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Abstract

Near-miss experiences are one of the main sources of intense
emotions. Despite people’s consistency when judging near-
miss situations and when communicating about them, there is
no integrated theoretical account of the phenomenon. In
particular, individuals’ reaction to near-miss situations is not
correctly predicted by rationality-based or probability-based
optimization. The present study suggests that emotional
intensity in the case of near-miss is in part predicted by
Simplicity Theory.
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The Near-Miss Experience

People are emotionally responsive to situations in which
some benefit was within reach, but has nevertheless been
missed. Near-miss (or near-hit) experiences are one of the
main sources of strong emotion. The 1000001" customer in
a store may feel frustrated when the person in front of her
gets his shopping cart reimbursed. Failing an entrance
examination by only a few points may spoil entire lives. In
June 1995, Tim O'Brien shot himself in the head in despair,
after he (mistakenly) believed he had lost out on a £2.7m
National Lottery jackpot because he had forgotten to renew
his ticket. The missed opportunity is not always as evident
as in these examples: individuals sometimes make up an
alternative situation to compare their actual fate with, e.g.
when thinking in retrospect (Teigen, 2005).

In studies about reasoning, feelings generated by near-
misses are considered to introduce irrational bias (Wohl &
Enzle, 2003; Dillon, Rogers & Tinsley, 2006). If rational
agents are supposed to rely on objective probability only,
then human sensitivity to near-misses indeed reveals a gross
departure from rationality. Though the present study
confirms the relative irrelevance of probability, we still
suppose that the near-miss experience obeys definite laws.

One of the most remarkable characteristics of near-misses
is the human ability to recognize them and to extract all
relevant parameters that contribute to making the situation
emotional. In particular, though the missed situation has
often no objective character (as it did not occur), its
closeness to the actual situation is treated as objective by
people (Kahneman & Varey, 1990). Since they are easily
recognized, near-miss situations populate spontaneous
conversations, as individuals systematically urge to share
such emotional experiences (Rimé, 2005).

In near-misses, the actual situation is compared to a
counterfactual one. The counterfactual alternative may be
preferable or worse. The former case is associated with bad

luck, while the latter generates feelings of good luck. In the
present paper, we deal with bad luck situations exclusively.
The symmetrical case can however be easily derived.

In a previous study (Dessalles, 2010), the problem has
been explored qualitatively in relation to Simplicity Theory.
Participants were proposed short stories and were given the
possibility to choose some parameter so as to make emotion
maximum. For instance, Lucas had to lace up his shoes at
100m/200m/400m from the station, and then missed the
train by five seconds. In this kind of story, a majority of
participants choose the shortest distance, as predicted by the
theory. The present paper offers two significant improve-
ments. First, we concentrate on bare near-miss (i.e. without
considering possible mutable causes of the failure, as in the
Lucas story). Experiments are thus made simpler and more
systematic thanks to a change of modality: we use graphical
representations of the missing events and then we vary
probability or distance to the target. The second
improvement concerns the implementation of the theory,
which is done more rigorously.

In the next section, we mention the various factors that
are known to influence near-miss emotion intensity, though
they have not been included in a coherent theory yet. Then
several experiments will be described that explore the role
of the complexity (or simplicity) of outcomes. Then we give
a short summary of simplicity theory and evaluate its
predictions in near-miss situations.

Determining Factors

A variety of parameters have been found to control emotion
intensity in the case of near-miss. The most obvious factor is
the difference in ‘utility’ Av between the actual situation s;
and the counterfactual s, (Teigen, 2005). Another
acknowledged (but ill-defined) factor is the spatial or
temporal ‘closeness’ D to the counterfactual (Kahneman &
Varey, 1990; Teigen, 1996; Roese, 1997; Pritchard & Smith,
2004). Teigen (2005) represents these effects through the
formula: L = Av/ D, where L stands for emotion intensity. For
some authors, the low probability of the actual event is crucial
(Rescher, 1995). Other factors include controllability (Roese,
1997) and the mutability (i.e. modifiability) of causes
(Kahneman & Miller, 1986; Byrne 2002).

We designed a first test to confirm that the “rational”
approach, based exclusively on utility and probability, is
unable to predict emotional judgment. Participants were
asked to rank emotion in three similar situations where a
young man broke his leg while on a one-week skiing
holiday. A’s accident occurred the first day, on the very first
run; in case of B, it occurred the third day, at 14h30; for C,
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it occurred the last day of the week, on the very last run. We
may consider that the probability of each accident was
equal. Utility, however, is different: v(A) < v(B) < v(C),
since C and, to lesser extent, B, could still enjoy their
holiday. If utility was the sole factor, B should be thought to
be significantly more disappointed than C. Figure 1 shows
average reversed emotion rankings (from 3: most
maddening, to 1: least maddening) attributed to A, B and C.
We can see that the results contradict the prediction based
on pure utility. C’s situation is judged as emotional as B’s
(54% judged it less maddening, but 46% found it more
maddening). For nearly half of the participants, the
singularity of the temporal location of C’s accident (the very
last run) as opposed to B’s (one run among many) more
than compensates for the difference in utility.

Emotion
N

Third day Last run

Figure 1: The ski story (102 participants; bars indicate
standard deviation).

This result is consistent with Teigen’s formula L = Av/ D,
as the ‘distance’ to the counterfactual (if only C had stopped
skiing one run earlier) is minimal for C. Our experiments
will show, however, that Av and D are often not the only
parameters involved.

We tested various lottery situations in which an individual
is supposed to have missed the opportunity of winning
1000 €. The near-miss situations we tested are depicted on
figures 2-4. Red areas are winning regions (note that figures
2-e, 3-d and 4-b are not really near-misses). In each case,
the “objective” probability of the outcome is evenly
distributed over the whole line or plane.

Av is fixed (players were supposed to win 1000 € if the
dot had landed in a red region). The way emotion varies is
not controlled by the ‘objective’ winning probability, at
least in figures 2 and 4 where that probability is kept
constant. It is not entirely controlled by D either, contrary to
Teigen’s claim, as evidenced by the fact that emotion may
significantly vary between figures 2-c and 2-d.

Experimental Results

Participants (number = 89) were asked to rank the
disappointment of losers in various uniform lottery
situations. They were shown slides corresponding to
figures 2-4 during approximately 1.5 min. In these tests, the
dot moved continuously before stopping at its landing site.
Each participant was asked to write down different ranks for

each test, from 1 (mostly infuriating) to 5 or 6 (least
disappointment).
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Figure 2: One-dimensional lottery.
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Figure 3: One-dimensional lottery, variable probabilities.

. -....I

@) (b) ©
(d) ®© ®

Figure 4: Two-dimensional lottery.

Figures5, 6, 7 show experimental results for the
situations illustrated in figures 2, 3 and 4 respectively. Bars
show inverted emotional ranks, ordered from most
emotional to least emotional. Segments in grey indicate
standard deviation.

409



Emotion

Figure 5: Experiment of figure 2 (89 participants).
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Figure 6: Experiment of figure 3 (89 participants).
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Figure 7: Experiment of figure 4 (89 participants).

These experiments show that probability alone cannot
explain emotion ranking, as the winning probability is kept
constant in figures 2 and 4, or would make wrong predictions
(e.g. in figures 3-c and 3-e where emotion is high despite
opposite probabilities). More generally, most judgments
about (un)lucky situations are not explained by variations of
probability (even perceived probability) (Teigen, 1996). The
experimental results show that distance to target is not fully
relevant either, as judgments for figures 2-c and 4-c show.

We consider now what simplicity theory can possibly
bring to the analysis of the problem.

Simplicity and Probability
Simplicity is a fundamental cognitive principle (Chater,
1999). For instance, it explains how human brains
reconstruct hidden shapes (figure 8).

The description complexity C(s) of a situation s (or
Komogorov complexity) is defined as the size of its
(current) best summary. The partially hidden square in
figure 8 is simply defined as an invariant of a rotation

group, a description that no alternative shape can beat (out
of any specific context).

LI
.
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Figure 8: Hidden shapes are the least complex ones.

Complexity theory (Solomonoff, 1978) states that
probability is given by:

Pa(s) =270 )

Cu(s) is the generation complexity of s, i.e. the minimal
amount of information that the ‘world’ requires to generate
s. This definition presupposes that s is designated in
advance. In most real life situations, this is not the case.
Individuals determine probability after the fact. Simplicity
theory (Dessalles, 2008) takes the ex post determination of s
into account by comparing C,(s) to the complexity C(s) of
describing s. Unexpectedness U, for any situation s, is the
difference between its generation complexity C,, and the
complexity C of its description.

U(s) = Cu(s) - C(s) 0]

To be unexpected, situations must be out of the ordinary,
i.e. they must be abnormally simple (C smaller than C,). For
instance, a lottery draw such as 1-2-3-4-5-6 would be highly
unexpected whereas a typical draw would not (what
Solomonoff’s formula does not predict).

The main claim of Simplicity Theory (ST) is that

unexpectedness translates into subjective probability
through the following expression.
p(s) =270 @)

The difference (in bits) between generation complexity
and description complexity, if regarded as successive flips
of coin, measures probability. Improbable situations are
situations that seem “too” simple, i.e. easy to describe and
hard to generate. Equations (1) and (3) coincide only when s
is fully determined (C(s) = 0) before considering its
probability (e.g. when one’s own combination is drawn in a
lottery). Note that ST’s definition of probability only
considers singular events and never sets of alternatives
(contrary to standard probability theory).

The notion of unexpectedness explains a variety of
phenomena (Dessalles, 2008a; www.simplicitytheory.orqg).
Let’s mention a few.

- Rarity: rare situations are felt improbable, but only if the
feature that makes them rare is simple enough (a
phenomenon that standard probability theory ignores).

- Closeness: events locations, if drawn uniformly, are felt
improbable when the location happens to be simple
(egocentrically close or close to a simple landmark).
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- Exceptions: exceptional situations are considered
improbable, but only if the feature that makes them
exceptional is simple enough.

- Coincidences: The unexpected character of coincidences
is also due to simplicity (Dessalles, 2008b). If s; and s, are
the two coinciding events, then the complexity of the joint
event can be assessed: C(s5;&S;) < C(s1) + C(Sy)sy).
Consequently, U(s;&s,) > Cy(S1) + Cy(S2) — C(51) — C(S2Is1)-
If both events are not unexpected separately and have
similar generation complexity, we get: U(s:&S,) > Cy(S1) —
C(sz)s1). Unexpectedness may be large if the analogy
between s; and s, is strong (which means that the
knowledge of s; allows to spare in the description of s,).

ST’s definition of probability can be used to describe
aspects of the near-miss subjective experience.

Simplicity and Near Miss

Let’s consider the near-miss situation of figure 9, where the
colored zone is the winning one. The actual outcome is s;. It
might be compared with a standard (i.e. mostly complex)
loosing situation s, or with a standard winning situation Sy
or with the closest winning situation s.

S1s S1 S2 Sas
[TTTTITDATTTTTI D]
?H
L (04
Il |2

Figure 9: One dimensional near-miss.

The probability of loosing in the lottery is assessed by:

U(S1s) = Cw(S1s) — C(s15) (4)
The generation complexity of any landing site s is:
Cu(s) = log(L/a) (%)

Logarithms are in base 2 (see appendix for indications
about how complexity is computed). This formula reflects
the fact that the draw is uniform over the whole strip. On a
discrete lottery strip, a is the size of a unitary cell; on a
continuous line, it would be the length of the minimal
distinguishable landing site. In complexity terms, C,(s) is
the amount of information (in bits) that the ‘world machine’
needs to produce the event (see www.simplicitytheory.org).

Complexity C(s) is the minimal amount of information
needed to designate s unambiguously. Since sgs is a typical
position in the losing range, its complexity (see appendix)
is: C(sys) = log(li/a). We get:

U;s = U(sgs) = log (L/1y) (6)

This value is equal, on a logarithmic scale, to the standard
ratio of extensional probabilities, though it has been establi-
shed by considering the complexity of one individual event
only. Similarly, we have for a standard winning location:

Uys = U(szs) = log (L/15) )

Simplicity theory allows different computations for U(sy).
One computation is the straightforward one, given by (6).
U(s;)) can be also evaluated by comparison with a
counterfactual winning situation s;:

Cu(s2) = Cu(s1) + Culs2ls1)
C(s2) < C(sy) + C(s2ls1)

This writing presupposes that s, is (fictitiously) generated
in two steps, through s;. The inequality comes from the fact
that any constraint in the computation of complexity may
give a suboptimal result. The minimal value of C(sp) is
obtained when s, is the closest winning position, in which
case C(s;|s1) = 0 (s, can be determined unambiguously from
;). We get:

U(s2) > U(sp) — Cu(S2Is1) (8)

Cu(s2ls1) measures the smallest amount of information
that should be given to the ‘world’ (here, the lottery
machine) for it to produce s, instead of s;. Normally,
Cu(S2ls1) = Cu(S2), as the lottery has no memory. In the case
of the near-miss experience, individuals allow themselves to
‘cheat’ with the world (as the normal world does not allow
giving such a bit of a boost), as if they could alter the course
of events in retrospect. The value of C,(S,|s;) measures the
amplitude of “almost” in the expression “I almost won”. It
implements the ‘distance’ D postulated by Teigen (2005).
Our definition, however, is more abstract than mere physical
distance (sitting next to a lottery winner doesn’t necessarily
provide a feeling of near-miss!). In the situation depicted in
figure 9, we have:

Cu(szls1) =1 + log(da)

In that ‘cheating’ mode, we need 1 bit to ‘tell” the world
to move the landing site to the right instead of to the left and
log(dla) to designate the amplitude of the move. On the
other hand, the complexity of s, is negligible, as it is a
remarkable location. We may consider C(s;) = 0 (see
appendix). Finally:

Uz = U(sy) > log (L/9) -1 9)

We examine now whether the three expressions Us;, Us,,
U, are of any help to account for the specific cases of
figures 2-4.

Simplicity Effects
The main difficulty in applying ST to near-miss situations
comes from the fact that we ignore how probability controls
emotion. We may assume that emotional intensity is an
increasing function of unexpectedness.

A first result is the ability of ST to explain the emotional
value of situations depicted in figures2-d and 4-d.
Formula (9) gives a high value for U(sy), as the missed
position is both close to the actual outcome and remarkably
simple. In the five situations of figure 2, a=1, L=48, 1,=32,
1,=16 and «a ~ /2. If we apply (9) to situation 2-b, we get
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U, = log (48) — 1 = 4.6. In situation 2-d, the landing site is
blocked at one end of the strip, so we spare the direction bit
in the instruction given to the world, and U, = 5.6. In terms
of probabilities, loosing that way is equivalent to hitting a
target location designated in advance.

In the two-dimensional situation of figure 4-a, the
generation complexity of a draw is C,(s) = log (S/a?), where
S is the area of the rectangle. We also have for a standard
winning location: C(s,s) = log (I,%/a%), where 1, is the size of
the winning square. For the counterfactual winning position
Sy, we have: C(sy) = log (4l,/a), as s, must be located along
the perimeter of the winning zone. The complexity of
cheating is now: C,,(s;|s1) = 2 + log (d/a) (the two additional
bits are used to select the ‘cheating’ direction from four
possibilities). Finally:

U, > log (S/(41,)) -2 —log & (10)

In the experiments of figure 4, S = 10x8, & = 0.25 (or
more) and I, = 4 or 2. We get U, = 2.3 for situation 4-a and
U, ~ 7.3 for situation 4-d. The difference comes from the
fact that s, is a remarkable point (see appendix) that does
not require to be located on the perimeter of the winning
zone. Moreover, the world has only two directions available
for correcting its ‘mistake’, instead of four.

Formula (9) also explains the influence of the distance to
the target, and thus the systematic preference of 2-b over 2-a
over 2-e, and of 4-a over 4-f over 4-b. The formula does
more: it accounts for the fact that the counterfactual location
s, is closest to sy, a fact that most models merely take as
granted.

Finally, formula (9) explains why situation 2-b dominates
2-c and why situation 4-a dominates 4-c. When the winning
region is split, the complexity of the counterfactual s,
increases, by two bits in 2-c and by one bit in 4-c.
Unexpectedness is thus diminished in both cases, and
emotion is less intense. This is a situation in which
subjective probability (as predicted by (3)) changes, while
extensional probability does not.

Unfortunately, formula (9) is silent about preferences in
figure 3 and it makes two wrong predictions. It wrongly
predicts that 2-a should be more emotional than 2-c and that
4-e should be more emotional than 4-c (note that the
experimental difference between 4-e and 4-c is not
statistically significant). The subjective feeling given
informally by some participants is that in 2-c and 4-c, it was
“harder” to avoid the winning regions and thus that they are
more disappointed. Formulas (6) and (7) may explain these
phenomena by providing an estimate of prior probabilities.
When the winning region is broken down into four pieces,
the complexity of a standard winning region s is increased:
we need to designate a way of distinguishing the pieces (see
appendix). Note that the two additional bits necessary to
find the relevant piece are spared when searching into it, as
it is four times smaller. But C(s,) gets globally increased
and, according to formula (7), winning seems less
unexpected and losing appears less probable. Conversely, in
a situation like 4-e, the loosing region becomes simpler,

making the standard loosing position more complex (ss can
be almost anywhere) and thus making U(s;s) smaller than in
4-c. This may explain why the emotion attached to 4-e is
relatively downgraded.

Discussion

This study investigates a phenomenon which, despite its
importance in the generation of intense emotions in daily
life, resists adequate modeling. In particular, probabilistic
models (including Bayesian models) do not provide
acceptable explanations.

Simplicity theory does not account for all observed
phenomena, but explains for some of them. The principal
missing ingredient is the link between probability, as
defined by unexpectedness through (3) and emotional
intensity. We merely assumed that emotional intensity is an
increasing value of unexpectedness. However, we do not
know how to integrate prior probabilities, given by (6) and
(7), with the amplitude of near-miss given by (9).

The role of prior probabilities is manifest in the situations
of figure 3. It is correlated with the fact that extreme values
of priors in 3-c and 3-e are felt mostly emotional. However,
as evidenced by the large standard deviation in figure 6-¢,
some participants consider situation 3-e as poorly
emotional, as the prior winning probability is very low. We
tried to manipulate experimental settings to favor prior
probability vs. counterfactual thinking. We proposed a
version of the experiment in which dots dynamically
appeared at random locations before stopping at the near-
miss position, instead of moving continuously as in the
preceding experiments. The hope was to make people more
aware of U;s and Uy, as both situations of failures and of
success could be observed just before the test began. A
comparison of figure 7 and figure 10 shows the consistency
of participants’ behavior, but fails to show any effect of the
prompting.

Emotion

_[®

Figure 10: Experiment of figure 4 with random prompting
(89 participants).

For some aspects of the near-miss experience, we must
perhaps make additional assumptions. In the case of
figures 3-c and 3-e, we see that individuals declare equally
strong emotions (figure 6) with some indication that 3-c
would be even more emotional. Unexpectedness is,
however, stronger in 3-e. A possible explanation is that
losses provoke more intense emotions than gains
(Kahneman & Tversky, 1979).
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We are still confident that the near-miss experience obeys
definite laws that are in part to be discovered. The aim was
to show that simplicity, rather than extensional probability,
is the main aspect through which our minds compute
emotional intensity. What is at stake is not only the
elucidation of an important phenomenon that controls many
of our daily emotions. It is also to connect it to a general
theoretical framework, Simplicity Theory, which has been
developed independently and makes strong predictions in
various other domains. One expected outcome of these
studies will be to show that emotional judgment is not
blurred by a variety of independent biases, but obeys
general laws in which simplicity play a central role.
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Appendix

Complexity is still regarded as unknowable by many
scholars, as it cannot be computed in an “objective” way.
This prejudice is not justified in cognitive science (Chater,
1999). Simple codes can approach minimal description. For
a list, we can use a positional code.

- 01000110 11 000 001 010 ...

Note that the first element requires no additional
information (once the list is designated). Such codes are not
self-delimited. Self-delimitation is irrelevant here, as we are
concerned with the minimal description of individual
objects. The preceding code can be easily extended to sets
of lists (as below) or trees, by using positional code on a
branch and switching bits at nodes.

1 11 111
0 10 110 1110
00 100 1100 1111
01 101 1101 11100
000 1000 11000 11101
001 1001 11001 11110
010 1010 11010 11111
011 1011 11011 111000
0000 10000 110000 111001

The lists may contain structures, operations or even
represent short-term memory.

The preceding code can be adapted to assign simple
representations to remarkable points. For instance, on a
bounded list, endpoints are simpler than middle points.

- 0 00 01 000 001 010 110 101 100 10 1

This explains why remarkable points such as frontiers are
less complex than ‘normal’ points.

With this code, elements of a list of size N are coded with
log, N bits on average.
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