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Abstract 
 

After the seminal work of Nowak and May (1992), the Spatial 
Prisoner’s Dilemma has become a common metaphor for 
studying the dynamics of cooperation in a spatially structured 
population. In contrast to the widely employed evolutionary 
model, which studies the dynamics of cooperation in a population 
of primitive players that lack memory, this paper examines the 
problem of cooperation in a population of memory-based players. 
Using computational simulations, it is shown that partial 
cooperation is maintained in a spatially structured population of 
players whose decision-making is effectuated by the adaptive 
nature of memory embodied in the ACT-R cognitive architecture 
(Anderson & Lebiere, 1998).  
 
Key Words: Cooperation; Spatial Prisoner’s Dilemma; ACT-R; 
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Introduction 
 

Prisoner’s Dilemma (PD) has long been used as a paradigm to 
study the problem of cooperation faced by unrelated 
individuals in the absence of central authority (Axelrod, 1984, 
Nowak and May, 1992). In its classical form, it characterizes a 
strategic situation between two players, in which both the 
players can be better off by mutual cooperation but their 
pursuits of rational self-interest leads to mutual defection and 
mutually inefficient outcome. Classical Game theory 
(Fudenberg & Tirole, 1991) provides a rigorous mathematical 
framework to represent and analyze the strategic interactions 
like PD and others among rational players. Game theory 
formalizes PD as a mixed-motive two-person game with two 
moves: Cooperate (C) and Defect (D) (Macy & Flache, 2002). 
The normal form representation of PD game given in Table 1 
conveniently summarizes the moves available to the players 
and corresponding payoff each player would get for each of the 
four possible outcomes. 

 
TABLE 1: Payoff Matrix of PD 

 

 
Player 2 

C D 

Player 1 
C R, R S, T 
D T, S P, P 

 
In the above formalization, the conflict between social and 

selfish interests is captured with the payoff ordering: T  > R  > 
P  > S.  The payoffs: R, P, T, and S, characterize Reward for 
mutual cooperation, Punishment of mutual defection, 
Temptation to cheat, and Sucker payoff.  

The main solution concept of game theory, the Nash 
equilibrium (Nash, 1950), predicts the socially inefficient 
mutual defection as the rational outcome for PD when it is 
played only once. However, many real world phenomena 
involve repeated PD type interactions. In the repeated version 
of the game, additional constraint of 2R  > T + S is enforced on 
the payoff structure to prohibit the players from periodic 
alternations of cooperation and defection. In the finitely 
repeated version of the game, game theoretic solution is again 
mutual defection in each round. However, results from various 
behavioral experiments with repeated PD shows that partial 
cooperation is often sustained in the finitely repeated PD 
(Coleman, 1995). According to game theory, the socially 
efficient mutual cooperation is possible only in the infinitely 
repeated PD; one of the Folk theorems (Fudenberg & Tirole, 
1991) of game theory predicts that in the infinitely repeated 
case, sustenance of mutual cooperation is possible that is Nash 
equilibrium. However, there are so many such possibilities and 
game theory cannot predict how players choose among them 
(Macy & Flache, 2002). In addition to the imprecise prediction 
problem, these forward-looking predictions make implausible 
assumptions about computational abilities of the players. Such 
complications led game theorists to explore cognitive and 
evolutionary alternatives to traditional game-theoretic solution 
concepts (Macy & Flache, 2002).  

Since decision-making in a strategic situation is an important 
instance of cognitive behavior, more recently there have been 
several attempts to use general theories of cognition to study 
game-theoretic situations. Importantly, researchers from 
cognitive modeling had considerable success in matching 
human data obtained from various game contexts like Rock-
Paper-Scissors (West & Lebiere, 2001) and repeated PD 
(Lebiere, Wallach, & West, 2000). By using the memory 
model offered by ACT-R cognitive architecture (Anderson & 
Lebiere, 1998), Lebiere et al. (2000) could reproduce important 
results like bimodal character of outcomes and the 
phenomenon of strategy shift observed in the experimental 
studies with human subjects by Rapaport, Guyer, and Gordon 
(1976). Another important achievement of this model is its 
success in explaining the rationale behind cooperative move by 
a player in the model without relying on any assumptions about 
altruism or fairness on the player’s part. 

Cognitive modelers argue that humans lack the required 
capabilities to be optimal players from the game theory 
perspective (West et al. 2006). According to them, human 
behavior in a strategic situation can be characterized as 
maximal rather than optimal. Instead of solving a game-
theoretic problem on the grounds of rationality assumptions 
and then making the optimal move, maximal players use their 
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cognitive mechanisms to process the past interactions, and 
respond with a move that exploits the perceived pattern of 
opponent’s play. Such a maximal play, in which both the 
players are learning about weakness of opponent and are 
responding dynamically to exploit it in the best possible way, 
leads to the formation of a dynamically coupled system that has 
various interesting emergent regularities at the system level 
(West et al., 2006).  

This paper extends the memory based model of repeated PD 
proposed in Lebiere et al. (2000) to the context of large 
population of interacting players. Consideration of large 
population of interacting players leads to further assumptions 
concerning the structure of the interaction. Mean-field 
approximation and rigid spatial structures are often considered 
as the two limiting cases of interaction topologies (Hauert, 
2002). In the simplest mean-field approximation, each player 
interacts with everybody else with equal probability. The other 
extreme, the rigid spatial structure, represents the case where 
players are situated on a spatial structure like regular lattice and 
interact only with their local neighbors. The seminal work by 
Nowak and May (1992) has established that this crude 
approximation of interaction topologies observed in real world 
could be used to explain the emergence and maintenance of 
cooperation in a population of extremely simple players with 
no memory or any other cognitive capabilities. In this paper, 
the problem of cooperation is analyzed in a finite (more than 
two) population of so-called maximal players that are situated 
on a regular lattice.  

Spatial Prisoner’s Dilemma 
 

Nowak and May (1992) used a spatial version of PD, which is 
commonly referred to as “Spatial Prisoner’s Dilemma” (SPD), 
to analyze the emergence and sustenance of cooperation in a 
spatially structured population. Players in this model are 
extremely simple entities having no memory or any other 
cognitive capabilities. Only two basic strategies are available to 
players: always cooperate or always defect. Players are placed 
at each site of a square lattice and each of them plays PD with 
itself and its neighbors. In each time step or generation, every 
player obtains a score that is the sum of payoffs received from 
these interactions and each player imitates the strategy of 
highest scoring player in the neighborhood (including itself). In 
the case of a tie, a random highest scoring individual is 
imitated. Substantial results about emergence and maintenance 
of cooperation have been obtained from such a simple 
evolutionary spatial game. Importantly, for certain parameter 
values of the model, the fraction of cooperators always reaches 
the same proportion almost independently of the initial 
configuration like size of the lattice and the initial fraction of 
cooperators in the population. Figure 1 depicts an instance of 
the behavior of such a model over 2000 generations. Players 
are bound to the lattice sites of a 100 × 100 square lattice, and 
interact with their eight adjacent neighbors and also with 
themselves. It can be easily seen that the fraction of 
cooperators,  fC, fluctuates slightly around 0.318 and agrees 

 
 
Figure 1: Fraction of cooperators in a simulation of 
evolutionary SPD on a square lattice with fixed boundary 
conditions. Synchronous updating and interactions with eight 
nearest neighbors are considered.  
 
with the observation made in Nowak and May (1992). Note 
that the payoff matrix considered here has the structure given 
by R = 1, T = b, S = 0, and P = 0. The value of b is set at 1.9 
for this particular instance, but the asymptotically stable value 
of proportion of cooperators will be the same for any initial 
conditions of the model with 1.8 < b < 2. Due to their 
deterministic nature, the asymptotic cooperation levels 
achieved in these models can often be determined analytically 
using difference equations (Huberman & Glance, 1993).  This 
most basic version of the model is augmented along many 
dimensions by considering the different definition of 
neighborhoods, probabilistic winning, spatial irregularity, and 
asynchronous updating (Nowak, Bonhoeffer, & May, 1994). 
Computational experiments with these variations confirmed the 
robustness of the claim that interaction with local neighbors in 
an evolutionary SPD can promote coexistence of cooperators 
and defectors in a population of memory-less players (Nowak 
et al., 1994). 

Evolutionary spatial frameworks like the one considered in 
Nowak and May (1992) provides an apt template for modeling 
strategic interactions and explaining the maintenance of 
cooperation in a spatially structured population of simple 
biological or physical entities that lack memory or any other 
cognitive capabilities. However, straightforward adaptation of 
these results to explain the cooperative dynamics in a social 
system may not be appropriate. If the rationality assumption of 
classical game theory may be interpreted as one extreme, the 
overly simplistic characterization of players’ behavior in the 
evolutionary spatial models may be interpreted as the opposite 
extreme. Human decision-making in repeated strategic 
interaction appears to be more sophisticated than the pure 
imitation in the evolutionary models. This paper attempts to 
strike a balance between the evolutionary and rational 
paradigms by explicitly taking into account the character of 
human memory in the analysis of the problem of cooperation in 
a spatially structured population. It is worth mentioning that 
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Qin, Chen, Zhao, & Shi (2008) provides an account of the role 
of memory in evolutionary SPD. However, the memory model 
adopted is quite primitive in its character and lacks many of the 
important characteristics of human memory that are observed 
in experimental studies. In contrast, the adaptive memory 
model considered in this paper is an integral part of the ACT-R 
cognitive architecture (Anderson & Lebiere, 1998) that is 
developed with the aim of replicating the behavior of actual 
human memory observed in extensive experimental studies.  

Model 
 

Similar to the evolutionary spatial framework considered in 
Nowak and May (1992), players in the current model are 
located on a regular lattice and play PD game with other 
players in their neighborhoods to receive the corresponding 
payoff. The principal divergence from the evolutionary SPD 
model is that the players in the current model use decision-
making mechanism offered by ACT-R memory model to 
choose a strategy rather than imitating the strategy of the best 
scoring neighbor. The representations of declarative and 
procedural components of ACT-R memory model in the 
present model are largely derived from the memory-based 
account of two-person Prisoner’s Dilemma game proposed in 
Lebiere et al. (2000). In this transition from the two-person 
game playing model to the spatial model, the game playing 
logic is kept intact; a player looks at its two possible moves, 
determine the most likely outcome given each move, and make 
the move associated with the best likely outcome. The 
following production rule captures the decision-making logic 
of a player in the model: 
 
Spatial Prisoner’s Dilemma 
IF the goal is to play Spatial Prisoner’s Dilemma 
     and the most likely outcome of making move C is outcomeC 
     and the most likely outcome of making move D is outcomeD 
THEN make the move associated with the largest of outcomeC              
           and outcomeD 
           Note the actual outcome, and push new goal to make the                                              
           next play 
 

The number of possible outcomes for each player in a spatial 
game depends upon the notion of the neighborhood under 
consideration.  If each player has n neighbors then there are in 
total 2!!!  possible outcomes for each player. For 
representational simplicity, a totalistic representation of the 
outcomes is adopted that is inspired by the totalistic approach 
adopted in Ishida and Mori (2005) to represent spatial 
strategies. The symbol kC is used to represent a scenario where 
k neighbors of a given player have chosen to cooperate and n–k 
neighbors have chosen to defect, where n is the size of the 
neighborhood and 0 ≤ k ≤ n. With this notation of specifying 
the neighbors’ moves, the outcome where the player under 
consideration has cooperated, and the configuration of 
neighbors’ moves is kC, is denoted with C-kC, and the outcome 
where the player has chosen to defect for the same 
configuration of neighbors’ moves with D-kC. In addition to 

simplifying the representational matters, such a totalistic 
representation of outcomes explicitly takes into account the 
spatial phenomenon that is an important characteristic of spatial 
games. In the remainder of this section representation of the 
outcomes as declarative chunks and the decision making 
process are illustrated when four orthogonal neighbors are 
considered for each player. 

In a SPD on a square lattice with periodic boundary 
conditions, there are five possible outcomes for each possible 
move when four orthogonal neighbors are considered for each 
player. All these possible outcomes are represented as 
declarative chunks of type outcome with three slots: p-move 
that encodes player’s action; N-config that encodes the choice 
of moves by the neighbors; and, payoff that encodes payoff 
received by the player for that particular outcome calculated 
from payoff matrix in Table 1. The ten chunks necessary to 
encode the possible outcomes for a given player in the model 
are given below: 
 
(C-4C isa outcome p-move C N-config 4C payoff 4R) 
(C-3C isa outcome p-move C N-config 3C payoff 3R+S) 
(C-2C isa outcome p-move C N-config 2C payoff 2R+2S) 
(C-1C isa outcome p-move C N-config 1C payoff R+3S) 
(C-0C isa outcome p-move C N-config 0C payoff 4S) 
(D-4C isa outcome p-move D N-config 4C payoff 4T) 
(D-3C isa outcome p-move D N-config 3C payoff 3T+P) 
(D-2C isa outcome p-move D N-config 2C payoff 2T+2P) 
(D-1C isa outcome p-move D N-config 1C payoff T+3P) 
(D-0C isa outcome p-move D N-config 0C payoff 4P) 
 

For a given player, the first clause of the production will 
retrieve one of the five chunks associated with the player 
making move C, i.e. one of the five chunks: C-4C, C-3C, C-
2C, C-1C, C-0C, and the retrieved chunk is denoted as 
OutcomeC, and the second clause will retrieve one of the five 
chunks associated with the player choosing to defect, i.e. one of 
the five chunks: D-4C, D-3C, D-2C, D-1C, D-0C, and the 
retrieved chunk is denoted as OutcomeD. The payoffs 
associated with these two outcomes, OutcomeC and 
OutcomeD, are compared and the p-move associated with the 
chunk with the highest payoff is taken. Similar to the model in 
Lebiere et al. (2000), by systematically selecting the move 
associated with the expected outcome that has the largest 
payoff, a player in this model attempts to maximize its own 
payoff. In this way, no assumptions about altruism or fairness 
are needed to explain cooperative move of a player. 

The production rule retrieves the most likely outcome for 
each move by retrieving chunk with the highest activation for 
each move. The activation of declarative chunks is calculated 
using the following equation: 
 

! = ln !!!!
!

!!!

+   
! − ! !!!!! −   !!!!!

1 − ! !! −   !!
+   ! 0,

!  . !
3
       

The first part of the sum, known as base level activation, 
accounts for the adaptive nature of the human memory 
observed in various psychological experiments reported in 
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Anderson and Schooler (1991). ti in the sum refers to the time 
since jth reference, n is the total number of references, and d is 
the forgetting rate. This computationally efficient 
approximation of the original formula proposed in Anderson 
and Schooler (1991) is due to Petrov (2006). Petrov has shown 
that by keeping the most recent k references, the base level 
activation can be approximated with great accuracy. In the 
actual implementation we used k = 1 for computational 
efficiency. The second part of the equation accounts for the 
stochasticity and is calculated as noise that is normally 
distributed with the mean of zero and the standard deviation 
determined by the activation noise parameter s (Lebiere et al., 
2000). As in Lebiere et al. (2000), the same default values are 
considered for the forgetting rate, d = 0.5, and the activation 
noise parameter s = 0.25. The initial references of declarative 
chunks are uniformly distributed such that on average each 
chunk would get 100 references. It has been observed from 
simulations that results are qualitatively unchanged when we 
varied the number of initial references from 10 to 100. 

Simulation Results  
 

The first simulation is carried out on a square lattice of the size 
50 × 50 with periodic boundary conditions. Memory based 
players with the procedural and declarative memory 
components described in the previous section are placed at 
each lattice site and each of them interacts with its four 
orthogonal neighbors (self interaction is not considered). 
Standard PD payoff matrix (Axelrod, 1984) with R = 3, S = 0, 
T = 5, and P = 1 is considered. In each generation (time step), 
all the players simultaneously make their choice of moves 
using the production rule, receive payoffs determined by the 
corresponding outcomes, and update their declarative 
memories. To characterize the macroscopic dynamics of the 
model, the fraction of cooperators (fC) in the population at each 
generation is considered. Since the model involves stochastic 
elements, simulation output from a single realization may be 
misleading and some statistical treatment would be more 
appropriate. The simulation is carried out 30 times with a 
different random seed each time to ensure statistical 
independence across the runs. The model is considered to be 
asymptotically stable in a given run when the difference in the 
mean values of fC over two consecutive windows of 104 
generations is less than 10-3 in absolute value. After the model 
is considered as asymptotically stable, the mean value of fC 
over next 104 generations is taken as the asymptotic fC of the 
run. Figure 2 depicts the behavior of the mean value of fC over 
the consecutive time windows of 104 generations in a sample 
run of the model that is run for a total of 400,000 generations. It 
can be easily seen that the magnitude of the slope of the curve 
is rapidly approaching zero with time, indicating that fC is 
approaching an asymptotic value. In this run, after 120,000 
generations, the model meets the asymptotic stability criteria 
and the asymptotic fC is the mean fraction of cooperators over 
the next 104 generations, which is 0.3226 for this case. The 
insert in Figure 2 depicts frequencies of different values of fC in 

the window of 104 generations after the model is considered 
stable. Almost normally distributed frequencies imply that fC is 
fluctuating around the mean. The 95% confidence interval 
obtained for asymptotic fC from 30 different runs is 
[0.3200,0.3228]. However, the important insight here is that 
cooperators and defectors coexist in the model in such a way 
that the fraction of cooperators in the population is 
asymptotically stabilized. To better understand the microscopic 
dynamics of the model leading to the constant asymptotic 
cooperation levels, densities of the four following groups in the 
population are analyzed: individuals who cooperated in the 
previous and current generations (fCC); individuals who 
cooperated in the previous generation but chose to defect in the 
current one (fCD); individuals who defected in the previous 
generation but chose to cooperate in the current generation 
(fDC); and, individuals who defected in both the previous and 
current generations (fDD). Figure 3 depicts dynamics of these 
four densities for the same simulation run considered in Figure 
2, and the emergent regularity is evident. All of these four 
densities stabilize after the system reaches asymptotic stability 
and more interestingly, fCD and fDC are varying in almost 
identical manner — the graphs of fCD and fDC are overlapping. 
This implies, an almost equal number of cooperators and 
defectors are changing their choice in such a way that fC is 
asymptotically stable. In other words, the population is in a 
kind of dynamic equilibrium with cooperators and defectors 
coexisting in a chaotically shifting balance to keep fC 
asymptotically stable.   

In every generation, each of the maximal players considered 
in the model makes use of its memories of outcomes in the past 
generations to construct an expectation about the neighbors’ 
moves conditional upon its own choice of move. Such an 
expectation is entirely experience based and is facilitated in a  

 

 
 
Figure 2: Mean fC over time windows of 104 generations in a 
simulation run of 400,000 generations. The insert depicts the 
histogram of frequencies of different fC values over the 104 
generations after the model is considered as asymptotically 
stable.  
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Figure 3: Time series dynamics of the densities fCC , fCD , fDC , 
fDD and fC over 400,000 generations. 
 
unique manner by the adaptive character of the memory of a 
player. The adaptive nature of the player’s memory captures 
the observed pattern of neighbors’ play using the past 
occurrences of the outcomes. The maximizing move taken by a 
player in a given generation is the best response to such an 
observed pattern. A given player’s choice of a move in turn 
affects the adaptive memories of player’s neighbors and their 
future moves. Such an interaction leads to the formation of so-
called reciprocal causation (Clark, 1997) between a player and 
its neighborhood. Reciprocal causation often produces 
unexpected, macro-level regular patterns of behavior in a 
complex system of many interacting entities (West et al., 
2000). In the present context, the coexistence of cooperators 
and defectors in a balance leading to the asymptotically stable 
fraction of cooperators can be understood as such a system 
level regularity in a spatially situated population of maximal 
players. It is often hard to express the behavior of a reciprocal 
causation system in terms of mathematical equations (Clark, 
1997). Agent based models like the one discussed in this paper 
prove useful when the equation-based analytical treatment of 
the system characteristics is impractical due to the underlying 
complexity (Axtell, 1999).  

Discussion 
Agent based computational models facilitate explicit 
representation of the individual members of a system and the 
direct interactions among them (Axtell, 1999). Before deriving 
conclusions from these models, it is often important to be 
cautious about certain representational matters.  Even though 
the system level regularities emerging out of complex 
microscopic interactions are interesting in the first simulation, 
further investigation is needed to make an overall claim about 
such an emergent regularity. One implicit but very crucial 
assumption in the previous simulation model is that activation 
scheme is synchronous.  In other words, players are updated in 

unison at each time step as if a global clock governs them. In a 
social system, such an assumption about the existence of a 
global clock that synchronizes the players is often inappropriate 
(Huberman & Glance, 1993; Axtell, 2001). An asynchronous 
activation scheme is generally used to realistically model these 
systems where the members act at different and uncorrelated 
times (Huberman & Glance, 1993). Consideration of 
asynchronous updating resulted in strikingly different results 
for some multi agent models (Huberman & Glance, 1993). A 
generation in an asynchronous updating scheme consists of N 
micro time steps, where N is the number of players, and a 
single player is active during each micro time step. By active it 
is meant that the corresponding player chooses its move and 
receives a payoff based on the outcome. One important feature 
of this scheme is that often some players in the neighborhood 
of an active player have not made their decision in the current 
generation. In these cases, it is generally assumed that these 
players are still playing their choice of moves that are made 
during the most recent generation. Two variations of 
asynchronous updating are commonly used in agent-based 
simulations: Uniform activation (UA) and Random Activation 
(RA) (Axtell, 2001). In UA, each player is active exactly once 
every generation. To eliminate artifacts due to the spurious 
agent-agent correlations, the players are activated in a 
randomized order in each generation (Axtell, 2001). In RA, 
each player is active once on average in a generation; some 
players may be active more than once while the others may not 
be active at all in a given generation. For each of these two 
schemes, thirty statistically independent runs of the simulation 
described earlier were run and it has been observed in all these 
runs that model has reached asymptotic stability criterion 
discussed earlier with cooperators and defectors coexisting in a 
shifting balance. The asymptotic fC values were also very close 
to the synchronous updating case. For UA, the resulting 95% 
confidence interval for fC is [0.3211, 0.3265], and for RA, it is 
[0.3205, 0.3235]. However, as mentioned before, the main 
emphasis of the current discussion is not about the quantity of 
asymptotic fC but the emergent regularity developing out of 
complex microscopic dynamics. 

Further investigations using computational simulations 
confirmed that results obtained in this framework are almost 
independent of the size of the lattice. Lattice size is varied for 
the first simulation from 20 × 20 to 400 × 400, and it is 
observed that asymptotic value of fC is almost independent of 
these parameters for a given neighborhood definition and 
updating scheme. Such independence may have important 
implications such as the existence of a universal constant 
governing the PD interactions among memory-based players 
on a square lattice (Huberman & Glance, 1993). The 
conclusion about maintenance of cooperation, that model 
reaches an asymptotically stable state where cooperators and 
defectors can coexist, remains valid when eight nearest 
neighbors are considered. These experiments confirm, on a 
more general level, the claim that cooperation can be 
maintained in a SPD of maximal players.  
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Recent behavioral experiments involving SPD have shown 
that humans do not unconditionally imitate the best scoring 
neighbor as assumed in many evolutionary game theoretic 
models (Traulsen et al., 2010). We believe that cognitive 
framework proposed in this paper to analyze spatial games may 
be an important candidate among the possible alternatives that 
can complement the evolutionary framework in understanding 
the dynamics of strategic puzzles in social sciences.  In our 
future studies, we intend to validate the model output with the 
data from behavioral experiments on SPD. We also intend to 
study the effects of different payoff structures, and network 
topologies on the cooperative dynamics in the memory-based 
framework considered here. 

Agent based models have gained significant appreciation in 
explaining the relation between macro level outcomes and 
micro level dynamics in complex social systems. However, 
often these models employ ad hoc behavioral specifications at 
the agent level that lack empirical underpinnings (Axtell, 
2007). In contrast, the current model uses a behavioral 
specification derived from the memory model of a successful 
cognitive architecture that is developed from thorough 
experimental studies. Using empirically justified behavioral 
specifications instead of ad hoc formulations of behavior may 
render agent based models to account for social phenomena 
more convincingly. 

Conclusion   
This paper has investigated the role of the adaptive nature of 
human memory in the sustenance of cooperation in the context 
of Spatial Prisoner’s Dilemma. Computational experiments 
showed that individually maximizing behavior facilitated by 
the memory mechanism implemented in the ACT-R cognitive 
architecture promotes the coexistence of cooperators and 
defectors in such a way that fraction of cooperators in the 
populations is asymptotically stable. Further investigations 
confirmed that such an emergent system level regularity 
remains effective for various definitions of neighborhoods and 
updating schemes. This work may be relevant in understanding 
the dynamics of cooperation in a social system where the 
memory processes that facilitate and constrain decision-making 
of individuals may not be ignored. 
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