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Abstract 

To better understand how comparison can be effectively used 

in mathematics instruction, we reviewed research in 

psychology and education, with the aim of identifying types 

of comparison that take place in mathematics learning, and 

considering the effects of comparison on procedural and 

conceptual understanding. We identified three types of 

comparison that are commonly utilized in mathematics 

instruction and learning: (1) problem-to-problem 

comparisons, (2) step-to-step comparisons, and (3) item-to-

abstraction comparisons. Of these three types, only the effects 

of problem-to-problem comparisons on learning have been 

well documented. This paper therefore highlights the need for 

further research to elucidate the unique contributions of 

different types of comparison in mathematics learning. 
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Students often have difficulty learning both mathematical 

procedures and their conceptual underpinnings (e.g., Kamii 

& Dominick, 1997; Pesek & Kirshner, 2000). In order to 

improve students’ procedural and conceptual understanding, 

it is important to understand the cognitive processes 

involved in mathematics learning.  

In an effort to support student learning, teachers often 

make connections between problems or concepts by 

comparing them, but they sometimes fail to provide students 

with the cognitive support needed to help students benefit 

from these comparisons (Richland, Zur, & Holyoak, 2007). 

How can comparison be used to effectively promote 

mathematics learning? Several techniques utilized in 

mathematics education involve comparison, but the effects of 

different types of comparison are not well understood.  

This paper reviews research in psychology and education 

in order to (1) identify what types of comparison take place 

in mathematics learning, and (2) consider the effects of 

comparison on procedural and conceptual understanding of 

mathematics. 

 

Three Types of Comparison 

We identified three types of comparison that are commonly 

utilized in mathematics instruction and learning: (1) problem-

to-problem comparison, (2) step-to-step comparison, and (3) 

item-to-abstraction comparison. Later sections of this paper 

define each type of comparison and document its effects on 

learning.  

 

Effects on Procedural and Conceptual Learning 

The effects of comparison on mathematical learning could 

be measured in myriad ways. In this paper, we focus on two 

critical aspects of mathematical knowledge: procedural and 

conceptual knowledge (Hiebert, 1986). Procedural 

knowledge refers to the ability to execute action sequences 

for solving problems (including the ability to adapt 

procedures for new problems) (Rittle-Johnson & Alibali, 

1999) and conceptual knowledge refers to explicit or implicit 

understanding of principles that govern a domain and of 

interrelations among aspects of mathematical knowledge 

(Rittle-Johnson & Alibali, 1999; Tennyson & Cocchiarella, 

1986). 

Examining the effects of comparison on procedural and 

conceptual understanding is a primary goal of this paper. 

However, in reviewing this literature, it quickly became clear 

that few studies have sought to determine the unique effects 

of comparison on procedural and conceptual knowledge. 

Many studies have investigated how comparison affects 

procedural knowledge, but few studies have addressed the 

effects of comparison on conceptual knowledge.  

In the domain of math, gains in procedural and conceptual 

knowledge are often difficult to assess separately. The two 

forms of knowledge are tightly linked, with procedural 

knowledge affecting conceptual knowledge and conceptual 

knowledge informing procedures (Gelman & Gallistel, 1978; 

Siegler & Crowley, 1994; Rittle-Johnson & Alibali, 1999). 

Many studies measure only procedural gains, which seems to 

imply that procedural knowledge is the most important 

measure of learning. This review will highlight the need for 

studies investigating the effects of comparison on conceptual 

knowledge, and will emphasize the unique and interrelated 

importance of both types of knowledge.  

 

Inclusion Criteria 

The studies included in this review were limited to those 

pertaining to students’ mathematical learning found in the 

psychology and education literatures. The keywords 

―math*‖, ―student‖, and ―learn*‖ were used in combination 

to search the databases PsycINFO, ERIC, and Web of 

Knowledge for relevant empirical articles and book chapters. 

Although this may not be a complete sample of studies, we 

have tried to include a representative sample of relevant 
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research articles from the analogical problem solving, 

contrasting cases, and self-explanation literatures. To be 

included in the final set of studies reviewed, each study had 

to include (1) some type of comparison in a lesson or 

intervention, and (2) at least one measure of procedural or 

conceptual learning.  

Studies were coded according to the types of comparison 

used. Many of the studies were not specifically designed to 

assess effects of comparison on learning, so the studies were 

categorized by which types of comparison must have taken 

place given the procedure or instructions in the study.  

We found that the three different types of comparison 

sometimes occurred in combination, and sometimes on their 

own. To discern the separate effects of each type of 

comparison on conceptual and procedural learning, we 

focused on studies where only one type of comparison was 

implemented. We use studies involving combinations of 

comparison types for illustrative purposes in cases where the 

research for a particular type of comparison is sparse. Studies 

reviewed are marked with an asterisk in the Reference 

section.  

 

Problem-to-Problem Comparisons 

Problem-to-problem comparisons involve comparing the 

structure of one problem to that of another, or comparing the 

solution strategy used for one problem to that used for 

another. Opportunities to engage in P-P comparisons may 

arise from either direct instruction to compare problems or 

indirect practice with multiple example problems.  

When students are presented with a new math problem, 

recruiting a relevant earlier example is often useful for 

recognizing what features of the current problem are 

important or what solution is necessary to solve the problem.  

Theories of perceptual learning support the notion that 

opportunities to compare problems highlight features of a 

problem to which students previously may not have been 

sensitive (Gagne & Gibson, 1947; Gick & Paterson, 1992). 

Comparing problems helps students notice similar features as 

well as distinctive ones, resulting in well-differentiated 

problem representations (Schwartz & Bransford, 1998).  

As one example, in a classroom study by Rittle-Johnson 

and Star (2007), 7
th

-grade students were asked to study two 

examples of a problem solved with different solution 

strategies, either studying the examples separately, or 

studying them simultaneously while comparing and 

contrasting them. Students who compared the two solution 

strategies were more successful at solving transfer problems 

and were more likely to explore alternative solution strategies 

than students who viewed the strategies separately. Actively 

comparing two problems’ solution strategies allowed 

students to gain a better understanding of the structure of the 

problems and the strategies used to solve them.  

 

Effects on Procedural and Conceptual Learning 

Among the 52 studies of comparison in mathematics 

learning that we reviewed, 28 assessed the effects of 

problem-to-problem comparisons on learning on their own 

(i.e., not in combination with other types of comparison) (see 

Table 2). Of these 28 studies, 24 included procedural 

measures of learning. Nineteen (79%) of these 24 studies 

found positive effects, and the remaining 5 found no effects 

of comparison on procedural learning. Nineteen studies 

measured the effects of problem-to-problem comparisons on 

conceptual learning; of these, 16 (84%) found positive effects 

of conceptual learning and 3 did not. 

Table 1 displays the procedural measures used in problem-

to-problem comparisons to show that the pattern of effects 

for procedural learning holds across various procedural 

measures, including near and far transfer problems. Problems 

were coded as far transfer if they were labeled as such in the 

original study or if they were novel problems that required 

considerable adaptation of known procedures to solve. All 

other problems (e.g., equivalent problems and isomorphs) 

were coded as near transfer. 

 

Table 1: Effects for procedural measures used in P-P 

comparison studies 

 

Procedural Measures Number of 

Studies 

Effects 

  Yes No 

Near transfer 24 19 5 

Far transfer 9 9 0 

Response time 2 2 0 

Procedure Recall 1 0 1 

Procedural Flexibility 3 3 0 

 

The majority of studies reviewed do report gains in 

procedural knowledge (e.g., Novick & Holyoak, 1991; Reed, 

1989; Ross & Kennedy, 1990). For example, one study found 

that students who solved several problems before solving a 

target problem successfully transferred their procedural 

knowledge during transfer tasks (Bernardo, 2001).  

However, a few studies have reported no greater 

procedural gains for students who contrasted problems versus 

those who did not (e.g., Hattikudur & Alibali, 2010; Reed, 

1987; VanderStoep & Seifert, 1993). There may be certain 

conditions under which comparison is more or less likely to 

promote procedural learning; however, more research on this 

issue is needed.  

The effects of problem-to-problem comparisons on 

conceptual knowledge in math are also generally positive, 

with the majority of relevant studies reporting gains in 

conceptual knowledge. Hattikudur and Alibali (2010), for 

example, found that students received a lesson contrasting the 

equal sign with inequality symbols showed greater gains in 

conceptual understanding than those who received a lesson 

about the equal sign alone. 
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Table 2: Evidence for the Three Types of Comparison in the Literature and their Effects on Learning 

 

Type of Comparison Number of 

Articles 

Procedural 

Measures 

Procedural Effects Conceptual 

Measures 

Conceptual Effects 

Problem to Problem 28 24 19 yes, 5 no 19 16 yes, 3 no 

Step to Step 1 1 0 yes, 1 no 0 N/A 

Item to Abstraction 1 1 1 yes, 0 no 1 0 yes, 1 no 

P-P and S-S 10 9 8 yes, 1 no 4 3 yes, 1 no 

P-P and I-A 10 9 8 yes, 1 no 7 4 yes, 3 no 

S-S and I-A 1 1 1 yes, 0 no 0 N/A 

P-P, S-S, and I-A 1 1 1 yes, 0 no 0 N/A 

      

However, Rittle-Johnson and Star (2007) found opposite 

results, in that students who contrasted multiple solution 

strategies showed no greater gains in conceptual 

understanding than those who encountered the solution 

strategies sequentially. However, it is worth emphasizing 

that, of the 28 studies that included solely problem-to-

problem comparisons, only 19 included conceptual measures. 

More research that investigates the effects of comparison on 

conceptual learning is needed. 

 

Step-to-Step Comparisons 

Comparison can also occur within a single problem, as is 

the case with step-to-step comparisons in which one step of a 

problem is compared to the next step in the problem. 

Comparison is critical to forming inferences that explain the 

links between successive steps in an example. For example, 

in order to understand successive steps in a worked-out 

example of a linear equation, the reader must compare one 

step (e.g., 3x + 5 = 20) with the next step (e.g., 3x = 15), in 

order to deduce that both sides of the equation were 

subtracted by 5. In a study conducted by Chi and colleagues 

(1989), students studying example physics problems 

provided self-explanations that compared consecutive 

example statements to each other, giving meaning to each 

new quantitative expression. These bridging inferences 

promote deeper reasoning about the example and allow the 

learner to form a more cohesive global representation of the 

problem (McNamara et al., 2006). Comparison of one step in 

an example to the next is a critical feature of self-

explanations, allowing readers to make sense of the 

procedure used in an example. 

 

Effects on Procedural and Conceptual Learning 

We identified 13 studies involving step-to-step 

comparisons in mathematics learning, but only one focused 

solely on the effects of S-S comparisons (i.e., not in 

combination with other types of comparison). This study 

(Novick & Tversky, 1987) included procedural measures, but 

revealed no effects of comparison on procedural knowledge. 

It did not include any conceptual measures. In this study, 

students who studied and compared the steps in a procedure 

were not able to transfer this knowledge to a new problem. 

Instead, they were so focused on the sequence of steps in the 

learned problem that they were not able to solve the new 

problems using a different sequence of steps. This lack of 

gain in procedural knowledge when comparing steps is 

supported by other studies that include step-to-step 

comparisons in combination with other types of comparison 

(Didierjean & Cauzinille-Marmeche, 1997; GroBe & Renkl, 

2003). Future research should more directly examine whether 

step-to-step comparisons are actually detrimental to transfer. 

Because no study using step-to-step comparisons included 

conceptual measures, we cannot assess the unique 

contribution of this type of comparison on conceptual 

learning.  

 

Item-to-Abstraction Comparisons 

The third type of comparison we identified involves 

comparing an item--either a step or a problem as a whole--to 

an abstraction. An abstraction is some generalizable 

information that stands apart from any concrete or specific 

aspects of a problem, such as a domain principle, concept, or 

schema for solving a problem.  

In item-to-abstraction comparisons, students relate steps in 

an example, or a problem as a whole, to domain concepts and 

principles. For example, in one probability learning study, 

students providing ―principle-based explanations‖ linked 

each step in the problem to a principle such as ―It gets 

multiplied, because the events are independent from each 

other‖ referring to the multiplication principle in probability 

(Renkl, 1997). Comparisons to a principle or concept 

promote a deeper understanding of the links between abstract 

concepts and problem-solving procedures. As students make 

these comparisons, new information is integrated with prior 

knowledge--a critical aspect in the learning process (Kintsch 

& Kintsch, 1995). Through comparison, students connect 

their understanding of the steps in a procedure to domain 

concepts, and in doing so, expand their prior knowledge of 

those concepts and the domain.  

One example of a study that facilitated learning through 

item-to-abstraction comparisons involved students solving 

probability problems (Atkinson, Renkl, & Merrill, 2003). 

College undergraduates were asked to work through the 

problems step by step on a computer screen. As students 

worked through the steps, they were prompted to identify 

which principles of probability were relevant to each step. As 

students linked and compared the steps to principles, they 
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were able to better understand the problems as revealed 

through both near and far transfer of problem-solving skills.  

 

Effects on Procedural and Conceptual Learning 

We identified 13 studies involving item-to-abstraction 

comparisons in mathematics learning, but only one of these 

(Atkinson et al., 2003) focused solely on the effects of this 

type of comparison (i.e., not in combination with other types 

of comparison). This study did include measures of 

procedural knowledge, and found positive effects on 

procedural learning. This study also included measures of 

conceptual knowledge, but did not find that I-A comparison 

led to conceptual learning.  

This study measured procedural learning with transfer 

problems, and found that item-to-abstraction comparisons 

lead to gains in procedural knowledge. Students transferred 

their procedural knowledge to novel probability problems 

better when the worked-out problems they studied included 

information about relevant probability principles (Atkinson et 

al., 2003).  

Although this study did include a measure of conceptual 

knowledge--asking students to produce a principle that is 

relevant to the problem--no effect of item-to-abstraction 

comparisons on conceptual learning was found. Although 

students studied worked-out problems that invited them to 

compare problem steps with probability principles, when 

asked to solve novel transfer problems students were not able 

to identify which principle was most relevant. Students in 

this study who engaged in item-to-abstraction comparisons 

were not able to transfer their conceptual knowledge. 

 

Discussion 

This paper reviewed research on three types of comparison 

in mathematics learning: problem-to-problem, step-to-step, 

and item-to-abstraction comparisons. Of these three types, 

only the effects of problem-to-problem comparisons on 

learning have been well documented. Problem-to-problem 

comparisons, in which students compare one problem to 

another problem, lead to both procedural and conceptual 

gains in learning.  

The effects of step-to-step and item-to abstraction 

comparisons are much less well understood. Very few of the 

studies reviewed investigated the unique contributions of 

these types of comparisons. As a result, little is known about 

whether or not they promote learning of procedural or 

conceptual knowledge in mathematics. Future studies should 

directly investigate these types of comparisons. 

The lack of empirical support for step-to-step comparisons 

in this review bears further discussion. Although only one 

study measured the unique effects of step-to-step 

comparisons on procedural and conceptual learning, it 

revealed no benefits for step-to-step comparisons. It may be 

the case that step-to-step comparisons are not useful in the 

domain of mathematics, because these comparisons narrow a 

student’s focus to the specifics of one particular procedure. 

When students are given another similar problem, they may 

have difficulty adjusting this procedure to a new problem. 

Domains for which the specifics of one process (e.g., the 

circulatory system) need not transfer to another process (e.g., 

digestion) may improve with better understanding of the 

specific steps in the process. However, in situations where 

transfer is necessary from one problem to another (as is often 

the case in mathematics), step-to-step comparisons may in 

fact be detrimental.  

More generally, future research is needed to better 

understand the benefits and potential drawbacks of 

comparison in math learning. Research specifically geared to 

assess the unique contributions of each type of comparison in 

math is needed to better understand what types of comparison 

are most useful in math learning. With a better understanding 

of the contributions of each type of comparison, mathematics 

teachers and curriculum designers will acquire the 

information they need to implement effective instruction 

utilizing comparisons in ways that will best lead to learning.  
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