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Abstract

In the last decade a debate in the decision making literature
has centered on the question whether decisions can be better
described by simple non-compensatory heuristics or by more
complex compensatory strategies. We argue that this debate
should be led at a higher level of precision Theories about
decision strategies are implemented at different levels of
description and they often only make verbal, qualitative
predictions. This makes it difficult to compare between them
and to test them against quantitative process data. A way to
make theories comparable and improve the precision of their
predictions is to model them within one computational
framework. Using the example of the recognition heuristic,
we show how simplifying dichotomies such as the one
between non-compensatory and compensatory decision
strategies can dissolve when using detailed quantitative
models.
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Introduction

Imagine you are asked which of two cities is larger, York
or Stockport. You do not know the correct answer but
remember that you recently read an article about York in the
newspaper. You recall that it had some mentionable
industry, but no international airport and also no premier
league soccer team. Of the city of Stockport you have never
heard before. Which city will you answer to be the larger
one? To respond, you could employ the recognition
heuristic (Goldstein & Gigerenzer, 2002). According to it, if
you recognize one of the alternatives, but not the other, you
may infer the recognized one to be larger. Your answer
would be York. As an alternative to the recognition
heuristic, you may rely on a strategy that uses your
knowledge about the city’s attributes as cues. Following
corresponding compensatory models of decision-making,
(e.g., unit-weight linear strategy), you might conclude that
the absence of an airport and a premier league soccer team
speak against York being a large city. Consequently, you
might infer Stockport to be larger.

The example illustrates a debate that has received much
attention in the decision-making literature (for an overview
see Marewski, Pohl, & Vitouch, 2010). Are decisions better
to be described by simple non-compensatory heuristics, or
by complex compensatory decision strategies? The
recognition heuristic is a non-compensatory model for
memory-based decisions: Even if further knowledge beyond
recognizing an alternative is retrieved, this knowledge is
ignored when the heuristic is used. In contrast to this
assumption, many other decision models posit that people
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evaluate alternatives by using knowledge about their
attributes as cues. The common idea behind such
compensatory models is that an alternative’s value on one
cue can be traded off against its value on another cue.

A large amount of evidence has been gathered for as well
as against both positions - for support of the recognition
heuristic see for example: Gigerenzer, Hoffrage, and
Goldstein, 2008; Pachur, 2010; and Volz, et al., 2006; for
challenges of the heuristic see for example: Beaman, Smith,
Frosch, and McCloy, 2010; Dougherty, Franco-Watkins,
amd Thomas, 2008; and Oppenheimer, 2003. However,
non-compensatory and compensatory decision strategies
themselves are broad categories that subsume a number of
different models. For instance, compensatory strategies
propose that knowledge about the alternatives is used in
some way; however they do not agree on how this is done.
Constraint satisfaction models, for example, assume that all
available information is integrated at once, in a parallel,
automatic fashion (Glockner & Betsch, 2008). Evidence
accumulation models, in contrast, assume that evidence for
the alternatives is accumulated sequentially until a decision
boundary is reached (e.g., Lee & Cummins, 2004).

In testing different decision strategies against each other,
research has encountered various problems. First, theories
are often specified at varying levels of detail, making it
difficult to directly compare them. Second, many theories
have been formulated at a verbal qualitative level and are
therefore underspecified relative to the empirical data
against which they are tested. Consider the city size
example again. Based on different theories, one might
generate predictions about decision times; the time
participants need to decide which of the two cities is larger.
Figure 1 illustrates the paradigm that is typically used to
assess these times. Presented with the names of two
alternatives (like the cities York and Stockport), the
participant is asked to infer which of the two has a larger
value on a criterion (e.g., which of the two cities is larger).
All information the person wants to use for this decision has
to be retrieved from memory. Using this paradigm for
testing different strategies, one could for example assume
that decision time increases with the amount of knowledge
that is used in the decision making process (Broder &
Gaissmaier, 2007). However, participants’ decision times
will not only depend on the decision strategy itself, but also
on other factors, like the time it takes to read the names of
the cities, to retrieve information from memory, and to enter
a response. Consequently, the contribution of the decision
strategies themselves might be drowned out by these



additional factors (cf. Hertwig, Herzog, Schooler, &

Reimer, 2008).

York!

York Stockport

Decision time

Figure 1. Sample trial of the memory paradigm as it is
usually used to assess participants’ decisions and decision
times.

In the current project we try to tackle both of the issues
mentioned above. First, we implement different decision
strategies into one cognitive modeling framework. This
results in directly comparable quantitative predictions of the
strategies. Second, by using a cognitive architecture for this
implementation, we take into account the interaction with
additional components of cognition, like reading, memory
retrieval and giving a motor response. This allows us for
assessing the contribution of different decision strategies at
a higher level of precision and for directly comparing them
against empirical data.

Methods

Empirical Data

The empirical data we used to test different strategies was
gained by reanalyzing the data of Experiment 1 from
Pachur, Broder, and Marewski (2008), which has been
argued to provide evidence for both the recognition heuristic
and compensatory strategies (Gigerenzer, Hertwig, &
Pachur, 2010). In the decision phase of the experiment,
Pachur et al. presented their participants with choices
between cities, as in the introductory example: a recognized
city with three associated cues and an unrecognized city
about which nothing was known. The cues were industry,
airport, and soccer. Each cue could be either positive
(speaking for a city being large) or negative (speaking
against a city being large). The cities varied in the pattern of
associated cues, with two, one, or zero of the three cues
being negative (Table 1). For each pair of cities the decision
and the decision time were assessed as shown in Figure 1.
However, in their paper, Pachur et al. only reported the
decision data. Before the decision phase of the experiment,
participants learned the names and cue patterns of the six to-
be-recognized cities. After the decision phase, recognition
memory for all cities and cue memory for the to-be-
recognized cities were assessed. Only pairs in which
participants responded to have recognized one, but not the
other city were analyzed and used in the model tests.

Table 1. Positive (+) and negative (-) cues associated to the
six to-be-recognized cities in Experiment 1 of
Pachur et al. (2008)

City
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cue A% ristol NS gheffiely BTN vork
een ham ton
Industry + + + + + +
Airport + + - - - -
Soccer + + + + - -
Models

To test between different strategies we generated
quantitative models that were implemented in the cognitive
architecture ACT-R (Anderson, et al., 2004). From all
possible modeling accounts we chose ACT-R because it
takes into account both sub-symbolic and symbolic
components of cognition as well as perceptional and motor
processes. This allows for modeling the task as it was
solved by the participants and to directly compare the
modeling results to the empirical data. Like the participants
in the experiments, the models read the city names from a
screen, make a decision about which of the cities is larger
and indicate their decision by pressing one of two keys.
Models’ decisions and decision times are assessed. Below
we describe the details of the decision procedure for each
model.

Assessing recognition. All models start with assessing
recognition of the cities (see Pachur & Hertwig, 2006, for
evidence suggesting that when asked to make a decision
between alternatives, people will first assess their
recognition). In modeling recognition, we follow Anderson
et al. (1998) and Schooler and Hertwig (2005) in assuming
that a city is recognized, if it can be retrieved from memory.
In ACT-R, the probability and the time required for
retrieving a city from memory depend on the city’s level of
activation. The activation 4; of a city i in memory is
determined by three components as shown in Equation 1:

A;=B;+S;+¢. (1)

The first component is the city’s base-level activation B;
which reflects the frequency of encounters with the city in
the past. The second component is the spreading activation
the city receives from the current context S;, reflecting its
usefulness in the current context. The third term ¢ is a
random noise component that is calculated from a logistic
distribution. Given a city’s activation 4;, the probability that
it will be retrieved is calculated by,
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where 7 describes the threshold that has to be crossed for a

retrieval and s describes a noise component. The time

required for a successful retrieval decreases with increasing

activation A4; of a city i, as shown in Equation 3,
retrieval time = Fe ™ s

)

where F describes the latency of the retrieval. If the model
cannot retrieve a city, the time it takes to notice a retrieval



failure is calculated using the retrieval latency F and the
retrieval threshold z:
retrieval failure time = Fe™™. 4)

Assessing cue knowledge. After the initial assessment of
recognition, a subset of the models additionally retrieves
knowledge about cues from memory. We assume that this
retrieval is performed using the same kind of retrieval
processes as are described above for the retrieval of cities
(see Equation 1-4). Analyzing the cue memory task that
followed the decision phase in Pachur et al. (2008), we
found that participants remembered negative cues slower
than positive ones. To reflect this fact, we let the models
retrieve positive cues faster than negative ones by giving
them different activation levels.

Decision strategies. Whereas all models assess
recognition as a first step, they differ in the strategies that
lead to a decision.

Non-compensatory strategies. We implemented four
models to test variations of the non-compensatory
recognition heuristic. These models always decide for the
recognized city. However, they differ in the amount of
knowledge retrieved from memory before this decision is
made. As memory retrieval takes time, depending on the
amount of knowledge that is retrieved before the decision,
the models produce different decision time predictions.

Model-1. Tmplementing the simplest version of the
recognition heuristic (Goldstein & Gigerenzer, 2002), this
model directly uses the outcome of the recognition
assessment and responds with the recognized city.

Model-2. Implementing a newer proposal for the
recognition heuristic (cf. Pachur, et al., 2008), this model
retrieves knowledge about the three cues of the recognized
city from memory. After the cues are retrieved, the model
responds with the recognized city, without using the
retrieved cue knowledge in the decision.

Model-1&2.This model presents a combination of Model-
1 and Model-2, in assuming a race between their strategies.
After recognition is assessed, the strategies to directly
decide for the recognized city and to retrieve a cue race
against each other'. This race is repeated until the decision
is made.

Model-1&2-F.This model is identical to Model-1&2, but
it additionally assumes that retrieved cues will at times be
forgotten. The intuition behind this assumption is that
processing a cue can detract from previously retrieved cues

' In the literature, the terms “race” or “race model” are
sometimes used in similar ways as the terms “evidence
accumulation” or “sequential sampling models”. For instance,
Gold and Shadlen (2007) define race models as process where
“evidence supporting the various alternatives is accumulated
independently to fixed thresholds” (p. 541) and as soon as one of
the alternatives reaches the threshold, it is chosen. Applying the
race to ACT-R’s production rules, we implemented a simplified
version of that mechanism, where competing production rules have
equal utilities (Anderson, et al., 2004) and are therefore chosen at
random. Put in Golden and Shadlen’s terms, the production rules
have equal chances of reaching the threshold.
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(cf. Mensink & Raaijmakers, 1988 for such interference
accounts of forgetting). Forgetting is implemented by an
additional race between retrieve-a-cue, respond-with-
recognized and forgetting that starts as soon as at least two
cues have been retrieved from memory.

Compensatory strategies. The remaining models were
implemented to test different versions of compensatory
decision strategies. Depending on the cue knowledge
associated to a city, these models can decide for and against
the recognized city. They differ in how the cue knowledge is
used in this decision and they produce different decision
time predictions.

Model-3. This model implements a strategy that assumes
that cue knowledge is used implicitly, by memory activation
processes (Glockner & Betsch, 2008). After assessing
recognition, it retrieves knowledge about the three cues of
the recognized city from memory. After all cues are
retrieved, the model tries to form an impression about the
recognized city’s size. It does this by attempting to retrieve
information that indicates whether the city is large. The
probability that this information can be retrieved depends on
memory activation spreading from positive cues (Equation
2). The more positive cues are associated to a city, the more
activation is spread and the higher the chance that the city is
assessed as large. If the model cannot assess the city as
large, it will enter the unrecognized city.

Model-1&3. In assuming a race between the strategies of
Model-1 and 3, this model implements a combination of the
non-compensatory recognition heuristic and a compensatory
decision strategy. After recognition is assessed, the
strategies to directly decide that the recognized city is larger
and to retrieve a cue race against each other. This race is
repeated until the decision is made or all cues are retrieved.
If all cues are retrieved and no decision has been made yet,
the model can additionally try to form an impression about
whether the city is large by using memory activation as
implemented in Model-3.

Model-1&3-F.This model is identical to Model-1&3, but
it additionally assumes that retrieved cues will at times be
forgotten as in Model-1&2-F.

Model-4. This model uses cue knowledge explicitly by
means of a decision criterion as suggested by evidence
accumulation models (Lee & Cummins, 2004). After
assessing recognition, it retrieves knowledge about the cues
for the recognized city. As soon as enough positive or
negative cues are retrieved to meet the model’s decision
criterion, it responds with the recognized city (in case of
positive cues) or the unrecognized city (in case of negative
cues). To reflect different possible decision criteria, the
model is implemented in different versions. Model-4.1
responds as soon as one positive or negative cue is retrieved.
Model-4.2 needs two positive or negative cues for a
decision, and Model-4.3 needs all 3 cues to be positive or
negative to reach its criterion. If the model cannot retrieve
enough cues to reach its criterion, it uses recognition as its
best guess.
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Figure 2. Decisions times (median and quartiles) for participants (grey) and models (black) that always chose the
recognized city. RMSDs were calculated separately for median and quartiles and then averaged.

Results

Pachur et al. (2008) found that some participants
answered always in accordance with the recognition
heuristic (N=25), whereas others seemed to sometimes use
their cue knowledge to decide against the recognized city
(N=15). To investigate this difference further, we analyzed
the data of these two groups of participants separately
(subsequently referring to them as recognition and cue
group). To investigate the effect of cue knowledge, we
analyzed decisions (% of choices for recognized city) and
decision time distributions (medians and quartiles)
separately for two, one, and zero negative cues.

In fitting the models to the human data, we used a
stepwise procedure to constrain the parameter space.
Specifically, we first fit the parameters associated with
recognition and cue retrieval on data of the recognition and
cue-memory tasks. To do so, we implemented separate
ACT-R models of recognition and cue retrieval, which were
fit to the recognition and cue memory data. With these
parameters fixed, we then estimated the remaining
parameters from participants’ decision times in the decision
task’. To allow maximum comparability between the
models, all parameters were kept constant between the
models. Each model was run 40 times on the trials of each
participant.

Recognition Group. As it was to be expected, the non-
compensatory models (Model-1, Model-2, Model-1&2, and
Model-1&2-F) always decided for the recognized city,
replicating the decisions of the recognition group. Also the
compensatory Model-4.3 showed this decision behavior,
because it could never reach its decision criterion of three
negative cues that would have been necessary to decide
against the recognized city. In producing 100% decisions for
the recognized city, by definition of the groups, all these
models reached a RMSD of 0 to the decision data of the

2 ACT-R’s latency factor (F) was set to .1, the retrieval
threshold (7) to -.3, and activation noise (s) to .2. The base levels
(B;) were set to 4.1 for cities and positive cues and to .18 for
negative cues. Spreading activation between cities and negative
cues was set to 0. Maximum associative strength (S) was set to 3.
Visual attention latency was set to .035 and imaginal delay to .1.
All other parameters were kept at the default values of ACT-R 6.0
(Anderson, 2007).
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recognition group. The models largely varied in their
decision time patterns (see Figure 2). In the empirical data,
decision times had a large spread and increased in a linear
fashion with the amount of negative cues associated to a
city. As was to be expected, Model-1 produced fast decision
times that did not vary as a function of cue knowledge and
did not vary between trials. Retrieving cue knowledge
before the decision, Model-2, Model-1&2, and Model-
1&2-F produce a linear increase of decision times with the
number of negative cues. Only the models that implement a
race between different strategies are able to reach a spread
comparable to the empirical data. The best fit is reached by
Model-1&2-F which assumes that cues are at times
forgotten.

Cue Group. Most compensatory models (Model-3,
Model-1&3, Model-1&3-F, Model-4.1, and Model-4.2)
decide for the recognized city in part of the cases. The exact
proportion of these choices depends on the amount of
negative cues associated to the cities and differs between the
models (Figure 3). In the empirical data, the proportion of
choices for the recognized city was overall high but
decreased with the number of negative cues associated to a
city. Using cue-knowledge implicitly, Model-3, Model-
1&3, and Model-1&3-F reflect the decreasing proportion of
choices for the recognized city. In doing so, Models-1&3
and 1&3-F fit the decisions of participants well, whereas
Model-3 underestimates the overall proportion of choices
for the recognized city. The decision patterns of Model-4.1
and Model-4.2 deviate substantially from the human data.
Using a strict decision criterion, these models show a
sudden drop in choices for the recognized city when
reaching their decision criterion of one or two negative cues.
As in the recognition group, the empirical decision times
show a small linear increase with the number of negative
cues and have a large spread. Whereas all models that fit the
cue groups decisions produce linearly increasing decision
times, only Model-1&3-F is able to fit the large spread.
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Figure 3. Proportion of choices for the recognized city for participants (grey) and models (black) that chose the unrecognized
city in part of the trials.

Conclusions

A number of strategies have been proposed for how
people make memory-based decisions between alternatives.
In the current article we explore how such strategies can be
evaluated against each other by using the precision of a
cognitive architecture. By implementing a number of
decision models that have originally been defined at
different levels of description into one architectural
modeling framework, we make these models directly
comparable to each other. By not only modeling decision
processes, but also the interplay of these processes with
perceptual, memory, and motor processes, we produce
quantitative predictions that can be directly compared to the
empirical data.

For participants that always responded with the
recognized city (recognition group), as well as for those that
sometimes decided against the recognized city (cue group),
models that implemented a race between different strategies
performed best. These models were not only able to fit the
participants’ decisions, but also the distribution of their
decision times. The success of these models is interesting,
because, even though they were not identical, they were
very similar. Both types of models retrieve and encode cues
in some of the trials, whereas in others they merely assess
recognition. The models only differ in one respect, namely,
that the best-fitting model of the recognition group (Model-
1&2-F) exclusively relies on recognition, whereas the best

fitting model of the cue-group (Model-1&3-F) sometimes
additionally acts on implicit knowledge, from which it gains
intuition about the recognized city’s size. While this
difference between the two winning models is thus a subtle
one, it does seem to reflect an important psychological
variable that is consistent with the literature on intuitive
versus deliberate modes of processing (e.g., Evans, 2008).

Our results show how dichotomies like the one between
non-compensatory and compensatory processes can dissolve
when implementing decision strategies at a higher level of
detail and precision in a cognitive architecture. In addition,
the good fit of the race models to the human decision times
highlight the possibility that even people who always
responded with recognized cities most likely retrieved and
encoded cues in at least some of the trials. People who
sometimes responded with unrecognized cities, in turn, most
likely based their decisions on cues in some of the trials but
ignored these cues and relied entirely on recognition in
others.

Before concluding, we want to discuss some possible
limitations of our approach. First, the empirical data against
which we tested our models was gathered in an artificial
setting where participants were explicitly taught the cue
values of the to-be-recognized cities before the experiment.
This allowed for high control of participants’ knowledge
and simplified the models. For example, in modeling this
experiment it was reasonable to assume that the different
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Figure 4. Decisions times (median and quartiles) for participants (grey) and models (black) that chose the
unrecognized city in part of the trials. RMSDs were calculated separately for median and quartiles and then averaged.
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cues (soccer, industry, and airport) are represented in
memory with equal strength and that therefore, retrieval
times and probability did not vary between the cues.
However, in real-life, where knowledge is acquired
naturally, the situation becomes more complex. In
naturalistic settings, the activations of different pieces of
information will vary as a function of the environment
(Anderson & Schooler, 1991), resulting in different
probabilities and speed of retrieval for different pieces of
information. Future research will have to show if those
models that won the model comparison here, will also be
able to generalize best to such more naturalistic settings.

Second, in implementing decision strategies that differ in
their level of description and that are often underspecified in
aspects important for the implementation, we had to make a
number of additional assumptions. All assumptions are
grounded in the decision, memory, and ACT-R literatures.
Often, however, these literatures offer more than one
plausible solution. Future evaluation of the different
strategies and their implementation will be necessary to test
the extent to which our results are due to core features of the
modeled strategies and to which extend they were caused by
additional assumptions we had to make for implementing
the strategies.

Summarizing, our results suggest that models, which
implement a race between competing decision strategies,
best predict people’s decisions and decision time
distributions.  This  demonstrates how  simplifying
dichotomies that are so often used in psychological research
can dissolve when using quantitative models that specify the
interplay of underlying cognitive processes.
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