
Categorial compositionality continued: A category theory explanation for
quasi-systematicity

Steven Phillips (steve@ni.aist.go.jp)
National Institute of Advanced Industrial Science and Technology (AIST),

Tsukuba, Ibaraki 305-8568 JAPAN

William H. Wilson (billw@cse.unsw.edu.au)
School of Computer Science and Engineering, The University of New South Wales,

Sydney, New South Wales, 2052 AUSTRALIA

Keywords: quasi-systematicity; classicism; connectionism;
compositionality; category theory; product; pullback; functor;
natural transformation; adjunction; universal construction

Abstract
The classical account for systematicity of human cognition
supposes: (1) syntactically compositional representations;
and (2) processes that are sensitive to their structure. The
problem with this account is that there is no explanation as
to why these two components must be compatible, other than
by ad hoc assumption (convention) to exclude nonsystematic
variants that, e.g., mix prefix and postfix concatenative com-
positional schemes. Recently, we proposed an alternative ex-
planation (Phillips & Wilson, 2010) without ad hoc assump-
tions, using a branch of mathematics, called category theory.
In this paper, we extend our explanation to domains that are
quasi-systematic (e.g., language), where the domain includes
some but not all possible combinations of constituents. The
central category-theoretic construct is an adjunction involv-
ing pullbacks, where the focus is on the relations between
processes, rather than the representations. In so far as cog-
nition is systematic, the basic building blocks of cognitive
architecture are adjunctions by our theory.

Introduction
A complete theory of human cognition must explain why our
mental abilities are organized into particular groups of be-
haviours rather than just some arbitrary, random collection of
cognitive capacities. This property of cognitive architecture
(i.e., the collection of basic processes and modes of composi-
tion that together generate cognitive behaviour) is called sys-
tematicity (Fodor & Pylyshyn, 1988), and the problem posed
for a theory of cognition is to explain why systematicity is
a necessary consequence of the assumptions and principles
embodied by the architecture that the proposed theory posits
(Fodor & Pylyshyn, 1988; Aizawa, 2003).

The classical explanation derives from the principle of
classical compositionality, which says that cognitive repre-
sentations and processes are constructed from a combinato-
rial syntax and semantics, whereby semantic relations be-
tween constituents of the complex entities represented by a
cognitive system are mirrored by syntactic relations between
the corresponding constituent representations—that is, syn-
tactically structured representations and processes that are

sensitive to (i.e., compatible with) those structures (Fodor &
Pylyshyn, 1988).

To account for systematicity, the two parts of the classi-
cal compositionality principle, i.e. (1) combinatorial syntax
and semantics, and (2) structure-sensitive processes, must be
compatible. However, classical theory does not explain why
they must be compatible, other than by assumption. By con-
vention, one may assume an infix mode of classical concate-
native compositionality, whereby John loves Mary is repre-
sented by [John Loves Mary]. Yet, by convention, one may
also choose a prefix mode, e.g., [Loves John Mary], or a post-
fix mode, e.g., [John Mary Loves], as employed in some (pro-
gramming) languages, or even where argument order is re-
versed, e.g., [Mary Loves John]. All these possibilities are
valid forms of classical compositionality, but an architecture
that employs incompatible combinations will not exhibit sys-
tematicity. Classical compositionality does not fully explain
systematicity because of the ad hoc assumption that only cer-
tain combinations are permitted, which is enforced by the
cognitive scientist not the cognitive system. For an extended
discussion on the problem of ad hoc assumptions in science
generally, and classical/connectionist explanations of system-
aticity specifically, see Aizawa (2003).

At this point, modellers may think to augment their the-
ory with some sort of learning principle, such as is com-
monly incorporated into connectionist (Rumelhart, Hinton, &
Williams, 1986), and Bayesian modeling (Tenenbaum, Grif-
fiths, & Kemp, 2006). However, connectionist and Bayesian
approaches suffer the same shortcoming: while both are capa-
ble of configuring architectures with the desired form of sys-
tematicity, they are likewise able to configure architectures
without that form of systematicity from that same learning
principle (see also Phillips & Wilson, 2010, on this point).

Recently, we presented an alternative explanation for sys-
tematicity without recourse to such ad hoc assumptions
(Phillips & Wilson, 2010) that employed a branch of math-
ematics called category theory (Mac Lane, 2000), where the
theoretical focus is on the relationships between structure-
sensitive processes, rather than the representations on which
they operate. In particular, the category theory notion of func-
tor maps (generalizations of) functions to (generalized) func-
tions, as well as mapping objects to objects. The central ex-
planatory element in Phillips and Wilson (2010) is the formal
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category theory concept of adjunction: an adjunction relates
two functorial constructions so that of the possibly system-
atic capacity realizing constructions there is one and only one
construction that realizes all systematically related capacities
via the adjunction. Hence, no further, ad hoc, assumptions
are required to distinguish systematic from unsystematic ar-
chitectures, thus meeting the explanatory standard for sys-
tematicity in human cognition originally specified in Fodor
and Pylyshyn (1988), and subsequently clarified in Aizawa
(2003). In our theory, basic building blocks of human cogni-
tive architecture involve the adjunctive relationships between
functorial constructions.

Our explanation of systematicity was applied in two do-
mains that involved cognitive capacities pertaining to (1) a
common relation, and (2) a common relational schema. With
respect to these domains, human cognition exhibits what we
may call “full” systematicity, in the sense that capacity is ex-
tended to each and every combination of the possible con-
stituents that may partake in the relation or schema. For
example, suppose one has the capacity to represent entities
John, Mary, Sue, Tom, and loves, and the relational proposi-
tion that John loves Mary, then one has the capacity to repre-
sent all combinations, such as Sue loves Tom, Tom loves John,
Mary loves Mary, and so on.

Quasi-systematicity

Not all domains are fully (completely) systematic. Additional
constraints relevant to the domain of interest preclude some
combinations. In particular, linguistic constructions often in-
corporate different types of constraints, including syntactic,
phonetic, semantic, and pragmatic constraints that may fur-
ther restrict the group of capacities that are intrinsically con-
nected (Johnson, 2004). For example, English-speakers say
John put his gear down, but not John stowed his gear down,
even though they say John put his gear away, or John stowed
his gear away (see Johnson, 2004). In this sense, we say cog-
nition is quasi-systematic with respect to this domain, where
quasi-systematicity is just a further refinement to a more spe-
cialized collection of systematic (intrinsically connected) ca-
pacities. That systematicity and quasi-systematicity are just
differences in degrees of the same basic phenomenon moti-
vates our proposal for a general theory explaining both. Our
purpose in this paper is to show how our category theory ex-
planation of systematicity (Phillips & Wilson, 2010) general-
izes to include quasi-systematicity.

Basic category theory
We introduce the category theory definitions used to explain
quasi-systematicity. Numerous introductions to category the-
ory are available: for mathematicians, see Awodey (2006);
Mac Lane (2000); for computer scientists, see Pierce (1991);
and for general interest, see Lawvere and Schanuel (1997).
Further motivation and background for our use of category
theory in cognition is given in Phillips and Wilson (2010),
and also Phillips, Wilson, and Halford (2009).

Category

A category C consists of a class of objects |C|= (A,B, . . .); a
set C(A,B) of morphisms (also called arrows, or maps) from
A to B where each morphism f : A → B has A as its do-
main and B as its codomain, including the identity morphism
1A : A→ A for each object A; and a composition operation,
denoted “◦”, of morphisms f : A→ B and g : B→C, written
g◦ f : A→C that satisfies the laws of:

• identity, where f ◦1A = f = 1B ◦ f , for all f : A→ B; and

• associativity, where h◦ (g◦ f ) = (h◦g)◦ f , for all f : A→
B, g : B→C and h : C→ D.

One may think of a category as modeling a cognitive do-
main, where objects are sets of cognitive states, and mor-
phisms are cognitive processes mapping possible cognitive
state transitions. In this case, the category is Set having sets
for objects and functions for morphisms, where the identity
morphism is the identity function sending elements to them-
selves and composition is the usual composition of functions.
The category theory methods that we apply to systematicity
are not specifically limited to Set and could be used with
other categories. For example, the category Met of metric
spaces (objects) and continuous functions (morphisms) may
be appropriate for cognitive domains concerning continuous
instead of discrete entities.

Functor

A functor F : C→ D is a structure-preserving map from a
domain category C to a codomain category D that sends each
object A ∈ |C| to an object F(A) ∈ |D|; and each morphism
f : A→ B ∈ C(A,B) to a morphism F( f ) : F(A)→ F(B) ∈
D(F(A),F(B)), such that F(1A) = 1F(A) for each object A;
and F(g ◦C f ) = F(g) ◦D F( f ) for all morphisms f : A→ B
and g : B→C for which compositions ◦C and ◦D are defined
in categories C and D, respectively.

Functors preserve structure in that every morphism in the
domain category is associated with just one morphism in the
codomain category, though this association does not have to
be unique. Functors also provide a means for constructing
new categories from old. In our context, one may think of
functors as a means for constructing new cognitive represen-
tations and processes from existing ones. Thus, functors pro-
vide the formal starting point for a theory about the system-
aticity of cognitive capacities.

Natural transformation

A natural transformation η : F .→G from a functor F : C→D
to a functor G : C→ D consists of D−maps ηA : F(A)→
G(A) for each object A∈ |C|, such that for every morphism f :
A1→ A2 in C we have G( f )◦ηA1 = ηA2 ◦F( f ), as indicated
by the following commutative diagram (here “commutative”
means that paths with the same start/end object yield the same
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morphism):

F(A1)
ηA1 //

F( f )
��

G(A1)

G( f )
��

F(A2) ηA2

// G(A2)

(1)

A natural transformation is a natural isomorphism, or nat-
ural equivalence if and only if each ηA is an isomorphism.
That is, for each ηA : F(A) → G(A) there exists a mor-
phism η−1

A : G(A)→ F(A) such that η−1
A ◦ ηA = 1F(A) and

ηA ◦η−1
A = 1G(A).

Adjunction
The formal concept of adjunction is central to our explana-
tion for (quasi-)systematicity. If we interpret functors as con-
structing cognitive representations and processes, then an ad-
joint relationship between two functors is a relationship be-
tween cognitive constructions. Except to explain systematic-
ity (Phillips & Wilson, 2010), adjunctions do not appear to
have been used for cognitive modeling, but see Magnan and
Reyes (1995) for a conceptual introduction; see also Mac
Lane (2000) for adjunctions in mathematics; in other fields
see, e.g., Goguen (1972) in the context of general systems
theory of abstract machines and behaviours. For some ori-
entation, one may think of classical/connectionist approaches
as primarily focussed on the processes that transform repre-
sentations, at the expense of being unable to guarantee a sys-
tematic relationship between those processes. In contrast, an
adjunction guarantees that the only pairings of functors mod-
eling such processes are the systematic ones. Thus, system-
aticity follows without further, ad hoc assumptions.

An adjunction consists of a pair of functors F : C→ D,
G : D→ C and a natural transformation η : 1C

.→ (G ◦F),
such that for every C−object X , D−object Y , and C−map f :
X →G(Y ), there exists a unique D−map g : F(X)→Y , such
that G(g)◦ηX = f , as indicated by the following commutative
diagram:

X
ηX //

f
##FFFFFFFFF G◦F(X)

G(g)
���
�
�

F(X)

g

���
�
�

G(Y ) Y

(2)

The two functors are called an adjoint pair, denoted (F,G),
where F is the left adjoint of G (written, F aG), and G is the
right adjoint of F , and η is the unit of the adjunction.

An equivalent definition of adjunction is in terms of the
counit, which presents the adjunction from the perspective of
the second category (i.e., D). An adjunction is an instance
of a universal construction, and the unit and counit are uni-
versal (mediating) arrows. That is, every construction factors
through them. Hence, the universal arrow accounts for the
indivisible nature of systematic capacities without ad hoc as-
sumptions, because all capacities factor through it uniquely.

Pullback (product)
A pullback of two morphisms f : A→ C and g : B→ C in
category C is, up to unique isomorphism, an object P (also
denoted A×C B) together with two morphisms p1 : P→ A
and p2 : P→ B, jointly expressed as (P, p1, p2), such that for
every object Z ∈ |C| and pair of morphisms z1 : Z → A and
z2 : Z → B there exists a unique morphism u : Z → P, also
denoted 〈z1,z2〉, such that the following diagram commutes:

Z

z1

��

z2

��

〈z1,z2〉
���
�
�

A×C B
p1

||yy
yy

yy
yy

y p2

""EE
EE

EE
EE

E

A

f
""FFFFFFFFF B

g
||xxxxxxxxx

C

(3)

A pullback may be thought of as a product of objects A
and B constrained by C and the morphisms f and g. In the
category Set, for example, A×C B is, up to unique isomor-
phism, the subset of the Cartesian product A×B that includes
just those pairs of elements (a,b) satisfying the constraint that
f (a) = g(b) ∈ C. With this intuition in mind, we can begin
to see how pullbacks may pertain to quasi-systematicity of
relations, which we address next. In a category C, a termi-
nal object, denoted 1, is an object, such that there is a mor-
phism to it from every object in C. Note that a pullback with
C = 1 (i.e., a terminal) is equivalent to a product, effectively
there is no constraint on the product. Thus, our explanation
of quasi-systematicity subsumes our explanation of system-
aticity given in Phillips and Wilson (2010).

Explanation for quasi-systematicity
We apply our category theory approach to explaining quasi-
systematicity with respect to natural relations and some as-
pects of language.

Natural relations
We use the relation parent (e.g., mares parent colts) to illus-
trate our explanation of quasi-systematicity in terms of pull-
backs. If one knows that mares parent colts and stallions par-
ent fillies then one also knows that mares parent fillies and
stallions parent colts. Likewise, if one knows that cows par-
ent steers and bulls parent heifers, then one also knows that
cows parent heifers and bulls parent steers. Yet, one would
not also think that mares parent steers, or bulls parent fillies.
One also would not think that colts parent stallions, or heifers
parent bulls. An architecture based only on a product is in-
adequate. Instead, the quasi-systematic capacities associated
with this relation derive from a pullback.

The pullback diagram associated with the parent relation is
an instantiation of Diagram 3. In particular, the pullback for
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this relation is given in the following commutative diagram:

Pr

pg

��

os

��

〈pg,os〉���
�
�

P×S F
p1

||xx
xx

xx
xx

x p2

""FF
FF

FF
FF

F

P

sp
##FFFFFFFFF F

s f
{{xxxxxxxxx

S

(4)

where Pr is the set of valid propositions, with pg and os
as the progenitor and offspring maps (respectively), P is
the set of progenitors, F is the set of offspring, S is the
set of species, sP (sF) map the progenitors (offspring) to
their species, and P×S F = {(p, f )|sp(p) = s f ( f )}. Suppose
P = {stallion,mare,bull,cow}, F = {colt,filly,steer,heifer},
and S = {equine,bovine}, so sp : stallion 7→ equine, mare 7→
equine, bull 7→ bovine, cow 7→ bovine, and sf : colt 7→
equine, filly 7→ equine, steer 7→ bovine, heifer 7→ bovine.
Then, P×S F is the set {(stallion, colt), (stallion, filly), (mare,
colt), (mare, filly), (bull, steer), (bull, heifer), (mare, steer),
(mare, heifer)}, which contains just the elements in the parent
relation (see Figure 1).
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equine
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Figure 1: Matrix representation of parent pullback.

The adjoint for this example is (∆>,ΠS), where S is the
constraining object, and > refers to constructs that are spe-
cific to pullbacks. The adjunction is indicated by the follow-
ing diagram:

Pr
〈1Pr ,1Pr〉 //

〈pg,os〉 ((QQQQQQQQQQQQQQ Pr×Pr Pr

pg×os
���
�
� Pr

pg

���
�
�

1Pr // Pr

sp◦pg s f ◦os

���
�
� Pr

os

���
�
�

1Proo

P×S F P sp
// S Fs f

oo

(5)
where sp ◦ pg = s f ◦os and Pr×Pr Pr ∼= Pr. Diagram 5 sim-

plifies to:

Pr
〈1Pr ,1Pr〉 //

〈pg,os〉 ''PPPPPPPPPPPPPP Pr×Pr Pr

pg×os

���
�
� (1Pr,1Pr)

(pg,os)
���
�
�

P×S F (sp,s f )

(6)

where a composition such as P→ S←F in Diagram 5 is iden-
tified by the morphisms (i.e., sp and s f ), and a map between
such compositions by the corresponding morphisms between
the outer objects. For example, P and F are the outer ob-
jects in P→ S← F , and S is the inner object. Reference to
the morphism between inner objects is omitted, because it is
determined by the other morphisms.

The adjunction is also given from the perspective of the
counit in the following diagram:

Pr

〈pg,os〉
���
�
� (1Pr,1Pr)

(〈pg,os〉,〈pg,os〉)
���
�
�

(pg,os)

&&NNNNNNNNNNN

P×S F (1P×SF ,1P×SF)
(p1,p2)

// (sp,s f )

(7)

where mediating arrow (p1, p2) : (P×S F,P×S F)→ (P,F) is
the counit.

The explanation for quasi-systematicity comprises two
parts: one part pertains to the constraints on allowable ele-
ments; and the other part pertains to universal construction,
and is essentially the same explanation as that for full sys-
tematicity, except that the universal construction is associated
with a pullback.

Regarding the constraints part of the explanation, there are
two sources of constraints in the form of the sets containing
the possibly related elements (i.e. P and F in this example),
and the requirement that Diagram 4 commutes. That P con-
tains only progenitors and F only offspring precludes pairs
corresponding to colts parent mares, for example. The fact
that Diagram 4 must commute (to be a pullback) precludes
instances corresponding to stallions parent steers, for exam-
ple, because stallion and steer belong to different species.

The universal construction part of the explanation parallels
the explanation for full systematicity: given a cognitive ca-
pacity for a relation realized as a particular pullback, then the
commutativity property of the adjunction ensures that there is
one and only one way to realize the other capacities, obviat-
ing the need for an ad hoc assumption stipulating which pull-
back. In particular, (F ×S P, p′1, p′2), where p′1 : F ×S P→ F
and p′2 : F ×S P→ P, is also a pullback. Thus, from pull-
backs alone an architecture can be constructed whereby mare
is correctly inferred as the progenitor in mares parent colts by
(P×S F, p1, p2) and p1 : (mare,colt) 7→ colt, but steers is in-
correctly inferred as the progenitor in bulls parent steers since
(F×S P, p′1, p′2) and p′1 : (steers,bulls) 7→ steers. The commu-
tativity property of the adjunction rules out an architecture
that mixes different possible pullbacks. As with full system-
aticity, quasi-systematic capacities are indivisibly linked by a
universal arrow, i.e., (p1, p2).
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This form of pullback is sufficient when the capacity sub-
groups (one subgroup per species, in this example) are them-
selves locally, fully systematic. In some situations, this condi-
tion may not hold. For example, suppose we introduce whale
and calf as additional progenitor and offspring elements, re-
spectively. By associating whale and calf with mammal, the
pullback above would yield (whale, calf ), but also (whale,
steer), and (whale, heifer) where these elements were also
associated with mammal. Clearly, the term calf is being used
in two senses that need to be distinguished. One sense per-
tains just to cattle, and the broader sense includes large mam-
mals, such as elephants and seals as the parents of calves.
These subgroups can be distinguished by using another pull-
back that incorporates this additional structural information.

The pullback in this new situation is indicated in the fol-
lowing diagram:

Pr

pg





os

��

〈pg,os〉���
�
�

P×S×F
p1,2

yyssssssssss p2,3

%%KKKKKKKKKK

P×S

p2
%%KKKKKKKKKKK S×F

p1
yysssssssssss

S

(8)

where the constraining object S contains additional, semantic,
information distinguishing the senses of calf, and pi, j projects
out the ith and jth elements of a triple. The two senses of calf
are captured by pairing bovine with calf for one sense and
cetacea with calf for the other in S×F , and bull and cow
with bovine, and whale with cetacea in P× S. Since bull,
cow, steer and heifer, etc. are not paired with cetacea, in-
stances such as whales parent steers are not contained within
the collection of quasi-systematic capacities.

Language
Our first example is subject-verb agreement: for English
speakers, agreement between the subject and verb means that
the capacity for the dogs chase the cats and the dog chases
the cats implies the capacity for the cats chase the dogs, but
not the cats chases the dogs, nor the cat chase the dogs, etc.
The present example is confined to third-person agreement,
though the explanation extends to first- and second-person.
Subject-verb agreement is enforced by a pullback indicated
in the following diagram:

N×S V

p1

��

p2 // V

sV

��
N sN

// {+3s,−3s}

(9)

where N is the set of nouns, V the set of verbs, S =
{+3s,−3s} is the set of attributes, and sN and sV are the mor-
phisms mapping nouns and verbs to their singularity attribute

(respectively), indicated as +3s (−3s) meaning is (not) third-
person singular. Hence, quasi-systematicity for this domain
is explained by an adjunction involving this pullback.

Our second linguistic example involves the difference
between verbs drench and throw: English speakers say I
drenched the flowers with water, but not I drenched water
onto the flowers, whereas they say I threw water onto the flow-
ers, but not I threw the flowers with water (Johnson, 2004).
Whether or not the verb requires a preposition such as onto,
or over is considered to depend on whether or not the mean-
ing of the verb specifies how the water got onto the flow-
ers (Johnson, 2004). Other verbs that require onto include:
dripped, throw, poured, and tossed. Verbs that require no
preposition include: dampened, drenched, and wet. The pull-
back for this situation is similar to the previous one, and indi-
cated in the following diagram:

V ×A P

p1

��

p2 // P

aP

��
V aV

// {+,−}

(10)

where V is the set of verbs, P the set of prepositions {onto,
over, ε}, where ε indicates no preposition, A = {+,−} is
the set of attributes, and aV and aP are the morphisms map-
ping verbs and prepositions to their preposition attribute (re-
spectively), indicated as + (−) meaning does (not) require a
preposition.

The explanations for quasi-systematicity for these linguis-
tic examples follows the explanation for quasi-systematicity
given for the natural relations examples, since they are all just
instances of a pullback.

Discussion
A fundamental question for cognitive science concerns the
nature of human cognitive architecture, i.e., what are the ba-
sic processes and modes of composition that together make
up human cognitive behaviour. In so far as cognition is sys-
tematic, our category theory approach formally characterizes
basic cognitive processes as functors, and mode of composi-
tionality as adjunctions. Thus, functors and adjunctions con-
stitute basic building blocks of human cognitive architecture.

There is common ground between our category theory ex-
planation and the classical compositionality one. Both the-
ories assume complex representations and processes that are
built out of simpler ones, and some category theory construc-
tions generalize classical ones (Phillips & Wilson, 2010). So,
a classical theory of systematicity may be entirely compatible
with our category-theory-level one.

Nonetheless, the quintessential difference between the two
theories is the adjunction, which accounts for systematicity
without having to stipulate a specific correspondence between
processes for constructing representations and processes for
accessing components of those constructions. Alan Turing is
credited with providing the key advance concerning the foun-
dations of cognitive science, overcoming the problems with
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associativism by suggesting that cognitive processes are in-
stead (syntactic) computations (Fodor, 2008). Turing’s (clas-
sical) solution works well for computational systems, because
the correspondence between the processes for constructing
compositional representations and the processes for accessing
their constituents is systematicity maintained by the designer
of the system. However, a theory of cognitive systems de-
mands an explanation for such correspondences just in terms
of the system and its interaction with the world, not some
third party. Our explanation is of this latter sort, where the
correspondence is enforced by the commutativity property of
the adjunction.

This conception of adjunction as a building block of cog-
nition is unique to our theory, and goes significantly beyond
the widespread use of isomorphism (cf. analogy models) in
cognitive science generally. A contrast of adjunction versus
isomorphism highlights our shift in perspective: a reconcep-
tion of cognitive architecture in terms of the relationships be-
tween structure-sensitive processes, instead of the representa-
tions that those processes transform (see also Phillips & Wil-
son, 2010). Other approaches to cognition, including clas-
sical ones typically treat representation in terms of an iso-
morphism between the representations and the entities those
representations are intended to depict. From the category the-
ory perspective, isomorphic domains modelled as categories
are the same apart from a change of labels. An adjunction is
more general, and potentially more useful, because two do-
mains (involving quite different sorts of processes) that are
not isomorphic, may still be systematically related by an ad-
junction, thereby affording an explanation that is not limited
to cases whose domains are only superficially dissimilar.

Given the generally abstract nature of category theory, one
may wonder whether our category-theoretic approach is to be
regarded as a formal description (or, specification) of cogni-
tive architecture, or a causal explanation. A full discussion
of this point is beyond the scope of the current paper. We
note, though, that category theory is generally regarded as a
constructive theory is the sense that not only does one specify
what are the relationships between (mathematical) structures,
but how one structure is derived from another via the specified
morphisms. The close relationship between category theory
and computation has long been exploited by computer scien-
tists. Functors are often used to model higher-order functions
(i.e., functions that take, or return other functions). Thus, our
category theory approach is well within the tradition of com-
putational theories of mind, though our form of computation
is distinctly categorical.

If adjunction is one of the basic components of human
cognition, then what is its corresponding neural realization?
An adjunction involves a reciprocal relationship between two
functors, though the functors may not be inverses of each
other. One possible approach to investigating neural corre-
spondences, then, is with the reciprocal relationships between
brain regions. For a category theory approach to neural net-
works, see Healy et al. (2009); and for modeling hippocam-

pal place cells, see Gomez (2010). Further work is needed
to establish the theoretical relationship between our category
theory approach and neural mechanisms. We leave such the-
oretical and empirical possibilities as future research.
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