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Abstract

The analysis of the cognitive role played by external
representations — particularly within the distributed cognition
(DC) framework - has focused on the use of such
representations in cognitive tasks. In this paper, we argue that
the processes of building such representations require close
attention as well, especially when extending the DC
framework to ill-structured domains such as scientific
laboratories, where building novel representations is crucial
for making discoveries. Based on an ethnographic study of
the building of computational models in a systems biology
laboratory, we examine the complex cognitive roles played by
the external representations built by the lab (pathway
diagrams and models), and the building process itself.
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Traveler, there is no path,
paths are made by walking.
— Antonio Machado

The role of external representations in cognitive tasks has
received a lot of attention, particularly within the distributed
cognition (DC) framework (Hutchins, 1995; 1995a; Kirsh,
2010). Much of the work on external representations within
DC focuses on capturing detailed descriptions of the way
external representations are used in highly structured task
environments, such as ship navigation and landing of
aircraft, and the way these representations change the nature
of cognitive tasks. Less understood are the processes of
building external representations to alter task environments
(Kirsh, 1996; Chandrasekharan & Stewart, 2007), and the
role played by this building process in cognition and
problem-solving. In this paper, we focus on the building of
a complex external representation — a computational model
— and examine the role this external representation, and its
building process, plays in structuring, as well as altering, the
discovery task in a systems biology laboratory.

Only a handful of studies have examined problem solving
in scientific research from a DC perspective (e.g, Nersessian
et al, 2003; Alac & Hutchins, 2004; Hall, Wieckert &
Wright, 2010; Goodwin, 1997; Giere, 2002). These studies
do not consider how external representations are built,
largely because the development of a novel external
representation, and the changes it makes to the scientific
task environment, are complex events that occur over long
periods of time, and therefore not easily captured. Even
when such data are available (Chandrasekharan, 2009;
Nersessian & Chandrasekharan, 2009), it is not easy to
understand building using the current DC framework, which
is derived using studies of well-structured tasks, and
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therefore do not transfer well to the ill-structured and open-
ended task environment of a scientific laboratory. Further,
the DC framework, as it stands now, focuses on the use of
existing external representations, not on the processes of
generating representations, which play a significant role in
scientific practice. Building representations is part of the
activity of what Hall et al. (2010) call *“distributing”
cognition, that is, “how cognition ... is produced ... out of
human activity (p.2).” The DC framework therefore needs
to be extended to understand scientific practices that require
building novel representations for problem solving. In this
paper, we outline some aspects of this extension, using a
case study of how computational models are built in a
system biology lab.

Lab G as a Distributed Cognitive System

In our current project we are studying problem-solving
practices in two integrative systems biology labs. We focus
here on one lab that does only computational modeling
(“Lab G”). The modelers come mainly from engineering
fields, but work on building computational models of
biochemical pathways, to simulate and understand
phenomena as varied as Parkinson’s disease, plant systems
for bio-fuels, and atherosclerosis. The problems Lab G
modelers work on are provided by outside experimental
collaborators, who see modeling primarily as a method for
identifying key experiments of scientific or commercial
importance. The collaborators provide experimental data for
modeling, and also generate data needed for developing or
validating the model. In broad terms, the Lab G modeling
processes can be understood as occurring within a
distributed socio-technical system, which is the primary unit
of analysis in DC. This system comprises people working
together (modelers, experimentalists) to accomplish a task
(discover fruitful changes to biological pathways), and the
artifacts they use (models, pathways, diagrams, graphs,
papers, databases, search engines) in the process.

The task environment of the lab, and the external
representations used there, differ drastically from those
usually examined in DC, such as the standard example of
the cockpit and the speed-bug (Hutchins, 1995a). The main
differences can be classified as follows:

Actors and Goals: The lab does not have a structured task
environment, with synchronous actions connecting
individuals or groups. The objective of the lab is to make
discoveries, so the lab task environment is one where the
specific goal is not known in advance. There are very
general goals, such as “discover interesting reactions”, and
less general goals, such as “fit model”. These general goals
are spread across people who share a resource (experimental



data), but do not share a tightly integrated task environment.
The actors have different goals; they work in different
settings, at different times, and using different instruments.
Conflicts: The community sharing the data has conflicting
interests. Even though the modelers are trying to help the
experimentalists, it is very hard to get data from
experimentalists. One reason is that the experimental labs
have their own projects, and the modeler’s requests are not a
high priority for lab members. The two communities also
work at conflicting time-scales. For instance, once
developed, the models run blazingly fast, and can produce
interesting predictions in a few days. But experimenters take
weeks and months to gather data based on these predictions,
and this ‘phase-lag’ frustrates the modeler. Conflicts also
arise over the different levels of control afforded by models
(more control) and experimental techniques (less control).
Artifacts: The lab researchers do not simply use external
representations to reach a goal. The task of the lab is to
build representations (pathways, models) and use them to
make discoveries. These representations are themselves
built from other representations (papers, data files, online
databases, code), which provide information in a scattered
fashion. There are significant judgments involved in
assessing this scattered information (Is this database
curated? Is this cell line compatible with my problem?), and
integrating the information into a coherent representation
(Should this reaction be included in my pathway? Are there
other regulations missing here?). The engineers involved in
building the models are novices in making these judgments,
and they gain knowledge by discussing these judgments
with the experimentalists, who, in turn, are not clear on how
the model works and what the modeler is doing.

These differences suggest that understanding the lab as a
distributed cognitive system requires extending the current
DC framework — to task environments where goals are not
clearly specified, where many kinds of conflicts exist, and
where building representations is the central component of
the task. Such an extension requires an understanding of the
cognitive roles played by external representations in such
environments, and how the features of these representations
meet the demands of the task. First we consider why
systems biology requires building models, and provide a
brief outline of the lab G building processes.

The Need for Building Models

Computational models play a complex set of roles in the
process of discovery, and very little is known about the
cognitive mechanisms that underlie discovery based on such
models  (Nersessian &  Chandrasekharan,  2009;
Chandrasekharan, 2009). Recently, a combination of four
factors has made the practice of building models more
widespread, particularly in the bio-sciences and engineering.

1) The complex, non-linear, and dynamic nature of the
problems investigated in contemporary biology (and
recent science in general), requires building such
models. This is because it is almost impossible to
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develop detailed conceptual models of cellular and
molecular-level interactions in your head, or using
pencil and paper, as these processes involve many
levels of structure, occur simultaneously, across
different time scales, and with complex feedback loops.
Massive amounts of data are now generated by
experimental work in many areas of biology, such as
high-throughput data in genetics, where the interactions
among different variables are extremely complex, and
cannot be understood without modeling. Further, the
technology that generates the data relies heavily on
embedded statistical models of the distribution of the
data. These data usually require complex visualizations
based on models, as they are difficult to represent, and
comprehend, using traditional structures such as graphs.
Data in biology are closely tied to their context (e.g.,
specific cell lines, animals, diseases), and there is no
theory that helps structure all these disparate and
scattered data. Building computational models helps
bring these data together in a structured fashion.

The development and easy availability of new
technology that supports modeling and rapid
prototyping has made modeling more widespread.

2)

3)

4)

These factors, together with the technological resource
environment of contemporary science, are driving a rapid
expansion in the practice of building models. Earlier
resource environments, where the only cognitive tools
available were pencil and paper and the brain, saw the
development of methods such as thought experiments
(Nersessian, 1991), and cognitive walk-through simulations
based on models drawn on paper (Nersessian, 2008). These
methods have served science well, but they required
idealizing the problems to a high degree, as both the
cognitive and data-collection resources were limited. Finer
methods and representational modes are needed to provide
insight into the complex, dynamic and non-linear
phenomena investigated by contemporary science, where
massive amounts of data are available, and the details are
critical, so idealizing them away is not an option.

Constructing the Pathway and the Model

Lab G researchers mostly build ordinary differential
equation (ODE) models of metabolic systems, which
capture how the concentration levels of different metabolites
in a given biological pathway change over time. The first
step in this building process is the development of a
pathway diagram, which shows the main reactions involved.
The pathway diagram also captures positive and negative
regulation effects, which specify how the presence of
different metabolites has a positive or negative influence on
different reactions (Figure 1). A rough diagram of the
pathway is usually provided by the experimental
collaborators. But the modelers, who mostly come from
engineering backgrounds, have to estimate the details of the
pathway by themselves, particularly values of parameters
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Figure 1: A sample pathway diagram. Metabolite names are
replaced with alphabets. The dark lines indicate connections
where material moves across nodes, the dotted lines indicate
regulatory connections. Note the question marks over some
connections that are postulated by the modeler.

related to metabolites, such as speed of change (kinetic
order) and concentration level (rate constant), which are
usually not measured by experimenters. Some of this
information is available in rough form (with varying degrees
of reliability) from online databases, but most often these
values need to be estimated, usually through iterative testing
of the model, using a range of numbers as parameter values.

Modelers also add some components to the pathway,
usually metabolites that are known to interact with the
network provided by the experimenters. These components
are found by reading and searching biology journal articles
and databases related to the problem being modeled, and
also based on results from preliminary models.
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Even though much of the pathway is provided by
experimentalists, these kinds of additions based on literature
searches are required, because the provided pathway does
not identify all the components, and the regulatory
influences they have on the reaction.

The pathway developed by the modeler thus brings
together pieces of information that are spread over a wide
set of papers, databases, and unreported data from the
experimentalists. This pathway is usually trimmed, based on
some simplifying assumptions, mostly to lower the
mathematical and computational complexity involved in
numerically solving the differential equations. After the
trimming, differential equations are generated to capture the
trimmed pathway. A variable is used to represent the
metabolite, while the speed of its change (kinetic order) and
its concentration level (rate constant) are represented by
parameters, which can take many values. The next step
involves estimating values for these parameters, and these
values are then used to initialize simulations of the models.
The simulation results are then compared to actual
experimental results, to judge the “fit’ of the model.

Usually, modelers split available experimental data into
two, one set is used to develop the model (training data),
and the other set is used to validate/test the completed
model (test data). When the model data do not fit the test
data, the parameters are “tuned” to get model results that fit.
Once the model fits the test data, it is run through a series of
diagnostic tests, such as stability (e.g. does not crash for a
range of values), sensitivity (e.g. input is proportional to
output) and consistency (e.g. reactant material is not lost or
added). If the diagnostic tests fail, the parameters are tuned
again, and in some cases, the pathway changed, until the
model meets both the fit and diagnostic tests. Figure 2
provides a broad outline of the modeling process.
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Model

Representation Format Made

7| Parameter Estimations Diagnostics

il" ) Model Results

Parameter
Optimization

If Fit Mot Good

If Diagnostics
Mot Good

» Model Diagnostics

Dynamics
Quar

ative, Qualitative...

Figure 2: An outline of the modeling process in Lab G. Note that the ‘building” phase
incorporates both “fitting’ (of the training data) and ‘perturbation’ (model diagnostics) elements.
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Lab G models do not have real-time dynamic visualizations.
Parameter values are changed manually or using scripts.
Results for different parameter values are compared using a
deck of graphs, where each graph plots the concentration
value of a molecule in the pathway across time. These
graphs are used by the modeler while discussing the model
with collaborators and other team members. A significant
chunk of the parameter estimation problem is tackled using
optimization algorithms (such as simulated annealing and
genetic algorithms), which automatically do the ‘tuning’ of
parameters, by comparing the output values (for different
parameter inputs) against a desired value.

Importantly, the linear work flow suggested by the above
description is very deceptive — the modeling process is
highly iterative. For instance, to develop the pathway
diagram, preliminary models are built using the network
provided by the experimenters, and these are run using
tentative parameter values, and the generated model data are
fit to the training data. The parameter values are then
revised based on this fit. If the model data do not fit after a
large number of these parameter revisions — particularly if
the data trends are the exact opposite of experimental data —
the modeler will add some components to the network,
based on elements that are known (in the literature) to be
related to the pathway. There is also an instance where the
modeling led to the discovery that an element (hamed X) in
another pathway was influencing a bio-fuel pathway. Later
experimental work by collaborators identified a candidate
element for X. Thus, some of the model’s components —
elements and values — are set by building and running the
model itself. These pathway revisions, and their
justifications, are discussed with the collaborators, and if a
revision is considered “reasonable” by the experimenter, it
becomes a stable component of the pathway. This pathway
identification process is usually “bottom-up,” and creates a
“composite” network, made up of parameter values and
metabolites extracted from experiments in different species,
different cell lines etc. This composite is usually unique,
and does not exist anywhere else in the literature.

One of central problems the lab members face is the
unavailability of rich, and dependable, data. In modeling,
data are used for many purposes. One central use of data is
to establish that the model captures a possible biological
mechanism, and this is done by showing that the model’s
output matches the output from experiments (fitting data). A
second use of data is to tune parameter values during the
training phase of building the model. The fit with the
experimental data from each training simulation can
indicate how the model parameters need to be changed, to
generate model data that fit the training data. This use is
highly dependent on the type of data available. Most of the
time, the available data are “‘qualitative’ in nature — usually
how an experimental manipulation led to a change in a
metabolite level from a baseline. Mostly, this is reported as
a single data point, indicating the level going up or down,
and then holding steady. However, when this type of
“steady-state” data fits the results of the model, this fit does
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not indicate that the model has captured the biological
mechanism. A range of parameter values can generate
model results that fit such sparse data — the fit is not unique.
Further, since the pathway is an approximation, the modeler
is uncertain as to whether the lack of a unique and accurate
solution is due to poor estimation of parameters, or because
some elements are missing from her pathway.

As an example instance of modeling in this lab, consider
G12, an electrical engineer by training, who is modeling
atherosclerosis. When she started modeling, she had no
background on atherosclerosis. She was provided a rough
outline of the pathway by her experimental collaborators,
and she learned more about the pathway by reading papers.
The initial papers were from the collaborating lab, but then
she spread out using the reference lists of those papers. The
data available were mostly steady-state data. Once she had
read a number of papers, she started building rudimentary
computer models and testing these using available data. She
then added some components to the model based on
connections in the literature. It is worth noting here that
while her problem mostly concerned endothelial cells, some
of her parameters were taken from experiments with
neurons, a very different cell class, and a domain of research
(neuroscience) that is not usually connected to research in
endothelial cells. After discussion, her collaborators
endorsed some of her additions, as “reasonable”.

Estimating parameter values for her model was a tough
problem, since the data were sparse. To get parameter
values that generated model data that fit the training data,
she ran a large number of simulations and compared the
results with the training data. Finally, she arrived at a set of
values that generated data that roughly matched the training
data. Once this was done, she tested her model against the
test data, and got a rough fit there as well. Based on this fit,
she generated a number of predictions from the model, by
changing the parameter values. Some of these predictions
would be tested by her experimental collaborators.

This exemplar is representative of much of the modeling
in this lab, where external representations (pathways and
models) are built up from scattered and unreliable
information, and discussion. These representations are built
by modelers (engineers with no background in biology)
using an iterative building strategy, based on rough data and
guidelines from domain experts. This building process leads
to closer collaboration between the modelers and the
experimentalists. The completed model’s predictions guide
experimental decisions, and potential discoveries in critical
areas such as biofuel production. The data from these
experiments are then incorporated into the model, leading to
another cycle of experiments and discoveries.

In the following section we examine some of the different
cognitive roles played by pathway diagrams and models.

Cognitive Roles of Pathways & Models

Saliency: Kirsh (1995) argues that counting small dots like
) using a pencil is easier than counting them
with your eye, because the pencil changes the dot-counting



task to counting of pencil movements, which are more
salient. Further, the pencil movement prevents counting of
dots previously counted. The model serves a similar
cognitive role, since the model variables and their changes
are more salient than the actual reaction variables, and they
can be tracked separately as the reaction proceeds through
time. Further, the model allows grouping different reaction
components, and running the groups separately, and then
bringing the different groups together and running this
integrated model. This is not possible with actual reactions.
Integration: The pathway is developed by combining
inputs from many sources, including rough outlines from
experimenters, related papers, and databases. This
construction process creates a composite structure that
brings together information from disparate literatures. Each
element of the pathway exists in a paper somewhere, but the
composite structure created by the modeler exists only in
her work. This composite structure plays a book-keeping
function, bringing together information that is spread across
papers and domains that may not be related as research
streams. The model built using such a pathway could be
seen as a “running” literature review, and the model’s
correct predictions provide an external, global, validation
for the experiment results on the pathway elements.
Linking: As we saw in G12 case, the information used to
build the pathway/model can be from disparate domains of
research (neurons, endothelial cells). Other work in the lab
connects biophysics and neuroscience, and also tribology
(the study of interacting surfaces in relative motion), paper
science, and plant cell-wall growth. Such composite models
connect disparate literatures, and searches on their keywords
provide entry points (Kirsh, 2001) into systems biology for
people with different backgrounds. Over time, the model
also links together a range of results in a domain, and thus
prevents the dissipation of data and concepts. This ‘ratchet
effect’ also allows novices in the lab to start at a more
complex level than if they start from scratch.

Mangrove: Once built, the model generates predictions that
are used by experimental collaborators to develop new
experiments, and the results from these experiments are fed
back into the model. This process, over time, creates a new
collaboration space, and brings the modeling and
experimental communities together, leading to a research
domain that is distinct from the backgrounds of researchers
in both the streams. The building process also leads to hew
shared mental representations. For instance, each reaction
occurs in a specific location in the cell (nucleus, organelles,
cytoplasm), and every reaction is determined by the
structural properties of the molecules involved. The
experimentalist’s judgments are based on this spatial
complexity. But the ODE models do not take into account
any of this spatial complexity, and the modeler with an
engineering background is largely unaware of this
complexity when she starts. Over time, the building of the
model, and the discussion with experimentalists about
possible additions, leads to her developing more awareness
about the spatial complexity, and sometimes new modeling
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strategies that take into account this complexity. In the other
direction, discussions about the mathematical advantages
provided by time-series data could influence
experimentalists to report data across time, even if the
results are not statistically significant. The building process
thus leads to overlapping problem representations, and
approaches that fit the other community’s task better.

We term this growth over time of shared collaboration
space and mental representations the “mangrove function”
of external representations, after Clark’s (1997) example of
the growth of a mangrove tree to illustrate how writing can
generate thought. A mangrove tree germinates from a seed
floating in shallow water. It then sends out a complex web
of roots to the ground, creating a “plant on stilts.” This
structure traps floating debris, and over time, sand
accumulates around this debris, creating a little island
around the plant. The tree thus generates its own land to
grow. This is similar to how the building of the model
generates its own task environment, collaboration space,
research domain, and shared representations.
Stop-and-Poke: One of the central reasons for building a
model is to have a more controlled environment, where
almost any variable can be controlled in highly accurate and
specific ways. The model also allows many variables to be
changed at the same time, which is not possible with current
experimental techniques. Further, the model output can be
tracked visually over time, and this tracking can instantly
suggest the type of change that needs to be made to
variables to get a desired output. Also, the model can be
stopped at any time-point, and the state of the different
variables can be examined at that point. This ability to stop-
and-poke the simulation is crucial for understanding the
dynamic interplay among different components. It allows
identification of global patterns in variable states, and their
relation to the output. Over time, comparisons of such
patterns lead to identification of reliable mechanisms. In
contrast, experimental states cannot be stopped in between
and each variable examined in detail.

Coagulation: Models are built by systematically replicating
experimental data. Each replication adds complexity to the
model, until the model “fits” all available experimental data
well. At this point the model can “enact” the behavior of the
pathway that is being examined, and can be used to make
predictions, where variables are changed in ways that
generate desirable results. The notion of fit is complex, as it
is not a data point-by-point replication of all experimental
data for all variables. Rather, “fit” usually means the model
replicates the trends (metabolite production going up/down)
in the experimental data, for most of the major variables. In
other words, fit is a global pattern, and it is approximate.
While estimating unknown parameters, the modeler uses the
fit with the experimental data as an anchor. For each change
in a parameter, the way the model’s output map to the
experimental results (the “fit landscape™) changes. But only
parameter values that improve fit, or keep fit at an
acceptable level, are considered. The building process
proceeds by using the global behavior of the model (fit) as



an anchor to specify the local structure (parameter values),
which are involved in generating the fit itself. Since the fit is
also used to add/delete components in the pathway, the
model-building process can be thought of as a coagulation
process, where each of the elements (pathway-structure,
parameters, fit) are fluid in the beginning, but get more and
more constrained by their interactions. This process is very
complex and almost impossible without building the model.
Mutation: The model-building process begins by capturing
a reaction using variables, and then proceeds by identifying
ideal combinations of numbers for the variables
combinations that generate data close to experimental data.
Variables are a way of getting the building process going by
representing the unknown using place-holders. But this
representation has an interesting side effect. The variable
representation provides the modeler with a more flexible
way of thinking about the reaction, compared to the
experimentalist, who works only with one set of values (the
experimental results), which are privileged values, arising
from a set of spatial/structural properties of the molecules.
For the modeler, the variables can take any set of values, as
long as they generate a fit with experimental data. The
variable representation allows the modeler to naturally think
of the experimental value as one possible scenario, and also
examine why this scenario is common. This allows her to
naturally think of broader design patterns, and principles,
that generate the natural order, such as thermodynamic
principles. This is an ongoing effort in the lab. The “variable
thinking” also supports the modeler’s objective of altering
the structure of the reaction, in a way that patterns
commonly seen in nature (such as the thickness of lignin in
plant cell walls) can be redesigned. This objective requires:
1) not fixating on the given natural order, and 2) thinking of
design principles underlying this natural order. The variable
representation facilitates both these cognitive steps.

Conclusion

The study of scientific laboratories as distributed cognitive
systems is in its infancy. We believe that such analyses
could provide insights into how discovery and innovation
happens in science and engineering. But this analysis
requires moving away from directly applying the DC
framework as it exists to such discovery environments.
Instead, we need to extend the DC framework in new ways,
particularly taking into account ill-structured task
environments, and the way building new representations
changes the task environment. In this paper, we have
outlined some ways of understanding this process, using the
building of a computational model in a system biology lab.
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