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Abstract

After the seminal work of Nowak and May (1992), the Spatial
Prisoner’s Dilemma has become a common metaphor for
studying the dynamics of cooperation in a spatially structured
population. In contrast to the widely employed evolutionary
model, which studies the dynamics of cooperation in a population
of primitive players that lack memory, this paper examines the
problem of cooperation in a population of memory-based players.
Using computational simulations, it is shown that partial
cooperation is maintained in a spatially structured population of
players whose decision-making is effectuated by the adaptive
nature of memory embodied in the ACT-R cognitive architecture
(Anderson & Lebiere, 1998).
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Introduction

Prisoner’s Dilemma (PD) has long been used as a paradigm to
study the problem of cooperation faced by unrelated
individuals in the absence of central authority (Axelrod, 1984,
Nowak and May, 1992). In its classical form, it characterizes a
strategic situation between two players, in which both the
players can be better off by mutual cooperation but their
pursuits of rational self-interest leads to mutual defection and
mutually inefficient outcome. Classical Game theory
(Fudenberg & Tirole, 1991) provides a rigorous mathematical
framework to represent and analyze the strategic interactions
like PD and others among rational players. Game theory
formalizes PD as a mixed-motive two-person game with two
moves: Cooperate (C) and Defect (D) (Macy & Flache, 2002).
The normal form representation of PD game given in Table 1
conveniently summarizes the moves available to the players
and corresponding payoff each player would get for each of the
four possible outcomes.

TABLE 1: Payoff Matrix of PD

Player 2
C D
Player 1 ¢ RR ST
D .S | PP

In the above formalization, the conflict between social and
selfish interests is captured with the payoff ordering: 7 > R >
P > S. The payoffs: R, P, T, and S, characterize Reward for
mutual cooperation, Punishment of mutual defection,
Temptation to cheat, and Sucker payoff.
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The main solution concept of game theory, the Nash
equilibrium (Nash, 1950), predicts the socially inefficient
mutual defection as the rational outcome for PD when it is
played only once. However, many real world phenomena
involve repeated PD type interactions. In the repeated version
of the game, additional constraint of 2R > T + S is enforced on
the payoff structure to prohibit the players from periodic
alternations of cooperation and defection. In the finitely
repeated version of the game, game theoretic solution is again
mutual defection in each round. However, results from various
behavioral experiments with repeated PD shows that partial
cooperation is often sustained in the finitely repeated PD
(Coleman, 1995). According to game theory, the socially
efficient mutual cooperation is possible only in the infinitely
repeated PD; one of the Folk theorems (Fudenberg & Tirole,
1991) of game theory predicts that in the infinitely repeated
case, sustenance of mutual cooperation is possible that is Nash
equilibrium. However, there are so many such possibilities and
game theory cannot predict how players choose among them
(Macy & Flache, 2002). In addition to the imprecise prediction
problem, these forward-looking predictions make implausible
assumptions about computational abilities of the players. Such
complications led game theorists to explore cognitive and
evolutionary alternatives to traditional game-theoretic solution
concepts (Macy & Flache, 2002).

Since decision-making in a strategic situation is an important
instance of cognitive behavior, more recently there have been
several attempts to use general theories of cognition to study
game-theoretic ~ situations. Importantly, researchers from
cognitive modeling had considerable success in matching
human data obtained from various game contexts like Rock-
Paper-Scissors (West & Lebiere, 2001) and repeated PD
(Lebiere, Wallach, & West, 2000). By using the memory
model offered by ACT-R cognitive architecture (Anderson &
Lebiere, 1998), Lebiere et al. (2000) could reproduce important
results like bimodal character of outcomes and the
phenomenon of strategy shift observed in the experimental
studies with human subjects by Rapaport, Guyer, and Gordon
(1976). Another important achievement of this model is its
success in explaining the rationale behind cooperative move by
a player in the model without relying on any assumptions about
altruism or fairness on the player’s part.

Cognitive modelers argue that humans lack the required
capabilities to be optimal players from the game theory
perspective (West et al. 2006). According to them, human
behavior in a strategic situation can be characterized as
maximal rather than optimal. Instead of solving a game-
theoretic problem on the grounds of rationality assumptions
and then making the optimal move, maximal players use their



cognitive mechanisms to process the past interactions, and
respond with a move that exploits the perceived pattern of
opponent’s play. Such a maximal play, in which both the
players are learning about weakness of opponent and are
responding dynamically to exploit it in the best possible way,
leads to the formation of a dynamically coupled system that has
various interesting emergent regularities at the system level
(West et al., 2000).

This paper extends the memory based model of repeated PD
proposed in Lebiere et al. (2000) to the context of large
population of interacting players. Consideration of large
population of interacting players leads to further assumptions
concerning the structure of the interaction. Mean-field
approximation and rigid spatial structures are often considered
as the two limiting cases of interaction topologies (Hauert,
2002). In the simplest mean-field approximation, each player
interacts with everybody else with equal probability. The other
extreme, the rigid spatial structure, represents the case where
players are situated on a spatial structure like regular lattice and
interact only with their local neighbors. The seminal work by
Nowak and May (1992) has established that this crude
approximation of interaction topologies observed in real world
could be used to explain the emergence and maintenance of
cooperation in a population of extremely simple players with
no memory or any other cognitive capabilities. In this paper,
the problem of cooperation is analyzed in a finite (more than
two) population of so-called maximal players that are situated
on a regular lattice.

Spatial Prisoner’s Dilemma

Nowak and May (1992) used a spatial version of PD, which is
commonly referred to as “Spatial Prisoner’s Dilemma” (SPD),
to analyze the emergence and sustenance of cooperation in a
spatially structured population. Players in this model are
extremely simple entities having no memory or any other
cognitive capabilities. Only two basic strategies are available to
players: always cooperate or always defect. Players are placed
at each site of a square lattice and each of them plays PD with
itself and its neighbors. In each time step or generation, every
player obtains a score that is the sum of payoffs received from
these interactions and each player imitates the strategy of
highest scoring player in the neighborhood (including itself). In
the case of a tie, a random highest scoring individual is
imitated. Substantial results about emergence and maintenance
of cooperation have been obtained from such a simple
evolutionary spatial game. Importantly, for certain parameter
values of the model, the fraction of cooperators always reaches
the same proportion almost independently of the initial
configuration like size of the lattice and the initial fraction of
cooperators in the population. Figure 1 depicts an instance of
the behavior of such a model over 2000 generations. Players
are bound to the lattice sites of a /00 x 100 square lattice, and
interact with their eight adjacent neighbors and also with
themselves. It can be easily seen that the fraction of
cooperators, fc, fluctuates slightly around 0.3/8 and agrees
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Figure 1: Fraction of cooperators in a simulation of
evolutionary SPD on a square lattice with fixed boundary
conditions. Synchronous updating and interactions with eight
nearest neighbors are considered.

with the observation made in Nowak and May (1992). Note
that the payoff matrix considered here has the structure given
byR=1,T=b 5S=0,and P = 0. The value of b is set at 1.9
for this particular instance, but the asymptotically stable value
of proportion of cooperators will be the same for any initial
conditions of the model with /.8 < b < 2. Due to their
deterministic nature, the asymptotic cooperation levels
achieved in these models can often be determined analytically
using difference equations (Huberman & Glance, 1993). This
most basic version of the model is augmented along many
dimensions by considering the different definition of
neighborhoods, probabilistic winning, spatial irregularity, and
asynchronous updating (Nowak, Bonhoeffer, & May, 1994).
Computational experiments with these variations confirmed the
robustness of the claim that interaction with local neighbors in
an evolutionary SPD can promote coexistence of cooperators
and defectors in a population of memory-less players (Nowak
etal., 1994).

Evolutionary spatial frameworks like the one considered in
Nowak and May (1992) provides an apt template for modeling
strategic interactions and explaining the maintenance of
cooperation in a spatially structured population of simple
biological or physical entities that lack memory or any other
cognitive capabilities. However, straightforward adaptation of
these results to explain the cooperative dynamics in a social
system may not be appropriate. If the rationality assumption of
classical game theory may be interpreted as one extreme, the
overly simplistic characterization of players’ behavior in the
evolutionary spatial models may be interpreted as the opposite
extreme. Human decision-making in repeated strategic
interaction appears to be more sophisticated than the pure
imitation in the evolutionary models. This paper attempts to
strike a balance between the evolutionary and rational
paradigms by explicitly taking into account the character of
human memory in the analysis of the problem of cooperation in
a spatially structured population. It is worth mentioning that



Qin, Chen, Zhao, & Shi (2008) provides an account of the role
of memory in evolutionary SPD. However, the memory model
adopted is quite primitive in its character and lacks many of the
important characteristics of human memory that are observed
in experimental studies. In contrast, the adaptive memory
model considered in this paper is an integral part of the ACT-R
cognitive architecture (Anderson & Lebiere, 1998) that is
developed with the aim of replicating the behavior of actual
human memory observed in extensive experimental studies.

Model

Similar to the evolutionary spatial framework considered in
Nowak and May (1992), players in the current model are
located on a regular lattice and play PD game with other
players in their neighborhoods to receive the corresponding
payoff. The principal divergence from the evolutionary SPD
model is that the players in the current model use decision-
making mechanism offered by ACT-R memory model to
choose a strategy rather than imitating the strategy of the best
scoring neighbor. The representations of declarative and
procedural components of ACT-R memory model in the
present model are largely derived from the memory-based
account of two-person Prisoner’s Dilemma game proposed in
Lebiere et al. (2000). In this transition from the two-person
game playing model to the spatial model, the game playing
logic is kept intact; a player looks at its two possible moves,
determine the most likely outcome given each move, and make
the move associated with the best likely outcome. The
following production rule captures the decision-making logic
of a player in the model:

Spatial Prisoner’s Dilemma
IF the goal is to play Spatial Prisoner’s Dilemma
and the most likely outcome of making move C is outcomeC
and the most likely outcome of making move D is outcomeD
THEN make the move associated with the largest of outcomeC
and outcomeD
Note the actual outcome, and push new goal to make the
next play

The number of possible outcomes for each player in a spatial
game depends upon the notion of the neighborhood under
consideration. If each player has » neighbors then there are in
total 2™*1 possible outcomes for each player. For
representational simplicity, a totalistic representation of the
outcomes is adopted that is inspired by the totalistic approach
adopted in Ishida and Mori (2005) to represent spatial
strategies. The symbol £C is used to represent a scenario where
k neighbors of a given player have chosen to cooperate and n—k
neighbors have chosen to defect, where 7 is the size of the
neighborhood and 0 <k < n. With this notation of specifying
the neighbors’ moves, the outcome where the player under
consideration has cooperated, and the configuration of
neighbors’ moves is kC, is denoted with C-kC, and the outcome
where the player has chosen to defect for the same
configuration of neighbors’ moves with D-kC. In addition to

simplifying the representational matters, such a totalistic
representation of outcomes explicitly takes into account the
spatial phenomenon that is an important characteristic of spatial
games. In the remainder of this section representation of the
outcomes as declarative chunks and the decision making
process are illustrated when four orthogonal neighbors are
considered for each player.

In a SPD on a square lattice with periodic boundary
conditions, there are five possible outcomes for each possible
move when four orthogonal neighbors are considered for each
player. All these possible outcomes are represented as
declarative chunks of type outcome with three slots: p-move
that encodes player’s action; N-config that encodes the choice
of moves by the neighbors; and, payoff that encodes payoff
received by the player for that particular outcome calculated
from payoff matrix in Table 1. The ten chunks necessary to
encode the possible outcomes for a given player in the model
are given below:

(C-4C isa outcome p-move C N-config 4C payoft 4R)
(C-3C isa outcome p-move C N-config 3C payoff 3R+S)
(C-2C isa outcome p-move C N-config 2C payoff 2R+28S)
(C-1C isa outcome p-move C N-config 1C payoff R+38S)
(C-0C isa outcome p-move C N-config 0C payoff 4S)
(D-4C isa outcome p-move D N-config 4C payoff 4T)
(D-3C isa outcome p-move D N-config 3C payoff 3T+P)
(D-2C isa outcome p-move D N-config 2C payoff 2T+2P)
(D-1C isa outcome p-move D N-config 1C payoff T+3P)
(D-0C isa outcome p-move D N-config 0C payoff 4P)

For a given player, the first clause of the production will
retrieve one of the five chunks associated with the player
making move C, i.e. one of the five chunks: C-4C, C-3C, C-
2C, C-1C, C-0C, and the retrieved chunk is denoted as
OutcomeC, and the second clause will retrieve one of the five
chunks associated with the player choosing to defect, i.e. one of
the five chunks: D-4C, D-3C, D-2C, D-1C, D-0C, and the
retrieved chunk is denoted as OutcomeD. The payoffs
associated with these two outcomes, QutcomeC and
OutcomeD, are compared and the p-move associated with the
chunk with the highest payoff is taken. Similar to the model in
Lebiere et al. (2000), by systematically selecting the move
associated with the expected outcome that has the largest
payoff, a player in this model attempts to maximize its own
payoff. In this way, no assumptions about altruism or fairness
are needed to explain cooperative move of a player.

The production rule retrieves the most likely outcome for
each move by retrieving chunk with the highest activation for
each move. The activation of declarative chunks is calculated
using the following equation:

- (1 - d)(tn - tk) \/§
The first part of the sum, known as base level activation,
accounts for the adaptive nature of the human memory
observed in various psychological experiments reported in

k
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Anderson and Schooler (1991). ¢ in the sum refers to the time
since jth reference, n is the total number of references, and d is
the forgetting rate. This computationally efficient
approximation of the original formula proposed in Anderson
and Schooler (1991) is due to Petrov (2006). Petrov has shown
that by keeping the most recent k references, the base level
activation can be approximated with great accuracy. In the
actual implementation we used & = [/ for computational
efficiency. The second part of the equation accounts for the
stochasticity and is calculated as noise that is normally
distributed with the mean of zero and the standard deviation
determined by the activation noise parameter s (Lebiere et al.,
2000). As in Lebiere et al. (2000), the same default values are
considered for the forgetting rate, d = (.5, and the activation
noise parameter s = (0.25. The initial references of declarative
chunks are uniformly distributed such that on average each
chunk would get 700 references. It has been observed from
simulations that results are qualitatively unchanged when we
varied the number of initial references from /0 to /00.

Simulation Results

The first simulation is carried out on a square lattice of the size
50 x 50 with periodic boundary conditions. Memory based
players with the procedural and declarative memory
components described in the previous section are placed at
each lattice site and each of them interacts with its four
orthogonal neighbors (self interaction is not considered).
Standard PD payoff matrix (Axelrod, 1984) with R = 3, S =0,
T =35, and P = [ is considered. In each generation (time step),
all the players simultaneously make their choice of moves
using the production rule, receive payoffs determined by the
corresponding outcomes, and update their declarative
memories. To characterize the macroscopic dynamics of the
model, the fraction of cooperators (f¢) in the population at each
generation is considered. Since the model involves stochastic
elements, simulation output from a single realization may be
misleading and some statistical treatment would be more
appropriate. The simulation is carried out 30 times with a
different random seed each time to ensure statistical
independence across the runs. The model is considered to be
asymptotically stable in a given run when the difference in the
mean values of f over two consecutive windows of /0
generations is less than /07 in absolute value. After the model
is considered as asymptotically stable, the mean value of f¢
over next /0" generations is taken as the asymptotic f¢- of the
run. Figure 2 depicts the behavior of the mean value of f- over
the consecutive time windows of /0’ generations in a sample
run of the model that is run for a total of 400,000 generations. It
can be easily seen that the magnitude of the slope of the curve
is rapidly approaching zero with time, indicating that fc is
approaching an asymptotic value. In this run, after 720,000
generations, the model meets the asymptotic stability criteria
and the asymptotic f¢ is the mean fraction of cooperators over
the next /0" generations, which is 0.3226 for this case. The
insert in Figure 2 depicts frequencies of different values of f¢ in

the window of 707 generations after the model is considered
stable. Almost normally distributed frequencies imply that f is
fluctuating around the mean. The 95% confidence interval
obtained for asymptotic fr from 30 different runs is
[0.3200,0.3228]. However, the important insight here is that
cooperators and defectors coexist in the model in such a way
that the fraction of cooperators in the population is
asymptotically stabilized. To better understand the microscopic
dynamics of the model leading to the constant asymptotic
cooperation levels, densities of the four following groups in the
population are analyzed: individuals who cooperated in the
previous and current generations (fcc); individuals who
cooperated in the previous generation but chose to defect in the
current one (fcp); individuals who defected in the previous
generation but chose to cooperate in the current generation
(foc); and, individuals who defected in both the previous and
current generations (fpp). Figure 3 depicts dynamics of these
four densities for the same simulation run considered in Figure
2, and the emergent regularity is evident. All of these four
densities stabilize after the system reaches asymptotic stability
and more interestingly, fcp and fpc are varying in almost
identical manner — the graphs of fcp and fpc are overlapping.
This implies, an almost equal number of cooperators and
defectors are changing their choice in such a way that fc is
asymptotically stable. In other words, the population is in a
kind of dynamic equilibrium with cooperators and defectors
coexisting in a chaotically shifting balance to keep fc
asymptotically stable.

In every generation, each of the maximal players considered
in the model makes use of its memories of outcomes in the past
generations to construct an expectation about the neighbors’
moves conditional upon its own choice of move. Such an
expectation is entirely experience based and is facilitated in a
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Figure 2: Mean f¢ over time windows of /0" generations in a
simulation run of 400,000 generations. The insert depicts the
histogram of frequencies of different fi values over the /0
generations after the model is considered as asymptotically
stable.
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Figure 3: Time series dynamics of the densities fcc, fcp, foc,
fpp and fc over 400,000 generations.

unique manner by the adaptive character of the memory of a
player. The adaptive nature of the player’s memory captures
the observed pattern of neighbors’ play using the past
occurrences of the outcomes. The maximizing move taken by a
player in a given generation is the best response to such an
observed pattern. A given player’s choice of a move in turn
affects the adaptive memories of player’s neighbors and their
future moves. Such an interaction leads to the formation of so-
called reciprocal causation (Clark, 1997) between a player and
its neighborhood. Reciprocal causation often produces
unexpected, macro-level regular patterns of behavior in a
complex system of many interacting entities (West et al.,
2000). In the present context, the coexistence of cooperators
and defectors in a balance leading to the asymptotically stable
fraction of cooperators can be understood as such a system
level regularity in a spatially situated population of maximal
players. It is often hard to express the behavior of a reciprocal
causation system in terms of mathematical equations (Clark,
1997). Agent based models like the one discussed in this paper
prove useful when the equation-based analytical treatment of
the system characteristics is impractical due to the underlying
complexity (Axtell, 1999).

Discussion

Agent based computational models facilitate explicit
representation of the individual members of a system and the
direct interactions among them (Axtell, 1999). Before deriving
conclusions from these models, it is often important to be
cautious about certain representational matters. Even though
the system level regularities emerging out of complex
microscopic interactions are interesting in the first simulation,
further investigation is needed to make an overall claim about
such an emergent regularity. One implicit but very crucial
assumption in the previous simulation model is that activation
scheme is synchronous. In other words, players are updated in
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unison at each time step as if a global clock governs them. In a
social system, such an assumption about the existence of a
global clock that synchronizes the players is often inappropriate
(Huberman & Glance, 1993; Axtell, 2001). An asynchronous
activation scheme is generally used to realistically model these
systems where the members act at different and uncorrelated
times (Huberman & Glance, 1993). Consideration of
asynchronous updating resulted in strikingly different results
for some multi agent models (Huberman & Glance, 1993). A
generation in an asynchronous updating scheme consists of N
micro time steps, where N is the number of players, and a
single player is active during each micro time step. By active it
is meant that the corresponding player chooses its move and
receives a payoff based on the outcome. One important feature
of this scheme is that often some players in the neighborhood
of an active player have not made their decision in the current
generation. In these cases, it is generally assumed that these
players are still playing their choice of moves that are made
during the most recent generation. Two variations of
asynchronous updating are commonly used in agent-based
simulations: Uniform activation (UA) and Random Activation
(RA) (Axtell, 2001). In UA, each player is active exactly once
every generation. To eliminate artifacts due to the spurious
agent-agent correlations, the players are activated in a
randomized order in each generation (Axtell, 2001). In RA,
each player is active once on average in a generation; some
players may be active more than once while the others may not
be active at all in a given generation. For each of these two
schemes, thirty statistically independent runs of the simulation
described earlier were run and it has been observed in all these
runs that model has reached asymptotic stability criterion
discussed earlier with cooperators and defectors coexisting in a
shifting balance. The asymptotic f- values were also very close
to the synchronous updating case. For UA, the resulting 95%
confidence interval for f¢ is [0.3211, 0.3265], and for RA, it is
[0.3205, 0.3235]. However, as mentioned before, the main
emphasis of the current discussion is not about the quantity of
asymptotic fc but the emergent regularity developing out of
complex microscopic dynamics.

Further investigations using computational simulations
confirmed that results obtained in this framework are almost
independent of the size of the lattice. Lattice size is varied for
the first simulation from 20 x 20 to 400 x 400, and it is
observed that asymptotic value of f¢ is almost independent of
these parameters for a given neighborhood definition and
updating scheme. Such independence may have important
implications such as the existence of a universal constant
governing the PD interactions among memory-based players
on a square lattice (Huberman & Glance, 1993). The
conclusion about maintenance of cooperation, that model
reaches an asymptotically stable state where cooperators and
defectors can coexist, remains valid when eight nearest
neighbors are considered. These experiments confirm, on a
more general level, the claim that cooperation can be
maintained in a SPD of maximal players.



Recent behavioral experiments involving SPD have shown
that humans do not unconditionally imitate the best scoring
neighbor as assumed in many evolutionary game theoretic
models (Traulsen et al, 2010). We believe that cognitive
framework proposed in this paper to analyze spatial games may
be an important candidate among the possible alternatives that
can complement the evolutionary framework in understanding
the dynamics of strategic puzzles in social sciences. In our
future studies, we intend to validate the model output with the
data from behavioral experiments on SPD. We also intend to
study the effects of different payoff structures, and network
topologies on the cooperative dynamics in the memory-based
framework considered here.

Agent based models have gained significant appreciation in
explaining the relation between macro level outcomes and
micro level dynamics in complex social systems. However,
often these models employ ad hoc behavioral specifications at
the agent level that lack empirical underpinnings (Axtell,
2007). In contrast, the current model uses a behavioral
specification derived from the memory model of a successful
cognitive architecture that is developed from thorough
experimental studies. Using empirically justified behavioral
specifications instead of ad hoc formulations of behavior may
render agent based models to account for social phenomena
more convincingly.

Conclusion

This paper has investigated the role of the adaptive nature of
human memory in the sustenance of cooperation in the context
of Spatial Prisoner’s Dilemma. Computational experiments
showed that individually maximizing behavior facilitated by
the memory mechanism implemented in the ACT-R cognitive
architecture promotes the coexistence of cooperators and
defectors in such a way that fraction of cooperators in the
populations is asymptotically stable. Further investigations
confirmed that such an emergent system level regularity
remains effective for various definitions of neighborhoods and
updating schemes. This work may be relevant in understanding
the dynamics of cooperation in a social system where the
memory processes that facilitate and constrain decision-making
of individuals may not be ignored.
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