from a small number of examples.
In order to handle the inductive aspect of our task, a computa-
tional approach must incorporate a human-like inductive bias,
and the mental models approach is not well-equipped to sat-
isfy this criterion. Our results, however, suggest that human
inferences can be accurately predicted by combining a pos-
sible worlds framework with a description length prior over
logical rules.

Conclusion

We developed a model of concept learning that relies on the
notion of possible worlds and evaluated it in two experiments.
Our first experiment suggests that our approach helps to ex-
plain how humans learn relational concepts such as “bigger”
or “duplicate.” Our second experiment demonstrates that hu-
mans readily make modal inferences about concepts, and il-
lustrates that a possible worlds approach can account for this
ability.

Although modal reasoning is an especially natural appli-
cation for a possible worlds approach, the same approach
should help to illuminate other aspects of human learning and
reasoning. Philosophers and linguists have used the possi-
ble worlds framework to clarify the meaning of counterfac-
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tual statements (Lewis, 1973), and to characterize the con-
tent of claims about belief, desire, and knowledge (Hintikka,
1962). The psychological implications of these projects have
received relatively little attention, but the possible worlds ap-
proach is a promising way to study the many different ways
in which human concepts are put to use.

Acknowledgments This work was supported in part by NSF
grant CDI-0835797.

References

Bell, V. A., & Johnson-Laird, P. N. (1998). A model theory
of modal reasoning. Cognitive Science, 22(1), 25-51.

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M. (2008).
A theory of the discovery and predication of relational con-
cepts. Psychological Review, 115(1), 1-43.

Evans, J. S. B. T., Handley, S. J., Harper, C. N. J., & Johnson-
Laird, P. N. (1999). Reasoning about necessity and pos-
sibility: a test of the mental model theory of deduction.
Journal of Experimental Psychology: Learning, Memory
and Cognition, 25(6), 1495-1513.

Feldman, J. (2000). Minimization of Boolean complexity in
human concept learning. Nature, 407, 630-633.

Gentner, D. (1983). Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science, 7, 155-170.

Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths,
T. L. (2008). A rational analysis of rule-based concept
learning. Cognitive Science, 32(1), 108—154.

Hintikka, J. (1962). Knowledge and belief. Cornell Univer-
sity Press.

Johnson-Laird, P. N. (1982). Formal semantics and the psy-
chology of meaning. In S. Peters & E. Saarinen (Eds.),
Processes, beliefs and questions (pp. 1-68). D. Reidel.

Kemp, C., & Jern, A. (2009). Abstraction and relational
learning. In Advances in Neural Information Processing
Systems 22 (pp. 934-942).

Kripke, S. (1963). Semantical considerations on modal logic.
Acta Philosophica Fennica, 16, 83-94.

Lewis, D. (1973). Counterfactuals. Harvard University Press.

Nichols, S. (2006). Imaginative blocks and impossibility:
an essay in modal psychology. In S. Nichols (Ed.), The
architecture of the imagination: new essays on pretence,
possibility and fiction (pp. 237-255). Oxford: Oxford Uni-
versity Press.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994).
Rule-plus-exception model of classification learning. Psy-
chological Review, 101(1), 53-79.

Osherson, D. (1977). Logical abilities in children. L. Erl-
baum Associates.

Smith, L. B. (1984). Young children’s understanding of at-
tributes and dimensions: a comparison of conceptual and
linguistic measures. Child Development, 55, 363-380.

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization,
similarity, and Bayesian inference. Behavioral and Brain
Sciences, 24, 629-641.



