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Abstract

Use of Bayesian models to explain both high- and low-
level aspects of cognitive function promises better con-
nections between cognitive science and cognitive neu-
roscience. But standing in the way are fundamental
problems, such as the computational intractability of
Bayesian inference, and the general difficulty of under-
standing how Bayesian calculation can deal with struc-
tural representation. Getting around the problem of in-
tractability seems to involve devising effective methods
for approximating optimal inference. But there is the
alternative of simplifying the interpretation of how in-
ference arises. While the process is normally taken to
involve calculations over an implied joint distribution, it
is possible to view it more simply as data-driven appli-
cation of conditional assertions. This naive interpreta-
tion has several advantages with regard to tractability
and representation. The paper formalizes the model and
demonstrates some of its virtues.

Introduction

Methods of probabilistic inference are increasingly under
the spotlight as cognitive science moves towards greater
use of Bayesian approaches (e.g., Knill and Richards,
1996; Chater et al. 2006). Strongly facilitating this trend
are the ‘graphical models’ for performing inference with
complex probabilistic information (e.g., Pearl, 1988).
Somewhat obstructing it is the knowledge that Bayesian
inference is computationally intractable (Cooper, 1990).
For some, this intractability does not vitiate the explana-
tory value of Bayesian inference viewed as an optimal
solution for a cognitive or perceptual problem (e.g., An-
derson, 1990). The point is made that such models can
be viewed as theories at a functional level of abstraction,
e.g., the computational level of Marr’s scheme (Marr,
1982). For others, the intractability issue is more con-
cerning (e.g., Danks, 2008).

A more basic problem with Bayesian approaches re-
lates to the constraints that methods of probabilistic
inference place on source information. All standard
methods assume a probabilistic model that implicitly
represents an underlying joint distribution (Russell and
Norvig, 2010). Inference is progressed through marginal-
ization, i.e., constrained summations of values appearing
within this joint distribution. The difficulty is that the
process is then infeasible with regard to probabilistic in-
formation that does not properly represent a joint dis-
tribution.
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The problem particularly affects information embody-
ing conditional cycles. Imagine we have boolean vari-
ables X, Y and Z representing basic features of the en-
vironment (e.g., rain, mud and humidity). These are
known to be conditionally related as follows: P(Y|X) =
0.8, P(Z|Y) = 0.4, P(X|Z) = 0.6. Given P(X) = 1.0
(e.g., observed evidence of rain) what probability should
we infer for Y7 Standard methods of probabilistic in-
ference cannot produce any answer. The existence of
a cycle among the conditional relationships means the
model cannot be viewed as representing a joint distribu-
tion. Inference through marginalization is ruled out.

One way around the problem is to take an approach
which dispenses with the underlying joint distribution
altogether. Instead of treating this as the key reference,
we treat the probabilities the model asserts as fundamen-
tal. Conditional values are not viewed as constraints on
an implied joint distribution. Rather they are viewed as
mandating acts of inference. On this basis, P(X|Y) le-
gitimates inference of an unconditional value of X when-
ever an unconditional value of Y is identified. Simulta-
neous inferences for the same variable can be accommo-
dated by letting them contribute equally to the inferred
value, subject to the constraint that probabilities sum to
1. Inferred values are then obtained by normalized sum-
mation of products, much as in marginalization. The
regime accommodates cyclic conditionality. Application
to the case above, for example, produces a final inferred
probability of 0.8 for variable Y.

This regime, in which asserted probabilities are
treated as inference mandates, can be viewed as a naive
form of probabilistic inference (cf. Hansson et al. 2008)
in which inference arises directly from the semantics of
conditional assertions. Application of conditional proba-
bilities to relevant unconditional values has the potential
to identify new unconditional values. These can then be
the basis for production of further values, and so on, in
a potentially infinite sequence. Naive inference becomes
the behaviour of a data-driven machine — a naive infer-
ence machine as it will be called.

Is such a primitive procedure likely to have any use-
ful application? There are various ways it might do so.
Where there is a need to deal with probabilistic infor-
mation embodying cycles, standard forms of inference
cannot be used. Dealing with the situation without re-



quiring additional assumptions, naive inference may then
have a use as a least-commitment approach to inference
in the presence of conditional cycles.

The regime also makes connections with non-
inferential models of mechanism. Accommodation of
cycles means that naive inference can exhibit looping.
Naive inference machines have the potential for infinite
processing. In the case where extremal probabilities (1s
and 0s) are deployed, the behaviour is that of a digital
device with iterative behaviour; a connection can then be
made between naive inference and computation. In fact,
as Section 4 demonstrates, naive inference machines are
Turing equivalent: they can model any form of computa-
tional behaviour. This suggests the potential for expla-
nations unifying modeling of inferential behaviour with
modeling of computational behaviour.

An appealing application of nalve inference is in con-
nection with conventional Bayesian accounts. A diffi-
culty with these is the computational intractability of the
process model. Some accounts cash this out by establish-
ing the means by which processing is implemented (e.g.,
Pouget et al. 2003; Kording and Wolpert, 2006). Others
reserve the right not to do so on grounds of explana-
tory abstraction (e.g., Chater and Oaksford, 2008b). In
general, there is a need to establish a better connection
between the theoretical ideal of Bayesian inference, and
practical mechanisms by which it can be pursued.

Naive inference cannot be viewed as approximating
Bayesian inference. But since it treats the semantics of
the conditional probability assertion in the same way,
situations can arise in which both methods produce the
same result. There is then the potential to treat naive
inference as modeling the ‘bounded rationality’ (Simon,
1957) that ideal rationality must express in practice. In-
stead of approximating the Bayesian ideal, this intro-
duces a less sophisticated interpretation of what infer-
ence involves.

Taking bounded rationality to be modeled by naive in-
ference does achieve some of the benefits of approxima-
tion, however. The process model is no longer computa-
tionally intractable. There is also the prospect of better
connections with models of neural processing. Mediated
by simple operations of summation and normalization,
the machinery of naive inference is likely to be more
easily related to known functionalities of the brain (cf.
Dayan and Abbott, 2001)

The aim of the paper is to set out the proposed model
of naive probabilistic inference in more detail, to for-
malize it mathematically, and to examine its potential
uses. There are five main sections. The next section
(Section 2) formalizes the inference model. Section 3 ex-
amines the degree to which naive inference can emulate
ideal Bayesian estimation. Section 4 explores the sense
in which naive inference machines are Turing equivalent.
Section 5 presents a summary.
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Formalization

In this approach, probabilistic information is assumed
to take the form of probability values for random dis-
crete variables. Conventional notation is used. Thus
P(X = X;) denotes the probability that random variable
X has value X;. If X is boolean, P(X) is a shorthand
for P(X = true).

Given variables X and Y are both boolean, the condi-
tional expression P(X|Y") expresses the probability that
X is true given Y is true. In naive inference, this is
understood to directly mandate acts of inference. Iden-
tification of an unconditional probability for Y, either
by assumption or (prior) inference, establishes the pos-
sibility of inferring an unconditional value of X. Where
inference using multiple conditionals is legitimated, de-
rived products are assumed to contribute equally to the
inferred value, subject to the constraint that probabili-
ties in a distribution must sum to 1.

A probabilistic model is defined to be a set of condi-
tional and unconditional probability values for random
discrete variables. Letting M label such a model, Py (X)
is the unconditional probability of X in model M, and
Py (X|Y) is the conditional probability of X given Y
in model M. Bold font is used to denote distributions.
Thus P (X) is the distribution on variable X repre-
sented by model M. Given X is boolean, P(X) = 1
becomes a shorthand for P(X) = (1, 0).

Defining the unnormalized inferred probability for X;
in model M to be

Py(X;)= Y. Pu(Xic)Pul(c)

CEC(X,;,M)

(1)
the distribution inferred for X in model M is

Py (X) = o (Pyu(X1), ... Pu(Xn)) (2)

In Eq. 1, C(z, M) is the set of conditions that figure
in conditional probabilities asserted for values of X in
model M, n is the number of values of X, and « is the
normalization function. The inference of Eq. 2 is taken
to be defined just in case the model provides evaluations
for all conditions. That is to say, it is defined if the
model provides unconditional values for all applicable
conditions.

Building on this, we can define the complete set of in-
ferences that can be obtained through application of the
inference step to an existing model. Termed a revision,
this is denoted by adding a prime to the model label.
Thus M’ denotes the naive-inferential revision of model
M:

M = { P}y (X) | X € MAPy(X)#Pu(X)} (3)

Here, X € M is true if and only if variable X features
in model M.



Recursive evaluation of M’ can then be the means of
generating a sequence of inferential revisions of a partic-
ular model. M;, the i’th model in the sequence, must
satisty

Mi = Mz'/—l — Mi,1

where the ‘=" operator denotes imposition of M]_,
on M;_ 1. Specifically, M’ = M represents addition
of all unconditional values in M’ to M, with preference
given to values of M’ where both sets give values for
the same variable. Letting M, label the set of condi-
tional values in model M, and M{ be the corresponding
set of unconditional values, the sequence of revisions for
model M then takes a well-defined form. This is denoted
N(M):

N(M) = (M, ... M)

N (M) can also be viewed as labeling the naive infer-
ence machine defined by model M. The behaviour of
the machine is production of revisions. The output is
the revision sequence itself.

A simple illustration is provided by the model of Table
1.

PX=1)=1 P(X=0)=0
PX=1X=1)=0|P(X=0X=1)=1
P(X=1X=0)=1|P(X=0X=0)=0

Table 1: Nalve-inferential oscillator

In this probabilistic model, X is conditionally depen-
dent on itself, but with the conditioned value always be-
ing the opposite of the conditioning value. Nalve in-
ference then yields an infinite revision sequence within
which the value of X continually changes between its
two values. Given shorthand representations for binary-
valued distributions, and vertical arrangement of the el-
ements of the sequence, N(M) evaluates as

{P(X) =1},
{P(X) =0},
N(M) = | {P(X) =1},
{P(X) =0},

This is the behaviour of the naive inference machine
defined by the model of Table 1. The (infinite) sequence
of revisions generated is the output the machine pro-
duces.

Emulation of ideal Bayesian inference

In optimal Bayesian inference, a probabilistic model
comprising conditional and unconditional probabilities
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(i.e. priors) is assumed to represent a joint distribu-
tion. The process of inference involves determining un-
observed values in this distribution. Where uncondi-
tional values are considered to constitute ewvidence, de-
rived values are posteriors. While the process is compu-
tationally intractable (Cooper, 1990), graphical models
such as (Pearl, 1988) are often effective. These allow
the process to be progressed in a way that maximally
exploits independence relationships for factorising cal-
culations.

The naive model of inference relinquishes the assump-
tion of an underlying joint distribution. Inference is
taken to involve data-driven application of conditional
assertions. However, the two approaches place the same
interpretation on conditional assertions. In both inter-
pretations, it is axiomatic that

P(X) = P(X|Y)P(Y)

given known values for P(Y) and P(X|Y). Inference
mediated solely by this rule is thus progressed identically
under naive and ideal protocols.

This can be illustrated using the ‘sprinkler’ exam-
ple, a popular scenario for illustrating the behaviour of
Bayesian inference using Bayesian networks (e.g., Pearl,
1988, p. 56). In this example, variable Rain represents
the occurrence of rain, variable Sprinkler represents a
sprinkler being on overnight, and variable GrassWet
representing the grass being wet. These are all boolean
variables taking values T and F, representing true and
false respectively. Conditional and unconditional prob-
abilities for these variables are illustrated schematically
in Figure 1.

Sprinkler
Rain T F Rain
F 0.4 0.6 < T F
T 0.01 0.99 1 0
N X
GrassWet
Rain Sprinkler T F
F F 0 1
T F 0.8 0.2
F T 0.9 0.1
T T 0.99 0.01

Figure 1: Probabilistic model for Rain/Sprinkler/Grass
example.

In this diagram, each variable is represented by a table.
Values of the variable correspond to columns, while rows
represent conditions. Where unconditional values are
given, they appear in the bottom row of a table. Thus,
the unconditional probability of Rain is here shown to
be 1. The conditional probability of GrassWet given



Rain = T and Sprinkler = F is 0.8, and so on. The val-
ues shown can be viewed as comprising a probabilistic
model in the present sense of the term. They can also
be regarded as comprising a probabilistic model in the
conventional sense of the term. Indeed, given the sim-
plicity of the model guarantees conditional independence
of GrassWet given Sprinkler and Rain, it also repre-
sents a Bayesian network. On this view, the tables are
the conditional probability tables (CPTs) of a standard
Bayesian network.

Say we discover that P(Rain) = 1.0, and wish to infer
the effect on P(Sprinkler). We must decide whether we
wish to treat P(Rain) = 1.0 as the unconditional proba-
bility of Rain, or as observed evidence. This makes a dif-
ference in the case of the Bayesian network: in one case
the network will calculate new values for Sprinkler and
GrassW et through probabilistic inference. In the other,
priors for these two variables will become implicitly de-
fined. Derived probabilities are the same however. The
emerging prior (or inferred probability) for Sprinkler is
P(Sprinker) = 0.01 and the emerging prior (or inferred
probability) for GrassWet is P(GrassWet) = 0.802.

In this case, optimal Bayesian inference relies purely
on derivation (and normalization) of products. There
is no application of Bayes’ rule. Nalve inference is then
able to emulate the process with the same result. Apply-
ing Eq. 2 to the model of Figure 1, the initial revision is
determined to contain P(Sprinkler) = 0.01. It will not
contain a value for GrassW et however, since all the con-
ditions for that variable require unconditional values for
both Rain and Sprinkler. Establishment of an uncon-
ditional probability for Sprinker then prompts a second
revision comprising P(GrassWet) = 0.802.

The Bayesian network generates the same posterior
value (or emergent prior) for GrassWet as does naive in-
ference. Indeed, given the assumption that Sprinkler is
summed-out in the Bayesian network before GrassWet,
the two regimes produce the derivations in the same
order. In simple cases like this, ideal Bayesian infer-
ence and naive inference can produce the same result.
The Bayesian network has a more extensive behavioural
repertoire, of course. Utilizing Bayes’ rule for inverting
conditional probabilities, it could be the means of cal-
culating an unconditional value for Rain given evidence
involving GrassWet, for example.

The key difference between naive and Bayesian infer-
ence is that the former makes no direct use of Bayes’
rule for inverting conditional probabilities. However, this
does not necessarily mean that naive inference is unable
to reproduce classical Bayesian hypothesis selection. In
this scenario, inference is used to determine the hypoth-
esis that optimally explains certain data, given priors on
the hypotheses and the data, and conditional values for
data given hypotheses (i.e., relevant likelihoods). The
functionality applied, however, involves deriving prod-
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ucts of conditional and unconditional values in the usual
way. Naive inference can thus reproduce the effect pro-
vided variables are provided whose unconditional values
are those that would be obtained through application of
Bayes’ rule. On the assumption that such proxies are in-
troduced (or assumed to exist), naive inference then has
the potential to reproduce hypothesis-selection involving
application of Bayes’ rule. On this basis, naive inference
can reproduce the classic inferential scenario of Bayesian
estimation.

Introducing a conditional cycle

Naive inference has the advantage of being able to ac-
commodate models representing conditional cycles. This
effect can be illustrated using a modification of the
‘sprinkler’ example. In the original example, there are
no cycles among the conditions. The conditional struc-
ture takes the form of a directed acyclic graph (DAG), as
required for a Bayesian network. Consider now the vari-
ation of Figure 2. Here variables Rain and GrassWet
have the same conditional relationship. But we now have
a Humidity variable, which is conditionally dependent on
GrassWet. This produces a conditional cycle in which
GrassWet is made more probable by Rain, Humidity is
made more probable by GrassWet, and Rain is made
more probable by Humidity.

Rain
Humidity |T F
T 0.6 0.4
/ | 0\\
GrassWet Humidity
Rain T F N GrassWet |T F
T 08 0.2 - T 04 0.6

Figure 2: Model for Rain/Grass/Humidity example.

This cycle violates the conditional-independence re-
quirements of the Bayesian network, and thus the as-
sumption of an underlying joint distribution. Standard
methods cannot be applied but the naive procedure is
unaffected. Revisions are identified in the usual way.
The presence of the cycle creates the potential for an in-
finite sequence. But in this case, inference rapidly con-
verges on a particular set of unconditional values. Taking
M to be model of Figure 2, we obtain the following finite
sequence:

{P(Rain) = 1},
{P(GrassWet) = 0.8},
{P(Humidity) = 0.4},
{P(Rain) = 0.6},
{P(GrassWet) = 0.8},



The original unconditional probability for Rain ap-
pears here as the zeroth element of the sequence. Deriva-
tion of distributions by Eq. 2 then yields four revisions,
the last of which makes no changes to the model. Infer-
ence terminates at this point, with a final probability of
0.8 for GrassWet. This inferred value may be viewed
as reflecting the cyclical dependency between the three
variables. Alternatively, the inferential process may be
viewed as a dynamic projection of the asserted condi-
tional relationships.

Emulation of Turing Machines

Attention now given turns to other interpretations that
can be applied to naive inference. This section exam-
ines the sense in which naive inference is Turing equiv-
alent. By showing that naive inference can model any
Turing-machine computation, the procedure is shown to
have computational power equivalent to that of a digital
computer, or any other device for effective computation.

A Turing machine is defined in terms of a state-
transition table, a ‘tape’ containing a sequence of sym-
bols, and an initial tape position. In each cycle, the
machine reads the symbol from the current position on
the tape and responds by writing a symbol at that po-
sition, moving the tape one position left or right, and
entering a new state. The behaviour of the machine is
the result of repeatedly applying such transitions, until
the halt state is reached. The final output obtained is
the revised contents of the tape.

To translate a Turing machine into an equivalent naive
inference machine we can proceed as follows. For each
cell of the Turing machine’s tape, we introduce a named
variable whose values are the symbols used by the Turing
machine. We introduce variables to represent the current
symbol read, and the current symbol to be written. We
also introduce variables to represent the current state,
the current move, and the current tape position. Finally,
we establish a clocking variable that cycles through a se-
quence of values representing the read/write/move cycle
of execution. This functionality is achieved through use
of self-referential conditions, as in the model of Table 1.

Probabilities are extremal (i.e., 1s and 0s) in all cases.
Conditional values are configured so that values change
in accordance with the transitions of the Turing machine.
States of the clocking variable are referenced for pur-
poses of sequencing the individual steps of each transi-
tion. Execution of the machine then produces extremal
distributions over variables that precisely replicate the
read/write/move states of the Turing machine. Tape-
cell variables are updated exactly as the Turing machine
updates its tape.

As an illustration, consider the Turing machine de-
fined by the state-transition table of Table 2. The func-
tion of this machine is to increment whatever binary
number is represented on its tape. Each entry in the
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table specifies a single transition. For example, the first
entry, says that in state 0 reading symbol #, the ma-
chine should write a 1, move right (R), and enter state
1. The symbol # represents an empty tape cell.

State Read Write Move New state
0 +# 1 R 1
0 0 1 R 1
0 1 0 L 0
1 # # L h
1 0 0 R 1
1 1 1 R 1

Table 2: Incrementing Turing Machine

Running the machine with a tape representing a bi-
nary number has the effect of producing a binary num-
ber on the tape that is one greater than the initial value.
Given an initial tape with contents [# # 1 1 #], and
initial read position at index 4 (i.e., over the final 1),
the machine executes a series of transitions eventually
producing the tape state [# 1 0 0 #].
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Figure 3: Naive inferential simulation of incrementing

Turing machine.

The equivalent naive inference machine appears in Fig-
ure 3. In this translation, variable R represents the cur-
rent read, W the current write, S the current state and
M the current move. Variable [ is the current tape in-
dex and variable K is the three-phase clock. Variables
T1, T2, T3 etc. represent the tape contents at positions
1, 2, 3 etc. To correctly initialize the machine, we in-
clude unconditional distributions which have the effect
of setting the clock variable to phase 1, the tape posi-
tion variable to the appropriate index, and the tape vari-
ables to values corresponding to the initial contents of
the tape. The ensuing behaviour then perfectly emulates
the original Turing machine, terminating once the halt
state is reached. Tape-state variables at that point cor-
rectly represent the final tape state of the corresponding



Turing machine.

This is not the only way to translate a Turing machine
into an equivalent naive inference machine, of course.
Neither is it claimed to be the best. The demonstration
suffices, however, to show that the behaviour of a Tur-
ing machine can be obtained from naive inference. On
this basis, computational behaviour is contained within
naive inference, and naive inference has the capacity to
‘compute’ any computable function.

A better understanding is then obtained of the sense
in which naive inference addresses the problem of infer-
ential intractability. The protocol does not invoke an
intractable algorithm, due to the fact that it does not
invoke an algorithm of any sort. Rather, it invokes the
general concept of computation. Rather than solving the
problem of intractability, then, naive inference provides
an interpretation in which the problem does not seem
to apply. A clearer understanding is also obtained of
behavioural possibilities. The demonstration that naive
inference is able to compute any function implies it can
be the medium for representing any formal structure.
On that basis, a naive inference machine can then be
the means of applying inferential processes to structural
representations.

Discussion

The paper has proposed a ‘naive’ method of probabilis-
tic inference that deals with the problem of conditional
cycles. While it cannot be viewed as approzimating
Bayesian estimation, it does offer some of the advantages
of an approximation approach. It avoids the problem
of intractability, by linking inference to computation in
general rather than to the action of a specific algorithm.
There may then be implications for ‘the challenge of ap-
plying probabilistic methods over structured symbolic
representations’ (Chater and Oaksford, 2008a, p. 510).
The present method addresses that challenge to some
extent by demonstrating a way in which ‘it is possible to
integrate probability with logic’ (ibid.)

Naive inference offers a novel way to bridge the gap be-
tween the ideal of Baysian calculation and the realities of
innately constrained behaviour. Whereas the tradition
of rational analysis involves modeling ‘cognitive abili-
ties using sophisticated forms of probabilistic inference’
(Chater et al. 2006, p. 287), this approach allows them
to be modeled using naive forms. Rather than assuming
this necessarily involves applying some heuristic approx-
imation of ideal Bayesian calculation, moreover, it can
be taken to involve a non-heuristic procedure operating
under a less sophisticated interpretation of inference.
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