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Abstract

To better understand how comparison can be effectively used
in mathematics instruction, we reviewed research in
psychology and education, with the aim of identifying types
of comparison that take place in mathematics learning, and
considering the effects of comparison on procedural and
conceptual understanding. We identified three types of
comparison that are commonly utilized in mathematics
instruction and  learning: (1)  problem-to-problem
comparisons, (2) step-to-step comparisons, and (3) item-to-
abstraction comparisons. Of these three types, only the effects
of problem-to-problem comparisons on learning have been
well documented. This paper therefore highlights the need for
further research to elucidate the unique contributions of
different types of comparison in mathematics learning.
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Students often have difficulty learning both mathematical
procedures and their conceptual underpinnings (e.g., Kamii
& Dominick, 1997; Pesek & Kirshner, 2000). In order to
improve students’ procedural and conceptual understanding,
it is important to understand the cognitive processes
involved in mathematics learning.

In an effort to support student learning, teachers often
make connections between problems or concepts by
comparing them, but they sometimes fail to provide students
with the cognitive support needed to help students benefit
from these comparisons (Richland, Zur, & Holyoak, 2007).
How can comparison be used to effectively promote
mathematics learning? Several techniques utilized in
mathematics education involve comparison, but the effects of
different types of comparison are not well understood.

This paper reviews research in psychology and education
in order to (1) identify what types of comparison take place
in mathematics learning, and (2) consider the effects of
comparison on procedural and conceptual understanding of
mathematics.

Three Types of Comparison

We identified three types of comparison that are commonly
utilized in mathematics instruction and learning: (1) problem-
to-problem comparison, (2) step-to-step comparison, and (3)
item-to-abstraction comparison. Later sections of this paper
define each type of comparison and document its effects on
learning.
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Effects on Procedural and Conceptual Learning

The effects of comparison on mathematical learning could
be measured in myriad ways. In this paper, we focus on two
critical aspects of mathematical knowledge: procedural and
conceptual  knowledge (Hiebert, 1986). Procedural
knowledge refers to the ability to execute action sequences
for solving problems (including the ability to adapt
procedures for new problems) (Rittle-Johnson & Alibali,
1999) and conceptual knowledge refers to explicit or implicit
understanding of principles that govern a domain and of
interrelations among aspects of mathematical knowledge
(Rittle-Johnson & Alibali, 1999; Tennyson & Cocchiarella,
1986).

Examining the effects of comparison on procedural and
conceptual understanding is a primary goal of this paper.
However, in reviewing this literature, it quickly became clear
that few studies have sought to determine the unique effects
of comparison on procedural and conceptual knowledge.
Many studies have investigated how comparison affects
procedural knowledge, but few studies have addressed the
effects of comparison on conceptual knowledge.

In the domain of math, gains in procedural and conceptual
knowledge are often difficult to assess separately. The two
forms of knowledge are tightly linked, with procedural
knowledge affecting conceptual knowledge and conceptual
knowledge informing procedures (Gelman & Gallistel, 1978;
Siegler & Crowley, 1994; Rittle-Johnson & Alibali, 1999).
Many studies measure only procedural gains, which seems to
imply that procedural knowledge is the most important
measure of learning. This review will highlight the need for
studies investigating the effects of comparison on conceptual
knowledge, and will emphasize the unique and interrelated
importance of both types of knowledge.

Inclusion Criteria

The studies included in this review were limited to those
pertaining to students’ mathematical learning found in the
psychology and education literatures. The keywords
“math*”, “student”, and “learn*” were used in combination
to search the databases PsycINFO, ERIC, and Web of
Knowledge for relevant empirical articles and book chapters.
Although this may not be a complete sample of studies, we
have tried to include a representative sample of relevant



research articles from the analogical problem solving,
contrasting cases, and self-explanation literatures. To be
included in the final set of studies reviewed, each study had
to include (1) some type of comparison in a lesson or
intervention, and (2) at least one measure of procedural or
conceptual learning.

Studies were coded according to the types of comparison
used. Many of the studies were not specifically designed to
assess effects of comparison on learning, so the studies were
categorized by which types of comparison must have taken
place given the procedure or instructions in the study.

We found that the three different types of comparison
sometimes occurred in combination, and sometimes on their
own. To discern the separate effects of each type of
comparison on conceptual and procedural learning, we
focused on studies where only one type of comparison was
implemented. We use studies involving combinations of
comparison types for illustrative purposes in cases where the
research for a particular type of comparison is sparse. Studies
reviewed are marked with an asterisk in the Reference
section.

Problem-to-Problem Comparisons

Problem-to-problem comparisons involve comparing the
structure of one problem to that of another, or comparing the
solution strategy used for one problem to that used for
another. Opportunities to engage in P-P comparisons may
arise from either direct instruction to compare problems or
indirect practice with multiple example problems.

When students are presented with a new math problem,
recruiting a relevant earlier example is often useful for
recognizing what features of the current problem are
important or what solution is necessary to solve the problem.
Theories of perceptual learning support the notion that
opportunities to compare problems highlight features of a
problem to which students previously may not have been
sensitive (Gagne & Gibson, 1947; Gick & Paterson, 1992).
Comparing problems helps students notice similar features as
well as distinctive ones, resulting in well-differentiated
problem representations (Schwartz & Bransford, 1998).

As one example, in a classroom study by Rittle-Johnson
and Star (2007), 7"-grade students were asked to study two
examples of a problem solved with different solution
strategies, either studying the examples separately, or
studying them simultaneously while comparing and
contrasting them. Students who compared the two solution
strategies were more successful at solving transfer problems
and were more likely to explore alternative solution strategies
than students who viewed the strategies separately. Actively
comparing two problems’ solution strategies allowed
students to gain a better understanding of the structure of the
problems and the strategies used to solve them.

Effects on Procedural and Conceptual Learning

Among the 52 studies of comparison in mathematics
learning that we reviewed, 28 assessed the effects of
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problem-to-problem comparisons on learning on their own
(i.e., not in combination with other types of comparison) (see
Table 2). Of these 28 studies, 24 included procedural
measures of learning. Nineteen (79%) of these 24 studies
found positive effects, and the remaining 5 found no effects
of comparison on procedural learning. Nineteen studies
measured the effects of problem-to-problem comparisons on
conceptual learning; of these, 16 (84%) found positive effects
of conceptual learning and 3 did not.

Table 1 displays the procedural measures used in problem-
to-problem comparisons to show that the pattern of effects
for procedural learning holds across various procedural
measures, including near and far transfer problems. Problems
were coded as far transfer if they were labeled as such in the
original study or if they were novel problems that required
considerable adaptation of known procedures to solve. All
other problems (e.g., equivalent problems and isomorphs)
were coded as near transfer.

Table 1: Effects for procedural measures used in P-P
comparison studies

Procedural Measures Number of Effects
Studies

Yes No
Near transfer 24 19 5
Far transfer 9 9 0
Response time 2 2 0
Procedure Recall 1 0 1
Procedural Flexibility 3 3 0

The majority of studies reviewed do report gains in
procedural knowledge (e.g., Novick & Holyoak, 1991; Reed,
1989; Ross & Kennedy, 1990). For example, one study found
that students who solved several problems before solving a
target problem successfully transferred their procedural
knowledge during transfer tasks (Bernardo, 2001).

However, a few studies have reported no greater
procedural gains for students who contrasted problems versus
those who did not (e.g., Hattikudur & Alibali, 2010; Reed,
1987; VanderStoep & Seifert, 1993). There may be certain
conditions under which comparison is more or less likely to
promote procedural learning; however, more research on this
issue is needed.

The effects of problem-to-problem comparisons on
conceptual knowledge in math are also generally positive,
with the majority of relevant studies reporting gains in
conceptual knowledge. Hattikudur and Alibali (2010), for
example, found that students received a lesson contrasting the
equal sign with inequality symbols showed greater gains in
conceptual understanding than those who received a lesson
about the equal sign alone.
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Table 2: Evidence for the Three Types of Comparison in the Literature and their Effects on Learning

Type of Comparison Number of | Procedural Procedural Effects | Conceptual Conceptual Effects
Articles Measures Measures

Problem to Problem 28 24 19 yes, 5 no 19 16 yes, 3 no
Step to Step 1 1 0yes, 1 no 0 N/A

Item to Abstraction 1 1 1yes, 0 no 1 0 yes, 1 no
P-P and S-S 10 9 8 yes, 1 no 4 3yes, 1no
P-P and I-A 10 9 8 yes, 1 no 7 4 yes, 3 no
S-Sand I-A 1 1 1yes, 0 no 0 N/A

P-P, S-S, and I-A 1 1 1yes, 0 no 0 N/A

However, Rittle-Johnson and Star (2007) found opposite
results, in that students who contrasted multiple solution
strategies showed no greater gains in conceptual
understanding than those who encountered the solution
strategies sequentially. However, it is worth emphasizing
that, of the 28 studies that included solely problem-to-
problem comparisons, only 19 included conceptual measures.
More research that investigates the effects of comparison on
conceptual learning is needed.

Step-to-Step Comparisons

Comparison can also occur within a single problem, as is
the case with step-to-step comparisons in which one step of a
problem is compared to the next step in the problem.
Comparison is critical to forming inferences that explain the
links between successive steps in an example. For example,
in order to understand successive steps in a worked-out
example of a linear equation, the reader must compare one
step (e.g., 3x + 5 = 20) with the next step (e.g., 3x = 15), in
order to deduce that both sides of the equation were
subtracted by 5. In a study conducted by Chi and colleagues
(1989), students studying example physics problems
provided self-explanations that compared consecutive
example statements to each other, giving meaning to each
new quantitative expression. These bridging inferences
promote deeper reasoning about the example and allow the
learner to form a more cohesive global representation of the
problem (McNamara et al., 2006). Comparison of one step in
an example to the next is a critical feature of self-
explanations, allowing readers to make sense of the
procedure used in an example.

Effects on Procedural and Conceptual Learning

We identified 13 studies involving step-to-step
comparisons in mathematics learning, but only one focused
solely on the effects of S-S comparisons (i.e., not in
combination with other types of comparison). This study
(Novick & Tversky, 1987) included procedural measures, but
revealed no effects of comparison on procedural knowledge.
It did not include any conceptual measures. In this study,
students who studied and compared the steps in a procedure
were not able to transfer this knowledge to a new problem.
Instead, they were so focused on the sequence of steps in the
learned problem that they were not able to solve the new
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problems using a different sequence of steps. This lack of
gain in procedural knowledge when comparing steps is
supported by other studies that include step-to-step
comparisons in combination with other types of comparison
(Didierjean & Cauzinille-Marmeche, 1997; GroBe & Renkl,
2003). Future research should more directly examine whether
step-to-step comparisons are actually detrimental to transfer.

Because no study using step-to-step comparisons included
conceptual measures, we cannot assess the unique
contribution of this type of comparison on conceptual
learning.

Item-to-Abstraction Comparisons

The third type of comparison we identified involves
comparing an item--either a step or a problem as a whole--to
an abstraction. An abstraction is some generalizable
information that stands apart from any concrete or specific
aspects of a problem, such as a domain principle, concept, or
schema for solving a problem.

In item-to-abstraction comparisons, students relate steps in
an example, or a problem as a whole, to domain concepts and
principles. For example, in one probability learning study,
students providing “principle-based explanations” linked
each step in the problem to a principle such as “It gets
multiplied, because the events are independent from each
other” referring to the multiplication principle in probability
(Renkl, 1997). Comparisons to a principle or concept
promote a deeper understanding of the links between abstract
concepts and problem-solving procedures. As students make
these comparisons, new information is integrated with prior
knowledge--a critical aspect in the learning process (Kintsch
& Kintsch, 1995). Through comparison, students connect
their understanding of the steps in a procedure to domain
concepts, and in doing so, expand their prior knowledge of
those concepts and the domain.

One example of a study that facilitated learning through
item-to-abstraction comparisons involved students solving
probability problems (Atkinson, Renkl, & Merrill, 2003).
College undergraduates were asked to work through the
problems step by step on a computer screen. As students
worked through the steps, they were prompted to identify
which principles of probability were relevant to each step. As
students linked and compared the steps to principles, they



were able to better understand the problems as revealed
through both near and far transfer of problem-solving skills.

Effects on Procedural and Conceptual Learning

We identified 13 studies involving item-to-abstraction
comparisons in mathematics learning, but only one of these
(Atkinson et al., 2003) focused solely on the effects of this
type of comparison (i.e., not in combination with other types
of comparison). This study did include measures of
procedural knowledge, and found positive effects on
procedural learning. This study also included measures of
conceptual knowledge, but did not find that 1-A comparison
led to conceptual learning.

This study measured procedural learning with transfer
problems, and found that item-to-abstraction comparisons
lead to gains in procedural knowledge. Students transferred
their procedural knowledge to novel probability problems
better when the worked-out problems they studied included
information about relevant probability principles (Atkinson et
al., 2003).

Although this study did include a measure of conceptual
knowledge--asking students to produce a principle that is
relevant to the problem--no effect of item-to-abstraction
comparisons on conceptual learning was found. Although
students studied worked-out problems that invited them to
compare problem steps with probability principles, when
asked to solve novel transfer problems students were not able
to identify which principle was most relevant. Students in
this study who engaged in item-to-abstraction comparisons
were not able to transfer their conceptual knowledge.

Discussion

This paper reviewed research on three types of comparison
in mathematics learning: problem-to-problem, step-to-step,
and item-to-abstraction comparisons. Of these three types,
only the effects of problem-to-problem comparisons on
learning have been well documented. Problem-to-problem
comparisons, in which students compare one problem to
another problem, lead to both procedural and conceptual
gains in learning.

The effects of step-to-step and item-to abstraction
comparisons are much less well understood. Very few of the
studies reviewed investigated the unique contributions of
these types of comparisons. As a result, little is known about
whether or not they promote learning of procedural or
conceptual knowledge in mathematics. Future studies should
directly investigate these types of comparisons.

The lack of empirical support for step-to-step comparisons
in this review bears further discussion. Although only one
study measured the unique effects of step-to-step
comparisons on procedural and conceptual learning, it
revealed no benefits for step-to-step comparisons. It may be
the case that step-to-step comparisons are not useful in the
domain of mathematics, because these comparisons narrow a
student’s focus to the specifics of one particular procedure.
When students are given another similar problem, they may
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have difficulty adjusting this procedure to a new problem.
Domains for which the specifics of one process (e.g., the
circulatory system) need not transfer to another process (e.g.,
digestion) may improve with better understanding of the
specific steps in the process. However, in situations where
transfer is necessary from one problem to another (as is often
the case in mathematics), step-to-step comparisons may in
fact be detrimental.

More generally, future research is needed to better
understand the benefits and potential drawbacks of
comparison in math learning. Research specifically geared to
assess the unique contributions of each type of comparison in
math is needed to better understand what types of comparison
are most useful in math learning. With a better understanding
of the contributions of each type of comparison, mathematics
teachers and curriculum designers will acquire the
information they need to implement effective instruction
utilizing comparisons in ways that will best lead to learning.
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