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Abstract

We present the first developmental model of interval
timing. It is a memory-based connectionist model of how
infants learn to perceive time. It has two novel features
that are not found in other models. First, it uses the
uncertainty of a memory for an event as an index of how
long ago that event happened. Secondly, embodiment —
specifically, infant motor activity — is crucial to the
calibration of time-perception both within and across
sensory modalities. We describe the model and present
three simulations which show (1) how it uses sensory
memory uncertainty and bodily representaions to index
time, (2) that the scalar property of interval timing
(Gibbon, 1977) emerges naturally from this network and
(3) that motor activity can synchronize independent
timing mechanisms across different sensory modalities.

Keywords: Infancy; cognitive development; interval timing;
embodied learning.

Introduction

Adults from all cultures and backgrounds can accurately
anticipate short-term events, can catch objects thrown to
them, and can perform the enormous range of human
activities that require timing. This universality may seem to
imply that the sense of time does not rely on learning or
embodiment, a position implicitly taken by the well-known
pacemaker-accumulator models of time perception (Gibbon,
1997; Church, 1984; Gibbon, Church and Meck, 1984) and
multiple-oscillator/coincidence-detection models (Miall,
1989; Church and Broadbent, 1990). But there are a number
of problems with these models, most important among
them, the problem of resetting the system for every event
for which a time judgment might later be required.
Recently, the reset problem has been avoided by suggesting
that time perception depends on memory-trace decay
(Staddon, 2005). Our central hypothesis is that adult timing
capacities are learned in early infancy and require grounding
in motor activity. For this reason, we developed a model of
time-perception learning in infants.

354

As far as we know this is the first developmental model of
interval timing. It is a memory-based connectionist model of
how infants learn to perceive time and has two further novel
features. First, it uses the uncertainty of a memory for an
event as the measure of how long ago that event happened.
This is in contrast to other memory models which use
relative intensity (e.g Staddon and Higa, 1999). Secondly,
it is a developmental model in which embodiment —
specifically, infant motor activity — is crucial to the
calibration of time-perception within and across sensory
modalities. Learning and coordinated motor activity in
infancy play a key role in synchronising different timing
mechansism and permitting developmental predictions. In
addition, the scalar property of interval timing (Gibbon,
1977) emerges naturally from the model.

This paper is organized as follows. We begin by briefly
discussing the various classes of models of time perception.
We then present the theoretical justification and framework
for our connectionist model of timing based on memory-
trace decay. We focus, in particular, on the need to calibrate
this model via repetitive motor activity. Finally, we present
the details of the model, including how it is calibrated by
replicable signals in the motor system, and demonstrate that
the well-known scalar property of interval timing (Gibbon,
1977) is a natural by-product of its operation. We also show
how this model could provide developmental predictions.

Background

Time perception is central to human cognition (e.g.,
Grondin, 2008; Zakay and Block, 1997). Not only does it
allow us to organize and make sense of physical events, it
also underlies micro and macro level social interactions. At
the level of the individual, time perception is linked to
executive control, delayed gratification, and decision
making. It, therefore, comes as no surprise that Immanuel
Kant described time as an inner sense that structures and
makes possible cognition. Human time perception is
generally divided into three categories: precision timing
(less than 500 ms), interval timing (500 ms. to 5 mins.), and
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longer-term time perception, each of which appears to
implicate by a different neurocomputational system (Buhusi
and Meck, 2005). This paper will be concerned only with
interval timing, which lies between cellularly-driven
precision timing and longer-term sequence-based, schema-
driven timing. This intermediate level is believed to share a
common processing core with spatial and numerical
magnitude estimation abilities (Walsh, 2003; Brannon,
Suanda and Libertus, 2007).

There are currently three major explanatory paradigms for
interval timing. The first relies on an internal pacemaker
that emits regular, short pulses that are counted by an
accumulator. The number of pulses stored in the
accumulator gives the measure of the time that has passed
(Staddon and Higa, 1999; Church, 1984; Gibbon, Church
and Meck, 1984, Droit-Volet and Wearden 2001). The
second class of models relies on multiple neuronal
oscillators with coincidence detectors associating particular
patterns of firing with given time intervals (Church and
Broadbent, 1984, Matell and Meck, 2000). Process-decay
models constitute the final class, where the estimation of the
passage of time is derived from the decay of memory traces
(Staddon and Higa, 1999; Lewis and Miall, 2006).

One of the most significant problems with both
pacemaker/accumulator and oscillator/coincidence-detector
models is the necessity of resetting the accumulators or
oscillators for every event that could potentially be timed.
Are there multiple accumulators, one for each possible
event? What triggers their resetting? What, exactly,
constitutes “an event?” Memory models of time-perception
do not have this problem. The activation pattern for any
event for which there is a memory trace will decay to a
greater or lesser extent depending on how long ago the
event took place. The memory-trace decay determines the
perception of the amount of time that has passed.

However, models that rely on memory-trace decay need to
be calibrated against the duration of events in the world. We
suggest that infant motor activity is a plausible way in
which this calibration could be achieved early in
development. Numerous authors (Lakoff, 1987; Glenberg,
1997; Thelen and Smith, 1996; Piaget, 1955) have
convincingly argued for the importance of motor activity in
structuring early perceptual and cognitive development. We
believe that infant time perception needs to be included in
the range of cognitive phenomena structured by motor
activity.

There is now ample evidence that infants as young as 4
months are able to keep track of short time intervals and can
respond to the violation of an expectation based on a regular
time interval (Colombo and Richman, 2002; Adler et al,
2008; Brannon et al, 2007; Clifton, 1974). However, this
ability is not entirely mature and continues to develop well
into childhood (e.g., Friedman, 2008; Droit-Volet, Tourret
and Wearden, 2004; Goldberg, 1995), in concert with
children’s improved attentional control.
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Theoretical Framework

We suggest that the development of interval time perception
in infants is intimately linked to coordinated motor activity.
Three main lines of argument support this hypothesis:

1. Repetitive motor activity is ubiquitous in early
infancy (e.g., Piaget, 1955; Droit-Volet, Clement and
Fayol, 2008), even being present in newborns (Van der
Meer, Van der Weel and Lee 1995; Lewandowsky, 1993).
This movement is perfectly correlated with the time that it
takes to complete it. When a baby moves its hand to touch
its mother’s face, this is a motor activity, but it is also a
temporal activity, because it takes a certain amount of
time for the baby’s hand to move from its starting
position to its final position. This fact will be used to
calibrate our activation-decay model of time perception.

2. Areas of the brain that are important in motor
activity have recently been found to play a role in
perceptual timing (Ivry, 1996; Rao, Meyer and
Harrington, 2001). It is now known that the disruption of
input from the motor cortex to the associative areas of the
parietal cortex selectively interferes with perceptual
timing (Bueti, Bahrami and Walsh, 2008).

3. Memory-trace decay is known to exist in the brain
and is a well-studied and neurophysiologically plausible
phenomenon (Staddon and Higa, 1999; Lewis and Miall,
2006). In contrast, after 25 years of research the
neurological evidence for accumulator models remains
equivocal (Staddon, 2005; Buhusi et al., 2005).

In addition, if time perception is shown to develop from
embodied sensorimotor origins in infancy into more abstract
adult representations then the present theory could provide a
framework to explain how adult temporal concepts appear
embodied despite limited neural data in adults (Kranjec and
Chatterjee, 2010).

The scalar property

The scalar property for interval-timing (Gibbon, 1977) is a
widely replicated finding in both adult humans and rats (see
Gibbon and Allan, 1984 for a book length summary). It
states that time-perception errors (E) increase as a scalar
function of the length of the time interval (I) to be predicted.
An interval twice as long (2I) produces errors that are twice
the large (2E). This is surprising because the Central Limit
Theorem predicts that error in cumulative processes grows
more slowly — the expected error for an interval length 21

would be \/EE The mechanisms of the model that we
propose in the present paper solves this problem, time-
interval prediction uncertainty in our model does, indeed,
increase in a scalar fashion.

The need for calibration

Memory-trace models determine the passage of time in
terms of how much a memory trace has decayed. But
memory-trace decay cannot be directly decoded into
temporal information, unless there is (or has been) some
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Figure 1. The two lines of graphs show hypothetical activation decay sequences (“ fading gaussians™ ) over visual columns
(0=0.0045, B =0.001, ¢ = 0.0105) and over auditory columns (¢=0.0048, B =0.001, ¢ = 0.0105) at 500 time-step intervals
over 3000 time steps. Uncertainty (¢ ) in both modalities grows linearly and leads to the scalar property of interval timing.

means of grounding that decay in meaningful, repeatable Visual and auditory events come in all shapes, sizes and
event sequences. The central hypothesis of this paper is our intensities. The initial activation associated with an event
suggestion that infants ground memory-trace decay through can therefore vary considerably in amplitude. The fading
self-generated, repetitive corporeal motions (such as arm  memory trace for a high-intensity event will not correspond
movement). A simple example illustrates this idea. directly to the fading memory trace for a low-intensity

Each time a baby moves its hand from a vertical position event. That correspondence can be established via constant-
to a horizontal position (Figure 1), it takes approximately velocity body movement. The "yardstick" of repeatable,
the same amount of time and this allows different amounts predictable body movement in space is what we propose to
of memory-trace decay to be grounded in amounts of body align the time perception for the two events.
or arm movement. Visual and auditory are often, but not always, correlated

Imagine a baby playing with some toys. The baby picks Many visual events are not accompanied by a simultaneous
up a colored block, waves it about a bit before bringing the production of sound and vice-versa. It is also important to
object to its mouth for a closer inspection. The length of  note that the calibration of visual and auditory memory-
time between when the baby first noticed the toy and when trace decay rates does not have to happen simultaneously.
it arrives at its mouth will be directly proportional to the
amount of arm movement the baby has carried out. In Architecture of the network
another case, imagine that a baby is lying in a cot and hears
a noise to his or her left. The baby may have to manouver its
whole body in order to orient its head towards the sound.
Again the amount of movement is proportional to the time
since the original sound.

Moreover, similar movement sequences will take broadly
similar lengths of time. So body and arm movement can
serves as a rough femporal yardstick for visual and auditory
memory-trace decay. In this way, over time an association
between how long ago an event took place (as measured by
activation decay of a memory trace) and limb movement is
gradually learned. Infant body movement serves as a
metronome for the timing of memory decay.

For this model we used a simple connectionist architecture
(Figure 2) with a “visual” and an “auditory” pathway
leading to the same set of “arm position nodes.” Note that
arm position here is chosen as an easily graspable instance
of the more general notion of proprioceptive configuration.

The input layer consisted of 41 units for each sensory
modality which represented a memory as time evolving
guassian. These inputs connected to two independent sets of
10 hidden nodes which both connected to the same 10
output nodes which encoded arm position as a binary vector.
During training a particular arm position is associated with a
particular time interval in one or the other modality and the
network is trained using back-propogation of error. At test
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the gaussian corresponding to a particular time interval is
presented in a single modality and the predicted arm
position that is output serves as a proxy estimate of the
amount of time since the original sensory event.

Arm position encoding

Here we use simplified topographic representations of limb
position with binary encoding. Position 1 is given as [1 0 0
0... ], position two as [1 1 0 0 ... ] and so on. Although
movement is continuous we do not code intermediate
positions. Similarly, we are using a completely linear
representation. This is an approximation. Further research
with this model will attempt to direcly fit data from classic
studies of infant timing abilities which used predictive
reaching as diagnostic measure (von Hofsten, 1980) and
infant electromyography (EMG) data collected as part of
this research programme.

Memory decay using fading gaussians

We begin with a cluster of neuronal columns in visual
cortex. The central column of the 4l-column cluster is
assumed to receive input from the sensory interface. The
initial activation level of this column depends on the
intensity of the input stimulus, which we assume to be a
visual or auditory stimulus of short duration. Once the
stimulus is no longer present, the peak activation value of
the central column will decrease and activation will spread
to neighboring columns. The activation of the i column at
time step ¢ is designated by A;(t), Activation at time ¢+/ is
determined by the following equation:

A,(t+1)=a(4,, (t)+Ai+1 (t))+( 1 +B_¢)Ai (t)

where

o determines the amount of activation spreading between
adjacent columns;

[ determines the level of self-excitation

¢ determines the amount of activation leakage.

The evolution of activation in this cluster of columns,
which we refer to as “fading gaussians,” is illustrated by the
series of graphs at the top and bottom of Figure 1, indicating
activation decay in the visual (top) and auditory (bottom)
columns.

Results

We report three preliminary results from our simulations'.
First, we show that the network does, indeed, gradually
learn to associate the fading-gaussian input profiles with the
various arm positions. The network gradually learns to
associate the various stages of the fading visual or auditory
input profiles with arm positions (Figure 3). Second, after
training, we test it to determine the amount of error roduced
for each time interval (Figure 4).

'The MATLAB code for these simulations can be downloaded
from http://www.cbcd.bbk.ac.uk/people/affiliated/caspar/time
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Figure 2: Schematic representation of network.

This testing is done by inputting to the network the
activation gaussians corresponding to 500, 1000, 1500, etc
time steps of decay (here denoted as intervals from 1 to 90
seconds). We note the average error produced from 20
seperate estimates at each time interval. Figure 4 shows that
error increases approximately as a linear function of the
time interval being measured, which is what Weber's Law
for interval timing predicts (Gibbon, 1977). Third, in a final
simulation, we show how, via arm movement, the visual and
auditory fading gaussians produce correlated outputs. In
other words, whether a time interval is measured in the
visual modality or in the auditory modality, the output (i.e.,
the estimate for the length of the time interval) will be the
same.

Simulation 1: Development of interval timing

This first simulation looks at the performance of a network
trained in one modality (Figure 3). A naive network is
initialised with small random weights and is trained with a
set of randomly presented gaussian activations. Each of
these is associated with a particular amount of arm
movement and the network is trained to predict these values.
Figure 3 shows the average output of 20 networks during
training across the full range of possible time intervals. The
predicted arm position given by the network is translated to
the corresponding time interval to plot the figure.

As can be seen the network learns to predict the intervals
quite effectively in the middle of the range. It over estimates
timing on short intervals and underestimates it on long
intervals. In part this is due the lack of granularity of the
binary encoding. However, this general pattern of responses
has been found in children's estimates of time (Droit-Volet,
2003). This model could provide an explanation for this
developmental effect.
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Figure 3: Learning in a single modality network. Each line
represents the output of partially trained networks. As
learning progresses the lines tend to converge to the 'perfect
prediction' diagonal. (Each line represents an averaged over
20 equivalently trained networks.)

Simulation 2: The scalar property

The second simulation demonstrates how the scalar property
of interval timing is a natural feature of this model. With a
network trained to make predictons of arm location from
memory decay, we a took a set of twenty responses for 50
different time points between 1 and 90 seconds. The average
of these responses is plotted in Figure 4, together with error
bars representing one standard deviation. The scalar
property says that the size of the errors is proportional to the
length of the interval. In other words error divided by
interval should be a constant. We also plot this relative
proportion in Figure 4. This proportion is constant which is
what Weber's law predicts.

The bump appears to be due to the limited granularity of
using a binary representation of arm position. It is important
to note that the simplifying assumptions about bodily
representaion (binary, linear) are likely to impair network
performance. Using a non-binary representation would
provide greater information. Whilst Fitts Law states that the
motor system obeys a power law which suggests that motor
representations also possess scalar properties. Similarly, in
the current model, body position is used both to calibrate the
sensory modalites and as a proxy representaion of time
quantities. As an infant matures it is likely that its time
representations will become more abstract, although it is
beyond the scope of this paper to demonstrate this. In line
with Walsh's (2003) ATOM model, we expect the brain to
recruit regions of the cortex that represent quantity
logarithmically. Future iterations of this model will
investigate both these refinements.
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standard deviations from 20 networks. The lower line shows
this error as a relative proportion of the predicted interval.
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modalities
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The first two simulations looked at the performance of a
network trained in one modality. Here we investigate how
embodiment can work as a mechanism to synchronise and
calibrate time interval estimates in different modalities.
Droit-Volet (2003) showed that children's interval timing
can differ across auditory and visual domains suggesting
that there is some independence of these measures and that a
development mechanism for calibration is required.
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Figure 5: Correlation between network predictions in two
independent modalities with training.



In our model, each modality is trained separately but is
tied to the same underlying bodily representation. To show
how this leads to calibration and synchronisation of clocks
in different modalities, we took representative networks
trained in two modalities and looked at their outputs across
the full range of possible intervals (1 to 90 seconds.)
Correlating these outputs for the two independent networks
showed how well calibrated and synchronised the networks
were. In Figure 5, we plot the evolution of this correlation
as the networks both gain greater experience.

Conclusion

We have presented a new model of interval timing in
infants. It is the first developmental model of time
perception and has two further novel features. It is based on
memory uncertainty and it utilizes embodied learning to
calibrate timing across different perceptual modalities. We
have demonstrated that this model captures the scalar
property of interval timing and certain developmental
effects. One prediction of this model is that restricting a
baby's movement would impair his or her time perception.
This precise prediction is part of an ongoing research
project involving babies.
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