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Abstract 

In the last decade a debate in the decision making literature 
has centered on the question whether decisions can be better 
described by simple non-compensatory heuristics or by more 
complex compensatory strategies. We argue that this debate 
should be led at a higher level of precision Theories about 
decision strategies are implemented at different levels of 
description and they often only make verbal, qualitative 
predictions. This makes it difficult to compare between them 
and to test them against quantitative process data. A way to 
make theories comparable and improve the precision of their 
predictions is to model them within one computational 
framework. Using the example of the recognition heuristic, 
we show how simplifying dichotomies such as the one 
between non-compensatory and compensatory decision 
strategies can dissolve when using detailed quantitative 
models. 
Keywords: recognition heuristic, compensatory strategies, 
cognitive model, ACT-R 

Introduction 
Imagine you are asked which of two cities is larger, York 

or Stockport. You do not know the correct answer but 
remember that you recently read an article about York in the 
newspaper. You recall that it had some mentionable 
industry, but no international airport and also no premier 
league soccer team. Of the city of Stockport you have never 
heard before. Which city will you answer to be the larger 
one? To respond, you could employ the recognition 
heuristic (Goldstein & Gigerenzer, 2002). According to it, if 
you recognize one of the alternatives, but not the other, you 
may infer the recognized one to be larger. Your answer 
would be York. As an alternative to the recognition 
heuristic, you may rely on a strategy that uses your 
knowledge about the city’s attributes as cues. Following 
corresponding compensatory models of decision-making, 
(e.g., unit-weight linear strategy), you might conclude that 
the absence of an airport and a premier league soccer team 
speak against York being a large city. Consequently, you 
might infer Stockport to be larger. 

The example illustrates a debate that has received much 
attention in the decision-making literature (for an overview 
see Marewski, Pohl, & Vitouch, 2010). Are decisions better 
to be described by simple non-compensatory heuristics, or 
by complex compensatory decision strategies?  The 
recognition heuristic is a non-compensatory model for 
memory-based decisions: Even if further knowledge beyond 
recognizing an alternative is retrieved, this knowledge is 
ignored when the heuristic is used. In contrast to this 
assumption, many other decision models posit that people 

evaluate alternatives by using knowledge about their 
attributes as cues. The common idea behind such 
compensatory models is that an alternative’s value on one 
cue can be traded off against its value on another cue. 

A large amount of evidence has been gathered for as well 
as against both positions - for support of the recognition 
heuristic see for example: Gigerenzer, Hoffrage, and 
Goldstein, 2008; Pachur, 2010; and Volz, et al., 2006; for 
challenges of the heuristic see for example: Beaman, Smith, 
Frosch, and McCloy, 2010; Dougherty, Franco-Watkins, 
amd Thomas, 2008; and Oppenheimer, 2003. However, 
non-compensatory and compensatory decision strategies 
themselves are broad categories that subsume a number of 
different models. For instance, compensatory strategies 
propose that knowledge about the alternatives is used in 
some way; however they do not agree on how this is done. 
Constraint satisfaction models, for example, assume that all 
available information is integrated at once, in a parallel, 
automatic fashion (Glöckner & Betsch, 2008). Evidence 
accumulation models, in contrast, assume that evidence for 
the alternatives is accumulated sequentially until a decision 
boundary is reached (e.g., Lee & Cummins, 2004).  

In testing different decision strategies against each other, 
research has encountered various problems. First, theories 
are often specified at varying levels of detail, making it 
difficult to directly compare them. Second, many theories 
have been formulated at a verbal qualitative level and are 
therefore underspecified relative to the empirical data 
against which they are tested. Consider the city size 
example again. Based on different theories, one might 
generate predictions about decision times; the time 
participants need to decide which of the two cities is larger. 
Figure 1 illustrates the paradigm that is typically used to 
assess these times. Presented with the names of two 
alternatives (like the cities York and Stockport), the 
participant is asked to infer which of the two has a larger 
value on a criterion (e.g., which of the two cities is larger). 
All information the person wants to use for this decision has 
to be retrieved from memory. Using this paradigm for 
testing different strategies, one could for example assume 
that decision time increases with the amount of knowledge 
that is used in the decision making process (Bröder & 
Gaissmaier, 2007). However, participants’ decision times 
will not only depend on the decision strategy itself, but also 
on other factors, like the time it takes to read the names of 
the cities, to retrieve information from memory, and to enter 
a response. Consequently, the contribution of the decision 
strategies themselves might be drowned out by these 
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additional factors (cf. Hertwig, Herzog, Schooler, & 
Reimer, 2008). 
 

 

Figure 1. Sample trial of the memory paradigm as it is 
usually used to assess participants’ decisions and decision 

times. 
 

In the current project we try to tackle both of the issues 
mentioned above. First, we implement different decision 
strategies into one cognitive modeling framework. This 
results in directly comparable quantitative predictions of the 
strategies. Second, by using a cognitive architecture for this 
implementation, we take into account the interaction with 
additional components of cognition, like reading, memory 
retrieval and giving a motor response. This allows us for 
assessing the contribution of different decision strategies at 
a higher level of precision and for directly comparing them 
against empirical data. 

Methods 

Empirical Data 
The empirical data we used to test different strategies was 

gained by reanalyzing the data of Experiment 1 from 
Pachur, Bröder, and Marewski (2008), which has been 
argued to provide evidence for both the recognition heuristic 
and compensatory strategies (Gigerenzer, Hertwig, & 
Pachur, 2010). In the decision phase of the experiment, 
Pachur et al. presented their participants with choices 
between cities, as in the introductory example: a recognized 
city with three associated cues and an unrecognized city 
about which nothing was known. The cues were industry, 
airport, and soccer. Each cue could be either positive 
(speaking for a city being large) or negative (speaking 
against a city being large). The cities varied in the pattern of 
associated cues, with two, one, or zero of the three cues 
being negative (Table 1). For each pair of cities the decision 
and the decision time were assessed as shown in Figure 1. 
However, in their paper, Pachur et al. only reported the 
decision data. Before the decision phase of the experiment, 
participants learned the names and cue patterns of the six to-
be-recognized cities. After the decision phase, recognition 
memory for all cities and cue memory for the to-be-
recognized cities were assessed. Only pairs in which 
participants responded to have recognized one, but not the 
other city were analyzed and used in the model tests. 
 

Table 1. Positive (+) and negative (-) cues associated to the 
six to-be-recognized cities in Experiment 1 of  

Pachur et al. (2008) 
 City 

Cue Aber-
deen Bristol Notting-

ham Sheffield Brigh-
ton York 

Industry + + + + + + 
Airport + + - - - - 
Soccer + + + + - - 

 

Models 
To test between different strategies we generated 

quantitative models that were implemented in the cognitive 
architecture ACT-R (Anderson, et al., 2004). From all 
possible modeling accounts we chose ACT-R because it 
takes into account both sub-symbolic and symbolic 
components of cognition as well as perceptional and motor 
processes. This allows for modeling the task as it was 
solved by the participants and to directly compare the 
modeling results to the empirical data. Like the participants 
in the experiments, the models read the city names from a 
screen, make a decision about which of the cities is larger 
and indicate their decision by pressing one of two keys. 
Models’ decisions and decision times are assessed. Below 
we describe the details of the decision procedure for each 
model. 
 

Assessing recognition. All models start with assessing 
recognition of the cities (see Pachur & Hertwig, 2006, for 
evidence suggesting that when asked to make a decision 
between alternatives, people will first assess their 
recognition). In modeling recognition, we follow Anderson 
et al. (1998) and Schooler and Hertwig (2005) in assuming 
that a city is recognized, if it can be retrieved from memory. 
In ACT-R, the probability and the time required for 
retrieving a city from memory depend on the city’s level of 
activation. The activation Ai of a city i in memory is 
determined by three components as shown in Equation 1: 
 

.    (1) 
 

The first component is the city’s base-level activation Bi 
which reflects the frequency of encounters with the city in 
the past. The second component is the spreading activation 
the city receives from the current context Si, reflecting its 
usefulness in the current context. The third term ! is a 
random noise component that is calculated from a logistic 
distribution. Given a city’s activation Ai, the probability that 
it will be retrieved is calculated by, 
 

,    (2) 

 

where ! describes the threshold that has to be crossed for a 
retrieval and s describes a noise component. The time 
required for a successful retrieval decreases with increasing 
activation Ai  of a city i, as shown in Equation 3, 

 

retrieval time = Fe"A i ,   (3) 
 

where F describes the latency of the retrieval. If the model 
cannot retrieve a city, the time it takes to notice a retrieval 
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failure is calculated using the retrieval latency F and the 
retrieval threshold !: 

 

retrieval failure time = Fe"# .  (4) 
 

Assessing cue knowledge. After the initial assessment of 
recognition, a subset of the models additionally retrieves 
knowledge about cues from memory. We assume that this 
retrieval is performed using the same kind of retrieval 
processes as are described above for the retrieval of cities 
(see Equation 1-4). Analyzing the cue memory task that 
followed the decision phase in Pachur et al. (2008), we 
found that participants remembered negative cues slower 
than positive ones. To reflect this fact, we let the models 
retrieve positive cues faster than negative ones by giving 
them different activation levels.  
 

Decision strategies. Whereas all models assess 
recognition as a first step, they differ in the strategies that 
lead to a decision. 

Non-compensatory strategies. We implemented four 
models to test variations of the non-compensatory 
recognition heuristic. These models always decide for the 
recognized city. However, they differ in the amount of 
knowledge retrieved from memory before this decision is 
made. As memory retrieval takes time, depending on the 
amount of knowledge that is retrieved before the decision, 
the models produce different decision time predictions. 

Model-1. Implementing the simplest version of the 
recognition heuristic (Goldstein & Gigerenzer, 2002), this 
model directly uses the outcome of the recognition 
assessment and responds with the recognized city.  

Model-2. Implementing a newer proposal for the 
recognition heuristic (cf. Pachur, et al., 2008), this model 
retrieves knowledge about the three cues of the recognized 
city from memory. After the cues are retrieved, the model 
responds with the recognized city, without using the 
retrieved cue knowledge in the decision. 

Model-1&2.This model presents a combination of Model-
1 and Model-2, in assuming a race between their strategies. 
After recognition is assessed, the strategies to directly 
decide for the recognized city and to retrieve a cue race 
against each other1. This race is repeated until the decision 
is made. 

Model-1&2-F.This model is identical to Model-1&2, but 
it additionally assumes that retrieved cues will at times be 
forgotten. The intuition behind this assumption is that 
processing a cue can detract from previously retrieved cues 

                                                
1 In the literature, the terms “race” or “race model” are 

sometimes used in similar ways as the terms “evidence 
accumulation” or “sequential sampling models”. For instance, 
Gold and Shadlen (2007) define race models as process where 
“evidence supporting the various alternatives is accumulated 
independently to fixed thresholds” (p. 541) and as soon as one of 
the alternatives reaches the threshold, it is chosen. Applying the 
race to ACT-R’s production rules, we implemented a simplified 
version of that mechanism, where competing production rules have 
equal utilities (Anderson, et al., 2004) and are therefore chosen at 
random. Put in Golden and Shadlen’s terms, the production rules 
have equal chances of reaching the threshold. 

(cf. Mensink & Raaijmakers, 1988 for such interference 
accounts of forgetting). Forgetting is implemented by an 
additional race between retrieve-a-cue, respond-with-
recognized and forgetting that starts as soon as at least two 
cues have been retrieved from memory. 

Compensatory strategies. The remaining models were 
implemented to test different versions of compensatory 
decision strategies. Depending on the cue knowledge 
associated to a city, these models can decide for and against 
the recognized city. They differ in how the cue knowledge is 
used in this decision and they produce different decision 
time predictions. 

Model-3. This model implements a strategy that assumes 
that cue knowledge is used implicitly, by memory activation 
processes (Glöckner & Betsch, 2008). After assessing 
recognition, it retrieves knowledge about the three cues of 
the recognized city from memory. After all cues are 
retrieved, the model tries to form an impression about the 
recognized city’s size. It does this by attempting to retrieve 
information that indicates whether the city is large. The 
probability that this information can be retrieved depends on 
memory activation spreading from positive cues (Equation 
2). The more positive cues are associated to a city, the more 
activation is spread and the higher the chance that the city is 
assessed as large. If the model cannot assess the city as 
large, it will enter the unrecognized city.  

Model-1&3. In assuming a race between the strategies of 
Model-1 and 3, this model implements a combination of the 
non-compensatory recognition heuristic and a compensatory 
decision strategy. After recognition is assessed, the 
strategies to directly decide that the recognized city is larger 
and to retrieve a cue race against each other. This race is 
repeated until the decision is made or all cues are retrieved. 
If all cues are retrieved and no decision has been made yet, 
the model can additionally try to form an impression about 
whether the city is large by using memory activation as 
implemented in Model-3.  

Model-1&3-F.This model is identical to Model-1&3, but 
it additionally assumes that retrieved cues will at times be 
forgotten as in Model-1&2-F. 

Model-4. This model uses cue knowledge explicitly by 
means of a decision criterion as suggested by evidence 
accumulation models (Lee & Cummins, 2004). After 
assessing recognition, it retrieves knowledge about the cues 
for the recognized city. As soon as enough positive or 
negative cues are retrieved to meet the model’s decision 
criterion, it responds with the recognized city (in case of 
positive cues) or the unrecognized city (in case of negative 
cues). To reflect different possible decision criteria, the 
model is implemented in different versions. Model-4.1 
responds as soon as one positive or negative cue is retrieved. 
Model-4.2 needs two positive or negative cues for a 
decision, and Model-4.3 needs all 3 cues to be positive or 
negative to reach its criterion. If the model cannot retrieve 
enough cues to reach its criterion, it uses recognition as its 
best guess.  
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Results 
 

Pachur et al. (2008) found that some participants 
answered always in accordance with the recognition 
heuristic (N=25), whereas others seemed to sometimes use 
their cue knowledge to decide against the recognized city 
(N=15). To investigate this difference further, we analyzed 
the data of these two groups of participants separately 
(subsequently referring to them as recognition and cue 
group). To investigate the effect of cue knowledge, we 
analyzed decisions (% of choices for recognized city) and 
decision time distributions (medians and quartiles) 
separately for two, one, and zero negative cues. 

In fitting the models to the human data, we used a 
stepwise procedure to constrain the parameter space. 
Specifically, we first fit the parameters associated with 
recognition and cue retrieval on data of the recognition and 
cue-memory tasks. To do so, we implemented separate 
ACT-R models of recognition and cue retrieval, which were 
fit to the recognition and cue memory data. With these 
parameters fixed, we then estimated the remaining 
parameters from participants’ decision times in the decision 
task2. To allow maximum comparability between the 
models, all parameters were kept constant between the 
models. Each model was run 40 times on the trials of each 
participant. 

Recognition Group. As it was to be expected, the non-
compensatory models (Model-1, Model-2, Model-1&2, and 
Model-1&2-F) always decided for the recognized city, 
replicating the decisions of the recognition group. Also the 
compensatory Model-4.3 showed this decision behavior, 
because it could never reach its decision criterion of three 
negative cues that would have been necessary to decide 
against the recognized city. In producing 100% decisions for 
the recognized city, by definition of the groups, all these 
models reached a RMSD of 0 to the decision data of the 

                                                
2 ACT-R’s latency factor (F) was set to .1, the retrieval 

threshold (") to -.3, and activation noise (s) to .2. The base levels 
(Bi) were set to 4.1 for cities and positive cues and to .18 for 
negative cues. Spreading activation between cities and negative 
cues was set to 0. Maximum associative strength (S) was set to 3. 
Visual attention latency was set to .035 and imaginal delay to .1. 
All other parameters were kept at the default values of ACT-R 6.0 
(Anderson, 2007). 

recognition group. The models largely varied in their 
decision time patterns (see Figure 2). In the empirical data, 
decision times had a large spread and increased in a linear 
fashion with the amount of negative cues associated to a 
city. As was to be expected, Model-1 produced fast decision 
times that did not vary as a function of cue knowledge and 
did not vary between trials. Retrieving cue knowledge 
before the decision, Model-2, Model-1&2, and Model-
1&2-F produce a linear increase of decision times with the 
number of negative cues. Only the models that implement a 
race between different strategies are able to reach a spread 
comparable to the empirical data. The best fit is reached by 
Model-1&2-F which assumes that cues are at times 
forgotten. 

Cue Group. Most compensatory models (Model-3, 
Model-1&3, Model-1&3-F, Model-4.1, and Model-4.2) 
decide for the recognized city in part of the cases. The exact 
proportion of these choices depends on the amount of 
negative cues associated to the cities and differs between the 
models (Figure 3). In the empirical data, the proportion of 
choices for the recognized city was overall high but 
decreased with the number of negative cues associated to a 
city. Using cue-knowledge implicitly, Model-3, Model-
1&3, and Model-1&3-F reflect the decreasing proportion of 
choices for the recognized city. In doing so, Models-1&3 
and 1&3-F fit the decisions of participants well, whereas 
Model-3 underestimates the overall proportion of choices 
for the recognized city. The decision patterns of Model-4.1 
and Model-4.2 deviate substantially from the human data. 
Using a strict decision criterion, these models show a 
sudden drop in choices for the recognized city when 
reaching their decision criterion of one or two negative cues. 
As in the recognition group, the empirical decision times 
show a small linear increase with the number of negative 
cues and have a large spread. Whereas all models that fit the 
cue groups decisions produce linearly increasing decision 
times, only Model-1&3-F is able to fit the large spread. 

 

Figure 2. Decisions times (median and quartiles) for participants (grey) and models (black) that always chose the 
recognized city. RMSDs were calculated separately for median and quartiles and then averaged. 
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Conclusions 
 

A number of strategies have been proposed for how 
people make memory-based decisions between alternatives. 
In the current article we explore how such strategies can be 
evaluated against each other by using the precision of a 
cognitive architecture. By implementing a number of 
decision models that have originally been defined at 
different levels of description into one architectural 
modeling framework, we make these models directly 
comparable to each other. By not only modeling decision 
processes, but also the interplay of these processes with 
perceptual, memory, and motor processes, we produce 
quantitative predictions that can be directly compared to the 
empirical data. 

For participants that always responded with the 
recognized city (recognition group), as well as for those that 
sometimes decided against the recognized city (cue group), 
models that implemented a race between different strategies 
performed best. These models were not only able to fit the 
participants’ decisions, but also the distribution of their 
decision times. The success of these models is interesting, 
because, even though they were not identical, they were 
very similar. Both types of models retrieve and encode cues 
in some of the trials, whereas in others they merely assess 
recognition. The models only differ in one respect, namely, 
that the best-fitting model of the recognition group (Model-
1&2-F) exclusively relies on recognition, whereas the best 

fitting model of the cue-group (Model-1&3-F) sometimes 
additionally acts on implicit knowledge, from which it gains 
intuition about the recognized city’s size. While this 
difference between the two winning models is thus a subtle 
one, it does seem to reflect an important psychological 
variable that is consistent with the literature on intuitive 
versus deliberate modes of processing (e.g., Evans, 2008).  

Our results show how dichotomies like the one between 
non-compensatory and compensatory processes can dissolve 
when implementing decision strategies at a higher level of 
detail and precision in a cognitive architecture. In addition, 
the good fit of the race models to the human decision times 
highlight the possibility that even people who always 
responded with recognized cities most likely retrieved and 
encoded cues in at least some of the trials. People who 
sometimes responded with unrecognized cities, in turn, most 
likely based their decisions on cues in some of the trials but 
ignored these cues and relied entirely on recognition in 
others. 

Before concluding, we want to discuss some possible 
limitations of our approach. First, the empirical data against 
which we tested our models was gathered in an artificial 
setting where participants were explicitly taught the cue 
values of the to-be-recognized cities before the experiment. 
This allowed for high control of participants’ knowledge 
and simplified the models. For example, in modeling this 
experiment it was reasonable to assume that the different 

Figure 3. Proportion of choices for the recognized city for participants (grey) and models (black) that chose the unrecognized 
city in part of the trials.  

Figure 4. Decisions times (median and quartiles) for participants (grey) and models (black) that chose the 
unrecognized city in part of the trials. RMSDs were calculated separately for median and quartiles and then averaged. 
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cues (soccer, industry, and airport) are represented in 
memory with equal strength and that therefore, retrieval 
times and probability did not vary between the cues. 
However, in real-life, where knowledge is acquired 
naturally, the situation becomes more complex. In 
naturalistic settings, the activations of different pieces of 
information will vary as a function of the environment 
(Anderson & Schooler, 1991), resulting in different 
probabilities and speed of retrieval for different pieces of 
information. Future research will have to show if those 
models that won the model comparison here, will also be 
able to generalize best to such more naturalistic settings. 

Second, in implementing decision strategies that differ in 
their level of description and that are often underspecified in 
aspects important for the implementation, we had to make a 
number of additional assumptions. All assumptions are 
grounded in the decision, memory, and ACT-R literatures. 
Often, however, these literatures offer more than one 
plausible solution. Future evaluation of the different 
strategies and their implementation will be necessary to test 
the extent to which our results are due to core features of the 
modeled strategies and to which extend they were caused by 
additional assumptions we had to make for implementing 
the strategies. 

Summarizing, our results suggest that models, which 
implement a race between competing decision strategies, 
best predict people’s decisions and decision time 
distributions. This demonstrates how simplifying 
dichotomies that are so often used in psychological research 
can dissolve when using quantitative models that specify the 
interplay of underlying cognitive processes.  
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