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Abstract
Understanding the communicative intentions of others based
on their behavior can be seen as an ‘inference to the best expla-
nation’, a.k.a. abduction. As abduction is often an intractable
task, it has been suggested that communicators alleviate the
work of an addressee by performing recipient design, adapt-
ing their behavior to the presumed beliefs and knowledge of
the addressee. In this paper we show that communicators per-
forming recipient design inherit the computational load of their
addressees. Thus, recipient design in itself cannot explain the
speed of everyday human intentional communication.
Keywords: Bayesian network; communication; recipient de-
sign; simulation; abduction; inference; NP-hard; tractable.

Introduction
Humans have the ability to understand the intentions under-
lying communicative actions of others. This is a remarkable
ability given that intention recognition involves reasoning
from effects (observed actions) to their likely causes (hypoth-
esized intentions) and is therefore best seen as a form of ‘in-
ference to the best explanation’, a.k.a. abduction (Levinson,
2006; Sperber & Wilson, 1995; Baker, Saxe, & Tenenbaum,
2009; Charniak & Goldman, 1991; Peirce, 1931–1966; Lip-
ton, 2004). Computational models of abduction are notori-
ous for their computational intractability, meaning that the
inferences postulated by these models require exponential
amounts of time (Abdelbar & Hedetniemi, 1998; Thagard
& Verbeurgt, 1998; Kwisthout, 2010; Blokpoel, Kwisthout,
van der Weide, & van Rooij, 2010; Bylander, Allemang,
& Tanner, 1991; Nordh & Zanuttini, 2005). Evidently, in-
tractable models cannot explain the speed of intention recog-
nition as we observe in everyday communication.

It has been suggested that the computational demands of
intention recognition in human communication could be al-
leviated through recipient design, in which communicative
actions are constructed according to what addressees are sup-
posed to know and believe (see Box 1; Sperber and Wilson
(1995); Grice (1989); Clark (1996)). This idea is generally
consistent with theoretical work showing that intention recog-
nition can be tractable given specific constraints (Blokpoel et
al., 2010), and with empirical work qualifying the conditions
under which recipient design is used (Clark, 1996; Keysar,
Barr, & Horton, 1998; Newman-Norlund et al., 2009). How-
ever, the idea also raises a so far neglected question: If recipi-
ent design is assumed to make intention recognition tractable
for addressees, does it not simply move the computational
load from the addressee to the agent generating the commu-
nicative action?

In this paper we present a formal model of communica-
tion and prove that even under highly restricted conditions
recipient design is intractable. This proof of intractability of
recipient design establishes that even though recipient design
can make intention recognition tractable, the computational
demands of recipient design are such that the speed of ev-
eryday communication is not yet explained. This finding in-
dicates that communicators must exploit constraints to make
recipient design tractable, and in the second part of the pa-
per we illustrate a methodology suitable for identifying such
constraints.

Computational-level Models
In this section we present a formal computational-level model
of communication based on the Bayesian Inverse Planning
(BIP) model of action understanding by Baker et al. (2009)
and on the statistical learning model by Shafto and Good-
man (2008). Empirical evidence presented by these authors
shows that these models seem to capture fundamental prin-
ciples underlying intention recognition and recipient design
respectively. Our model of communication combines these
two models and will as a result inherit some of their simpli-
fying assumptions. Consequently, our analyses will yield at
worst a lower bound of the computational demands posited
by more general models of communication.

The communication model we present assumes that a com-
municator generates communicative behavior by choosing
actions to achieve certain goals. These goals can be di-
vided in two types: instrumental (e.g. ‘make the mosquito
go away’) and communicative (e.g. ‘signal the taxi driver to
come here’). Because some actions can lead to the achieve-
ment of more than one (type of) goal (e.g. ‘waving one’s
hand’ can make a mosquito go away, but also signal a taxi
driver), recognizing communicative intentions involves ab-
duction. Furthermore communicators also perform recipient
design, choosing their actions on the basis of world states,
instrumental goals and communicative goals, but also on the
basis of a prediction of the likely inferences their audience
could make given the action sequence they intend to produce.

These characterizations of RECIPIENT DESIGN and IN-
TENTION RECOGNITION can be summarized by input-output
mappings. A communicator generates a sequence of actions
that will (a) most likely lead to the achievement of the instru-
mental goals and (b) will lead his/her audience to attribute the
correct communicative goals to the communicator’s behav-
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Box 1: An illustration of recipient design.
To illustrate recipient design, consider the following example. Bob and Mary are chatting, while suddenly Bob’s favorite
composition by Bach sounds faintly in the background. Bob wants to communicate three things to Mary:

i. He wishes her to be quiet;
ii. He wants her to listen to the music;

iii. He wants to signal he is listening to the music.

Now suppose that Bob knows that Mary knows they both enjoy Bach very much. To communicate (i), (ii) and (iii) to her he
might simply just put his finger in front of his mouth (a).

(a) Bob-Mary (b) Bob-Ann (c) Bob-Ann

Placed in a different situation talking to Ann, Bob might communicate differently. He knows Ann likes to keep talking and
that she is not interested in music. He put his finger in front of his mouth to signal Ann to be quiet (i), but he also closes
his eyes to tell her he is listening (iii) (b). To emphasize he is listening (iii) even more, Bob then tilts his head slightly
and puts his finger up in the air, signaling Ann to pay attention and listen to the music (ii) (c). [Illustrations by Bas Maes.]

ior. This inference is based on the probabilistic dependencies
between actions and world states (including how these de-
pendencies change over time) and zero or more instrumen-
tal goals and one or more communicative goals. The ad-
dressee infers a combination of communicative goals that best
explains the observed communicative behavior given what
he/she knows about the probabilistic dependencies between
actions, goals and world states (including how these depen-
dencies change over time).

We define the following variables that we use to formal-
ize the input-output mappings for RECIPIENT DESIGN and
INTENTION RECOGNITION.1

• S = {S1, . . . ,ST}, a sequence of T state variables that can
encode values of state sequences s;

• A = {A1, . . . ,AT−1}, a sequence of T − 1 action variables
that can encode values of action sequences a;

• GI = {GI1, . . . ,GI j}, a set of instrumental goal variables
that can encode the values of the communicator’s instru-
mental goals gI; and

• GC = {GC1, . . . ,GCk}, a set of communicative goal vari-
ables that can encode the values of the communicator’s
communicative goals gC.

1In the Bayesian formalism capital letters denote variables,
whereas small letters denote values; bold letters denote sets of vari-
ables or values, whereas non-bold letters denote singletons.

RECIPIENT DESIGN
Input: A Bayesian network B = (N,Γ), a value assign-
ment gI for GI and a value assignment gC for GC encod-
ing the communicator’s goals.
Where, S,A,GI,GC ∈ N; the probabilistic dependencies
in N are illustrated in Figure 1; and Γ is an arbitrary con-
ditional probability distribution over N.
Output: A value assignment a to A, such that a =
argmaxa Pr(A = a |GI = gI) and INTENTION RECOG-
NITION(B,a,s) = gC, or ∅ if no sequence of actions a
is possible. Here s = argmaxs Pr(S = s | A = a), i.e. the
most likely states s to follow from the actions.

INTENTION RECOGNITION
Input: A Bayesian network B = (N,Γ), similar as in
the Recipient Design network, a value assignment a for
A and a value assignment s for S encoding the observed
actions and states.
Output: The most probable value assign-
ment gC to the communicative goals GC, i.e.
argmaxg Pr(GC = gC | S = s,A = a), or ∅ if
Pr(GC = gC | S = s,A = a) = 0 for all possible val-
ues for GC.

Recipient Design is Intractable
To investigate the computational (in)tractability of RECIPI-
ENT DESIGN we adopted complexity-theoretic proof tech-
niques (see e.g. Garey and Johnson (1979)). Using these

466



S1 S2 S3

AT-1A1 A2

ST

GI1 GIj GCk

...

...

... GC1 ...

Figure 1: The Bayesian network showing the dependencies
between the variables in the RECIPIENT DESIGN and INTEN-
TION RECOGNITION models. Arrows denote dependencies,
e.g. if Bob has his eyes open (St =‘Bob eyes open’), then
closes his eyes (At =‘close eyes’), then St+1 has a high prob-
ability of Bob having his eyes closed (Pr(St+1 =‘Bob eyes
closed’|St =‘Bob eyes open’,At =‘close eyes’) = 0.9).

techniques, we proved the following (see online supplemen-
tary materials for the full proofs2):

Result 1. RECIPIENT DESIGN is NP-hard.

This result implies that there does not exist any algorithm
that can compute the recipient design input-output function in
polynomial time for all its inputs (i.e., a time upper bounded
by some function nc where n is a measure of input size and
c is some constant).3 In other words, all algorithms solving
RECIPIENT DESIGN will run in exponential time or worse for
a non-empty set of inputs (i.e., a time at best upper bounded
by some function cn, where n is again a measure of input
size and c a constant). As exponential time algorithms run
unrealistically long for all but very small inputs they are gen-
erally considered computationally intractable (Garey & John-
son, 1979). To illustrate this point, consider an exponential-
time algorithm running in a time proportional to 2n. Such an
algorithm would need to make on the order of 1,000,000,000
computational steps for an input of size n = 40, which is more
milliseconds than there are in a millennium.

Our NP-hardness result is quite sobering, given that the re-
cipient design model already incorporates several simplifying
assumptions. For instance, the model assumes communica-
tors have perfect (probabilistic) knowledge of the world and
the audience; states and goals are probabilistically indepen-
dent; and there is no higher-order reasoning by communica-
tor and audience about each other’s beliefs(Verbrugge, 2009;
Shafto & Goodman, 2008). This means that Result 1 proba-
bly underestimates the computational complexity of recipient
design under less restricted conditions—i.e., other more gen-
eral models of recipient design may well be computationally

2http://www.dcc.ru.nl/˜irisvr/suppl2011.pdf
3Our interpretation assumes that the P 6= NP conjecture is true.

This mathematical conjecture is unproven to date, but widely be-
lieved by mathematicians on both theoretical and empirical grounds
(Fortnow, 2009; Garey & Johnson, 1979).

even more demanding than the simplified RECIPIENT DE-
SIGN function.

Though Result 1 serves to illustrate the non-trivial nature
of explaining the speed of communication, we certainly do
not wish to suggest that it is in principle impossible to explain
the speed of communication in everyday life. Result 1 merely
establishes that a computational explanation of the speed of
communication will require that one incorporates one or more
explicit hypotheses about situational constraints that make the
(otherwise intractable) recipient design task performed by a
communicator tractable. In the next section we present and
illustrate a methodology that communication researchers may
adopt to model and test the validity of such constraints.

A Method for Identifying Tractability
Conditions

In order to find constraints on the input domain of RECIPI-
ENT DESIGN that render the (restricted) model tractable, we
adopt methods derived from parameterized complexity theory
(Downey & Fellows, 1999; van Rooij & Wareham, 2008).
Parameterized complexity theory is an extension of classi-
cal complexity theory motivated by the observation that it is
sometimes possible that an NP-hard function M : I→ O can
be computed by algorithms whose running time is polyno-
mial in the overall input size n and non-polynomial only in
some aspects of the input called input parameters. In other
words, the main part of the input contributes to the overall
complexity in a “good” way, whereas only the input param-
eters contribute to the overall complexity in a “bad” way. In
such cases, the function M is fixed-parameter tractable for
that respective set of parameters. The following definition
states this idea more formally.

Definition 1. Fixed-parameter (fp-) tractability. Let M :
I → O be an input-output function with input parameters
k1,k2, . . . ,km. Then M is said to be fixed-parameter tractable
for parameter-set K = {k1,k2, . . . ,km} if there exists at least
one algorithm that computes O for any input of size n in time
f (k1,k2, . . . ,km)nc, where f (.) is an arbitrary computable
function and c is a constant. If no such algorithm exists then
M is said to be fixed-parameter intractable for parameter-set
K.

Note that if an intractable function M is fp-tractable for
parameter-set K, then M can be efficiently computed even for
large inputs, provided only that all the parameters in K are
small. This means that if M is postulated as an explanation of
the functional form of the input-output mapping computed by
a given process, then the speed of that process in certain situ-
ations can be explained by postulating that the parameters in
K are small exactly in those situations (see also van van Rooij
and Wareham (2008)). This strategy for rendering (otherwise
intractable) theories tractable has been successfully applied in
various domains (van Rooij, Evans, Müller, Gedge, & Ware-
ham, 2008; Müller, van Rooij, & Wareham, 2009; Wareham,
Evans, & van Rooij, 2010; van Rooij, 2008; van Rooij, Stege,
& Kadlec, 2005), including the Bayesian Inverse Planning
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model (Blokpoel et al., 2010). In the next section we report
on our investigation of parameters that do and do not render
RECIPIENT DESIGN tractable.

What Makes Recipient Design Tractable?
The RECIPIENT DESIGN model has several parameters that
we will consider for our fixed-parameter (fp-)tractability
analyses. Table 1 gives an overview of these parameters and
their example values in the illustration in Figure 2. Proofs of
all these results can be found in the Supplementary Materials
published online.4

Parameter Description Value
|GC| The number of communicative

goals
3

|GI| The number of instrumental goals 0
|A| The number of observed or planned

actions
2

Table 1: Overview of the parameters, the given value is based
on the Bob-Ann example in Box 1.

close 
eyes

point and 
tilt head

be quiet listen i'm 
listening

Figure 2: An example network with all values filled in. Here
Bob would have to find actions given his communicative
goals and Ann would have to infer Bob’s communicative
goals given his actions and states.

We start by considering conditions that render intention
recognition tractable. The following results are relevant for
our purposes.

Result 2. INTENTION RECOGNITION is NP-hard.

Result 3. INTENTION RECOGNITION is fp-intractable for
parameter sets {|A|, |GC|} and {|A|, |GI|}.
Result 4. INTENTION RECOGNITION fp-tractable for the pa-
rameter set {|GI|, |GC|}.
For an overview of further fp-(in)tractability results impli-
cated by Results 3 and 4, see Table 2.

Result 2 establishes that without any constraints on the in-
put domain, INTENTION RECOGNITION is intractable—just

4http://www.dcc.ru.nl/˜irisvr/suppl2011.pdf

as RECIPIENT DESIGN (Result 1)—in that its computation
requires superpolynomial time. Result 4 shows that INTEN-
TION RECOGNITION can be computed efficiently even for
large inputs provided only that two parameters |GI| and |GC|
are both relatively small. As both these parameters seem to be
under the control of the communicator, Result 4 presents the
first formal explication of the hypothesis that a communicator
may make the task of the audience to infer his/her intentions
easier and even tractable.

Note furthermore that relative to the parameters that we
consider (i.e., {|GI|, |GC|, |A|}), Result 3 and 4 combined
show that the parameter set {|GI|, |GC|} is not only suffi-
cient but also necessary for fp-tractability. That is, INTEN-
TION RECOGNITION is fp-intractable for all proper subsets
of the {|GI|, |GC|, |A|} and for other subsets that do not in-
clude {|GI|, |GC|}.

Having identified constraints that a communicator may uti-
lize to render INTENTION RECOGNITION tractable, a natural
question to ask is whether recipient design is tractable under
these same constraints. The following result shows this is not
the case.

Result 5. RECIPIENT DESIGN is fp-intractable for the pa-
rameter sets {|GI|, |GC|}, {|GI|, |A|} and {|GC|, |A|} .

Result 5 shows that RECIPIENT DESIGN is strictly more
difficult than INTENTION RECOGNITION, as the former is
not tractable under conditions that make the latter tractable.
It also means that the computational intractability of recip-
ient design cannot be attributed solely to the complexity of
simulating the audience’s intention recognition processes as
a subroutine.

We conclude with the following result:

Result 6. RECIPIENT DESIGN is fp-tractable for the param-
eter set {|A|, |GI|, |GC|}.
Result 6 shows that RECIPIENT DESIGN can be computed ef-
ficiently provided that all three parameters |GI|, |GC| and |A|
are relatively small. Note, however, that restricting all three
parameters at the same time effectively ensures the whole in-
put network is small, and hence the parameters cannot figure
in an explanation of how communication can be tractable for
large input networks. As shown in Table 2, no proper sub-
set of {|A|, |GI|, |GC|} suffices to make RECIPIENT DESIGN
fp-tractable. Although other parameters than the ones consid-
ered here may figure in an explanation of the speed of com-
munication, our findings highlight the nontrivial problem of
finding such an explanation.

Discussion
As with many other core human abilities, intention recog-
nition appears a fairly straightforward phenomenon, at least
until we interact with other humans having communication
deficits, or until we try to build artificial cognitive agents
that can effectively implement flexible intention recognition
in a communicative setting. The astronomical computational
powers required for abductive processes such as intention
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INTENTION RECOGNITION — |A|
— NP-hard fp-intract.
|GC| fp-intract. fp-intract.
|GI| fp-intract fp-intract

|GC|, |GI| fp-tractable fp-tractable
RECIPIENT DESIGN — |A|

— NP-hard fp-intract.
|GC| fp-intract. fp-intract.
|GI| fp-intract. fp-intract.

|GC|, |GI| fp-intract. fp-tractable

Table 2: Complexity results for INTENTION RECOGNTION
(above) and RECIPIENT DESIGN (below).

recognition are in contrast with the speed of everyday com-
munication. To explain this contrast, it has been suggested
that intention recognition may be made easier if communi-
cators use recipient design (Sperber & Wilson, 1995; Grice,
1989). The aim of our research was to assess to what extent
this idea merely shifts the computational complexity of com-
munication from the audience to the communicator. Specifi-
cally, we questioned whether computational models of recip-
ient design inherit the computational load they aim to take
away from the audience.

To address this question we formalized the tasks of com-
municator and audience as computational-level models. We
ensured that our modeling choices did not lead to an arti-
factual overestimation of the computational complexity of
communication by incorporating several simplifying assump-
tions. There are two main findings. Both the audience
model (i.e, INTENTION RECOGNITION) and the communi-
cator model (i.e, RECIPIENT DESIGN) are intractable (NP-
hard). This means that, notwithstanding our simplifying as-
sumptions, the computations postulated by our models re-
quire an unrealistic amount of time for their completion.

The intractability result for INTENTION RECOGNITION re-
iterates what has long been assumed. Namely, given that in-
tention recognition is a form of abduction, the speed at which
we can use this ability in our everyday life is comparably dif-
ficult to explain. Replicating this result in such a simplified
model underscores the non-triviality of explaining the speed
of intention recognition. The main novelty of this study lies
in defining the computational demands of recipient design,
an undeservedly overlooked issue given the centrality of this
ability to several accounts of communication (Sperber & Wil-
son, 1995; Clark, 1996). The intractability result for RECIPI-
ENT DESIGN shows that even if communicators can make in-
tention recognition easier by performing recipient design, the
model by itself cannot explain the speed of every day com-
munication. These results set the stage for both theoretical
and empirical follow-up research.

From a theoretical perspective, the intractability results
raise the question how the speed of everyday communication
can be reconciled with the apparent complexity of the tasks
performed by communicator and audience. This question can
be addressed by identifying the situational constraints that

render the tasks of communicator and audience tractable. We
have presented a methodology for implementing this strat-
egy and illustrated its use for our models. We found that if
the communicator has only a few communicative and instru-
mental goals, INTENTION RECOGNITION is tractable. These
special circumstances are, however, not yet sufficient to also
make RECIPIENT DESIGN tractable. The additional circum-
stance where a communicator is able to construct short action
sequences to convey his/her message does make RECIPIENT
DESIGN tractable. In other words, under the simplifying as-
sumptions of our models, people might exploit these special
conditions to achieve speedy communication.

These conditions may not suffice to explain the speed of
communication in general, since some of our simplifying as-
sumptions most probably will be violated in real world sit-
uations. Yet this underscores that richer models of recipi-
ent design—with less simplifying assumptions, e.g., includ-
ing higher-order reasoning—will presumably be even more
computationally demanding. Therefore richer models would
also require an analysis of their computational demands.

The utility of the current approach can also be assessed
empirically by creating experimental set-ups which do meet
the simplifying conditions (Galantucci, 2005; de Ruiter et al.,
2010; Scott-Phillips & Kirby, 2010). In such experimental
set-ups it can then be tested if the constraints that we identi-
fied as necessary and sufficient for tractability of communica-
tion are confirmed by the success or failure of communication
as observed in the lab.

It might be relevant to emphasize that the present results
converge with several intuitions of classic pragmatic theo-
ries such as the Gricean Maxims (Grice, 1989). For ex-
ample, the Maxim of Quantity states that people should not
make their contribution more informative than is required. In
the current models, “informativeness” could be operational-
ized as the number of communicative goals a communicator
tries to convey. The Maxim of Quantity can then be inter-
preted as not having too many communicative goals, which
is equivalent to one of the constraints necessary for tractabil-
ity of the communication models. Grice’s Maxim of Relation
states people should be relevant. Relevance in our models
can be indexed by the number of instrumental goals that in-
fluence one’s communicative behavior. Having few instru-
mental goals increases the communicative relevance of the
communicator’s behavior, making it easier for an audience
to perform intention recognition. This principle is similar to
the necessary constraint of pursuing few instrumental goals
highlighted by the current tractability analysis.

The strong convergence between Grice’s Maxims and the
current results suggests that the communicator and audience
models capture at least some fundamental aspects of commu-
nication and recipient design. It also suggests that the cur-
rent approach could provide a formal account of the cogni-
tive mechanisms described by those maxims, enabling more
systematic empirical analyses.

To conclude, we showed that by performing recipient de-
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sign, a communicator may reduce the computational load of
her addressees, but this then leaves the communicator facing
an intractable task. The fact that this result is based on highly
simplified models greatly underscores the non-triviality of ex-
plaining the speed of everyday communication, as more gen-
eral models will also suffer from intractability. This result
highlights an explanatory gap in communication science, and
we illustrated a methodology to deal with this gap.
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