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Introduction

This symposium explores the role of placeholder
structures—systems of words, non-linguistic symbols, or
procedures—in the construction and manipulation of
numerical concepts. The structure supplied by a placeholder
system — like the count list in English — critically constrains
the potential for creating and manipulating conceptual
content.

A great deal of empirical work has explored the role of
placeholders in numerical cognition, in large part by
investigating how children learn number word meanings
when exposed to Arabic numerals and corresponding count
routines (for review see Carey, 2009). One contribution of
this work has been to suggest that learning a count list
creates an important structure for constructing new
numerical concepts. For example, learning to count is a
critical precursor to acquiring large exact numerical
concepts like “77”, and how such concepts are related (e.g.,
that 78 is greater than 77, by exactly one). According to
some, this learning is guided by a semantic induction,
whereby children realize that each successive numeral in the
count list denotes a quantity of 1 more than the number that
came before it.

Beyond these studies, relatively little work has tested the
role of placeholder structures outside the Arabic numeral
system. As a result, little is known about the role that this
particular structure plays in numerical development, and
whether the use of alternative systems might result in
different conceptual outcomes. Perhaps the best evidence
that placeholder structures are critical to constructing
numerical concepts comes from fieldwork in the Amazon,
where studies of the Piraha and Munduruku have made clear
that learning to count is important to acquiring at least some
numerical concepts (Gordon, 2004; Frank et al, 200; Pica et
al.). However, between the Piraha and English-speaking
adults who use Arabic numerals lies a vast array of potential
intermediate systems. At least some of these systems have
been tested in nature by humans, and are used today. This
symposium explores the role of placeholders systems to
numerical development, the effects of structural variations,
and how different modalities like gesture and vision are
used to create alternatives to the Arabic numeral system,
with different consequences for cognition.

414

Michael C. Frank (mcfrank@stanford.edu)
Department of Psychology
Stanford University

Liesje Spaepen (liesje@uchicago.edu)
Department of Psychology
University of Chicago

Specifically, the symposium will include four distinct talks,
each touching on different systems of numerical
representations. Each talk will discuss how placeholder
structures guide and constrain learning, whether by
facilitating the association of symbols with quantities,
guiding inductive inferences, or facilitating operations that
are unique to a particular structure.

Number word meanings and the count routine

What role does a placeholder system like counting play as
children learn number word meanings? In this talk, Barner
will explore the idea that counting provides one of several
verification procedures that children acquire when learning
number words. Acquiring these procedures does not alone
result in conceptual change, but instead lays the groundwork
for learning about quantity and the logical relations between
numbers. In particular, Barner will discuss how learning
about the structural relationship between words in the count
list may allow children to derive the concept of exactness,
without a radical conceptual change, but instead drawing on
well-attested pragmatic inferences. Barner also explores the
so-called “Cardinal Principle induction” and whether it
involves a conceptual change, or whether it is instead
another example of procedural learning.

Number knowledge in a finite counting system

In this talk, Frank presents research examining a linguistic
number representation used by a group of indigenous
speakers of the language Momu (also known as Fas),
spoken in the northern part of Papua New Guinea near the
Indonesian border. The Momu count list has been reported
to have a simple pair-based compositional structure that can
be glossed as “one” (1), “two” (2), “two and another” (3),
“two two” (4), “two two and another” (5), and “two two
two” (6). The Momu count list is a fascinating case study of
the relationship of placeholders to numerical competence.
Most Momu speakers had difficulty completing exact
quantity matching tasks, failing to use linguistic number to
track the quantity of objects presented by an experimenter.
Even more surprising, Momu speakers did not agree on the
structure of the Momu count list. Some speakers were able
to count recursively to ten using the pair-based structure
described above, while others claimed that the system was
finite and bounded at "two and another" (3). The
participants that did best on the matching tasks used the



pair-based linguistic strategy, but not all participants that
counted recursively applied the count in the matching tasks.

Momu is thus a case of dramatic linguistic and conceptual
heterogeneity. Unlike English, where conceptual knowledge
is deep and uniform across speakers, and unlike the
Amazonian examples with essentially no exact number
system, Momu speakers are on the cusp of knowledge: they
know what they do not know, but do not have routines or
strategies to complete even simple matching tasks.

The origin of numbers as summary symbols:
Evidence from home sign and Nicaraguan Sign
Language
Remembering a list of 9 items is harder than remembering a
list of 6, but remembering the number “9” is no more
difficult than remembering the number “6”. As a result,
numerals allow us to represent multiple individuals without
adding costs to memory as a function of set size. This talk,
by Spaepen, asks whether finger representations are
summary symbols for entire sets (like “6”) or for the

individuals within that set (like 6 separate items).

Five signers of Nicaraguan Sign Language (NSL) and 4
unschooled hearing adults were tested using a modified digit
span task, in which any one span only contained two
numbers in an ABA pattern. There were 3 types of trials:
patterns using 2 and 3 (e.g., 2, 3, 2), patterns using 4 and 5
(e.g., 4,4, 5), and patterns using 8 and 9 (e.g., 9, 8, 8). Both
groups performed equally well on all trial types, suggesting
that both spoken words and conventionalized finger
representations of number can act as summary symbols.
Nicaraguan homesigners (deaf individuals who have no
access to conventional linguistic input, spoken or signed,
and who develop gestures systems to communicate with the
hearing people around them) were tested on the same task
and performed significantly worse on the 8 and 9 trials than
on the other two trial types.

The NSL signers’ performance reveals that finger
representations can be summary symbols of the numbers
they represent, and therefore can be placeholders for exact
number concepts during development. However, when
gestures for number are not learned in a rote list during
language development, finger gestures represent individuals
in the set, not whole sets. Because of this, homesigners’
gestures may be used as placeholders, as they are not
symbols that mean “seven,” but rather symbols that mean
“one one one one one one one.”

The role of gesture in supporting visual
representations of number

Mental abacus calculation is one of the most efficient
methods for solving arithmetic problems mentally. Rather
than physically moving the beads on an abacus, mental
abacus experts memorize the operations necessary to move
the beads and keep track of the current state of an imaginary
abacus using visuospatial working memory (Stigler, 1984;
Hatano, 1977). The abacus serves to represent the aspects of
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number necessary to compute basic arithmetic, while
allowing these computations to be carried out by rote, rather
than depending on detailed conceptual representations of
each step. While performing mental abacus, nearly all
abacus users move their hands as though they were
manipulating an actual abacus. Past research has found that
performance suffers when abacus users are not permitted to
use their hands (Frank & Barner, under review; Hatano,
1977). Thus, gesture appears to play a critical role in
creating and sustaining mental abacus structures. In this
talk, Brooks will present work that explores the precise
relationship between gesture and the structure of mental
abacus computations.

A series of studies of mental abacus students in Gujarat
Province, India, investigated the relationship between
gesture and mental abacus. In addition to showing a
powerful overall motor interference effect, this work shows
an effect of an individual’s default gesture size on the
degree to which their performance suffered on the
interference task. Children who spontaneously produced
larger gestures when solving mental abacus problems
showed a greater decline in performance when they were
not permitted to gesture. In a second study, manipulating the
size of a child’s gestures led to changes in mental abacus
performance: in general, instructing children to imagine a
small abacus, and to gesture accordingly, led to better
accuracy and reaction time compared to when children were
instructed to imagine a large abacus. Further, the data
suggest that preference for a smaller abacus size may be
mediated by the size of gestures children produce
spontaneously.

While research presented in this symposium and
elsewhere (Carlson, Avraamides, Cary, & Strasberg, 2007)
has demonstrated the important role of gestures as
placeholders during counting, this work illustrates the
dynamic role gesture can play in supporting and shaping
complex computational systems in the visual domain.



References

Carey, S. (2009). The Origin of Concepts. Oxford University Press.

Carlson, R.A., Avraamides, M.N., Cary, M., & Strasberg, S.
(2007). What do the hands externalize in simple
arithmetic? Journal of Experimental Psychology: Learning,
Memory, and Cognition, 33, 747-756.

Frank, M., & Barner, D. (under review). Constructing exact visual
representations of number.

Frank, M., Everett, D., Fedorenko, E., & Gibson, E. (2008).
Number as a cognitive technology: Evidence from piraha
language and cognition. Cognition, 108 (3), 819-824.

Gordon, P. (2004). Numerical cognition without words: Evidence
from amazonia. Science, 306 (5695), 496.

Hatano, G., Miyake, Y., & Binks, MG. (1977). Performance of
expert abacus operators. Cognition, 5, 47-55.

Pica, P., Lemer, C., Izard, V., & Dechaene, S. (2004). Exact and
approximate arithmetic in an amazonian indigene group.
Science, 306 (5695), 499.

Sarnecka, B. W. & Carey, S. (2008). How counting represents
number: What children must learn and when they learn
it. Cognition, 108, 662-674

Stigler, J. W. (1984). Mental abacus: the e _ect of abacus training
on chinese children's mental calculation. Cognitive Psychology,
16 (2), 145-176.

416



