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Abstract

In this paper we describe an embodied developmental model
of the interactions between the neural representations of num-
bers and space in the humanoid robot iCub. We show how a
simple developmental process that mimics real-world cultural
biases leads to the emergence of certain properties of the num-
ber and space representation system that enable the robot to
reproduce well-known experimental phenomena. We demon-
strate the validity of the proposed approach by showing that
it leads to the reproduction of three psychological phenom-
ena connected with number processing, namely size and dis-
tance effects, the SNARC effect and the Posner-SNARC effect.
Keywords: mathematical cognition; developmental cognitive
robotics; computational modeling; size effect; distance effect;
SNARC effect; Posner-SNARC effect;

Introduction
Perceiving numbers and quantities is one of the most basic
perceptual skills of humans and animals (Dehaene, 1997).
Given the pure and abstract character of the number concept
as perceived by humans, it is no surprise that many in cog-
nitive science pursue a better understanding of how such a
peculiar concept could have emerged, how it is represented
and processed, and how it relates to other processes that take
place in the brain. These efforts, which can be put together
under the common label of mathematical cognition, consti-
tute a branch of science that has been gaining more and more
momentum during the past few decades (Dehaene & Bran-
non, 2010).

Computational modeling is an important tool used in the
study of mathematical cognition to understand the principles
of number processing in the brain. Based on observations
from experimental psychological studies as well as hints ob-
tained through various brain imaging techniques, computer
models of number representation and processing are con-
structed and evaluated on the basis of how well their proper-
ties match those of the biological cognitive systems. Analysis
of the computer models helps us to understand how biolog-
ical systems work at the algorithmic level, which in turn is
necessary to understand their neural implementations.

In this paper we present an embodied developmental cogni-
tive robotic model of interactions between number and space.
In the following paragraphs we provide a short review of pre-
vious computational models of numerosity representation and
processing, focusing on those most relevant to the work pre-
sented herein.

An influential connectionist model of number represen-
tation and processing has been described by Dehaene and

Changeux (1993). The system consisted of a 1-dimensional
visual retina, a location and normalization cluster, a sum-
mation coding layer and a place coding layer. The output
from the place coding layer was used in a “same-different”
comparison and “larger-smaller” comparison tasks. The sys-
tem was designed to model perception and processing of
non-symbolic stimuli (e.g. a cardinality of a set of items
perceived visually). One of the most interesting findings
was the demonstration of how the described system can
autonomously “discover” the larger-smaller relation based
solely on unsupervised experimentation with addition and
subtraction.

One of the first models of number representation based
on recurrent artificial neural networks was proposed by
Rodriguez, Wiles, and Elman (1999). Here, supervised learn-
ing techniques were used to teach a simple recurrent neural
network to perform a task, in which counting was required
in order to succeed. In successful networks, neurons formed
a special case of a discrete-time dynamical system in which
numerosity was coded in the dynamical properties of trajec-
tories realized by hidden layer units. This complex solution,
radically different from traditionally used coding methods,
has been obtained despite a small amount of inductive bias
in the training process.

Ahmad, Casey, and Bale (2002) presented a rather com-
plex system aimed at modeling two manifestations of numer-
ical abilities: subitizing and counting. Their system consisted
of two networks, each specifically designed to perform one
of these tasks, composed of several modules playing different
roles and trained separately using various machine learning
techniques. Implementation of the model delivered interest-
ing results especially in the domain of counting (which, being
a more complex task with a temporal structure, has been more
rarely tackled in the literature than instant comprehension of
numerosity), where counting error patterns similar to those
observed in children were obtained.

A relatively consistent path of increasingly complex mod-
eling of different aspects of human mathematical cognition
can be found in a series of papers by Verguts and collabora-
tors (Verguts & Fias, 2004; Verguts, Fias, & Stevens, 2005;
Gevers, Verguts, Reynvoet, Caessens, & Fias, 2006; Chen
& Verguts, 2010). The first model focused on how sim-
ple number coding methods believed to be employed in the
brain (summation and place coding) can emerge as the re-
sult of an unsupervised learning process, thus showing that
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such systems do not have to be innate as suggested in ear-
lier research. Building on a place-coding system with lin-
ear scaling and constant variability as the core representation
of numerosity, Verguts et al. (2005) shifted the responsibility
for size and distance effects from number representation to
later processing stages. It was demonstrated that this leads
to results consistent with experimental data. These are char-
acterized by symmetrical priming patterns and no size effect
in naming and parity tasks, combined with the presence of
both size and distance effects in the comparison task. This
is allegedly not possible to obtain using numerosity represen-
tations with compressed scaling and/or increasing variability,
used in earlier models. An important step has been achieved
by Gevers et al. (2006), where experimental phenomenon
more complex than size and distance effects, namely the
SNARC effect (Spacial-Numerical Association of Response
Codes, (Dehaene, Bossini, & Giraux, 1993)) were modeled.
The model used a dual-route architecture to explain the phe-
nomenon, combining findings from previous computational
models and other studies aiming at explaining spatial congru-
ency effects. The simulations were compared to experimental
data, predictions were made about the shape of the SNARC
effect in a certain category of tasks, and these were confirmed
experimentally.

Finally, the model of Gevers et al. (2006) was further ex-
tended in a recent paper by Chen and Verguts (2010), in
which a representation of space was introduced instead of an
“automatic pathway” present in the previous model. Chen
and Verguts (2010) added a module corresponding to a “hu-
man homologue of lateral intra-parietal area in macaque mon-
keys”, a saliency map related to the visual field, consisting of
two parts characterized by contra-lateral spatial neuronal gra-
dients. These gradients were identified as the crucial prop-
erty of the model which allowed for reproduction of a num-
ber of psychological experiments, including those involving
patients suffering from certain lesions.

The model we present in this paper extends the work of
Chen and Verguts (2010) by addressing two drawbacks with
their model. First, as it is the case with all mathematical cog-
nition models published to-date, the system does not take di-
rectly into account any aspects of embodiment. According
to current trends in cognitive science it is not possible to un-
derstand the brain in separation from the body in which it is
embedded and from the environment in which it develops.
In line with this, when formulating our model we considered
any relevant constraints imposed by the target body (that of
a humanoid robot), and designed the developmental process
accordingly. Secondly, the most important phenomenon in-
vestigated by Chen and Verguts (2010), that is associations
between numbers and space, have been modeled in their pa-
per as hand-wired connections, despite extensive evidence
cited by themselves that most probably it is the “environ-
mental correlation between symbolic numbers and physical
space” that creates this association in the brain. In this paper
we show how necessary patterns of connections can indeed

Figure 1: iCub, the humanoid robot used in modeling.

emerge from a simple developmental process.
The following sections of the paper are organized as fol-

lows. First we introduce the robotic platform that has been
employed in this modeling study. Then we present the archi-
tecture of our model and the process of its development. Next
we demonstrate the validity of our model by showing that it
is able to reproduce three phenomena in which interactions
between numbers and space manifest themselves. We finish
the article by drawing conclusions from the experiments and
emphasizing the capability of the embodied robotic approach
to be used in the modeling of mathematical cognition.

Model Description
iCub, the Humanoid Robot Platform
The model described in this paper has been designed to oper-
ate in a simulated model of the humanoid robot iCub (Metta
et al., 2010). The robot itself (figure 1), is an open-source
design developed recently as a benchmark platform for cog-
nitive robotics experiments. The anatomy of the robot is in-
tended to resemble that of a 3.5 years old human child and
has a total of 53 degrees of freedom, 20 of which were used
in the experiments described here (6 for head and eyes, and
7 for each of the two arms). iCub is equipped with devices
which allow it for visual, auditory, tactile and propriocep-
tive perception. Robot software includes the iCub simulator
(Tikhanoff, Cangelosi, & Metta, in press), a tool for robotic
simulation experiments without the use of the physical robot.
In research described in this paper only the simulated robot
has been used.

Model Architecture
The architecture of the model (see figure 2) builds on results
of the modeling experiments described above, as well as those
of Caligiore, Borghi, Parisi, and Baldassarre (2010), where
the authors formulated a general embodied model of com-
patibility effects focusing on motor affordances and goals.
The processing of information in our model is split into two
neural pathways: “ventral”, responsible for processing the
identity of objects as well as task-dependent decision making
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Figure 2: Architecture of the model.

and language processing, and “dorsal”, involved in process-
ing of spatial information about the locations and shapes of
objects and sensorimotor transformations which provide on-
line support for visually guided motor actions (please refer to
(Caligiore et al., 2010) for an extensive discussion of motiva-
tions for such a division).

“Ventral” Pathway: Decision Making and Language Pro-
cessing The “ventral” pathway is modeled in a very similar
way to components of the (Chen & Verguts, 2010) model.
It consists of: 1) a symbolic input INP which codes for the
number, using place coding (same remarks about the irrele-
vance of the spatial arrangement of neurons as those raised
in the original paper apply here); 2) a “mental number line”
ID which codes for number identity (the meaning of the sym-
bol) with linear scaling and constant variability; 3) a deci-
sion layer DEC executing each of the considered tasks, that
is number comparison and parity judgment; and 4) a response
layer RES, integrating information from both pathways and
responsible for the final selection of the motor response. Sim-
ilar to the practice used in (Chen & Verguts, 2010), for sim-
plicity of implementation the actual structure of the “ventral”
pathway, especially its decision layer, was adapted depending
on the task to be performed, by removing components irrele-
vant to the task at hand. Likewise, for the number comparison
task which requires more than one number to be processed at
the same time, short-term memory was implemented by du-
plicating necessary layers (namely INP and ID). The layers
were composed of the following numbers of neurons: INP
and ID: 15, DEC: 4 (2 for each task), RES: 2.

“Dorsal” Pathway: Spatial Coding and Transformations
The “dorsal” pathway is composed of a number of neuronal
maps which code for the spatial locations of objects in the
robot peripersonal working space using different frames of
reference (Wang, Johnson, & Zhang, 2001): one associ-
ated with the gaze direction (GAZ), and two for each of the
robot’s arms: left (LFT) and right (RGT). These maps are

implemented as 49-cell (7 by 7) 2-dimensional Kohonen Self-
Organizing Maps (SOMs) with cells arranged in a hexagonal
pattern. Input to the GAZ map comes from the 3-dimensional
proprioceptive vector representing the robot gaze direction
(azimuth, elevation and vergence) and input to each arm po-
sition map consists of a 7-dimensional proprioceptive vector
representing the position of the relevant arm joints: shoulder
pitch, roll and yaw, elbow angle and wrist pronosupination,
pitch and yaw. The GAZ map is linked to both arm maps:
this implements the transformation of spatial coordinates be-
tween frames of reference corresponding to these body parts
(so that a position in the visual field can be translated into
an arm posture corresponding to reaching to this position and
vice-versa). It is important to note that this is the part of the
model where the embodied approach to modeling is imple-
mented, and where the crucial difference between our and all
previous quoted models lies. This point is elaborated in the
Discussion section.

Developmental Learning of the Robot

The modeling of the developmental learning process is orga-
nized around a number of sequential phases corresponding to
different stages of development of a human child. First, spa-
tial representations for sight and motor affordances have to be
built and correspondences between them established. Later,
the child can learn number words and their meaning. Usu-
ally in late preschool years, children learn to count. More or
less at the same stage the child may be taught to perform sim-
ple numerical tasks such as number magnitude comparison or
parity judgment. All these stages are reflected in our model.

Building Spatial Representations and Transformations
In order to build the gaze and arm space maps, the robot per-
forms a process equivalent to motor babbling (Von Hofsten,
1982), in which a child refines its internal visual and motor
space representations by performing random movements with
arms while observing its hands, reaching for toys in its visual
field, etc. This enables the child to perform tasks such as
visually guided reaching later in life. This stage of develop-
ment was implemented in the robot by selecting 90 points uni-
formly distributed on what has been assumed to be the robot’s
operational space (a part of a sphere in front of the robot with
0.65m radius, centered between robot’s shoulder joints, span-
ning ±30◦ of elevation and ±45◦ in azimuth). These points
served as target locations for directing gaze and moving both
arms of the robot using inverse kinematic modules. After a
trial in which the robot reached a random position, the result-
ing gaze and arm postures were read from proprioceptive in-
puts and stored. Between each trial, the head and arms of the
robot were moved to the rest position in order to eliminate any
influence of the sequence in which the points have been pre-
sented on the head and arm posture at the end of the motion.
These data were used to train the three SOMs using the tradi-
tional unsupervised learning algorithm. In order to reflect the
asymmetry between reachable space for the left and right arm
(some areas reachable by the right arm cannot be reached by
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the left arm and vice versa), only 2/3 of the extreme points
corresponding to an arm were used when building a spatial
map for this arm (e.g. leftmost 2/3 of all points for the left
arm). Learning parameters were adjusted manually based on
the observation of the learning process and analysis of how
well resulting networks span target spaces.

Transformations between the visual spatial map GAZ and
the maps of reachable space LFT and RGT, implemented as
connections between the maps, were trained using the classi-
cal Hebbian learning rule. In a process similar to motor bab-
bling, gaze and the appropriate arm were directed toward the
same point and resulting co-activations in already developed
spatial maps were used to establish links between them.

Learning Number Words and Their Meaning This stage
of learning corresponds to establishing links between num-
ber words, modeled as activations in the INP layer, and num-
ber meaning, being activations in the ID layer. In the model
described here links between INP and ID layers were preset
manually implementing place coding with linear scaling and
constant variability (as in (Chen & Verguts, 2010) and previ-
ous models). However, Verguts and Fias (2004) showed that
such pattern of connections can arise from a simple super-
vised learning process.

Learning to Count The goal of this stage is to model the
cultural biases that result in an internal association of “small”
numbers with the left side of space and “large” numbers with
the right side, since this is believed to be the cause of SNARC
and similar effects. As an example of these biases we consid-
ered a tendency of children to count objects from left to right,
which may be associated with the fact that European culture
is characterized by left-to-right reading direction (Dehaene,
1997). In order to model the process of learning to count,
the robot was exposed to an appropriate sequence of number
words (fed to the INP layer of the model network), while at
the same time robot’s gaze was directed toward a specific lo-
cation in space (via the input to the GAZ spatial map). These
spatial locations were generated in such a way that their hor-
izontal coordinates correlated with number magnitude (low
number presented on the left, large numbers on the right) with
a certain amount of Gaussian noise. Vertical coordinates were
chosen to uniformly span the represented space. While the
robot is exposed to this process, Hebbian learning establishes
links between number word and stimuli location in the visual
field.

Learning Comparison and Parity Tasks Finally, the
model is trained to perform target tasks, that is number com-
parison and parity judgment, which corresponds to establish-
ing appropriate links between the ID layer and neurons in the
DEC layer. This process, extensively described in (Verguts
et al., 2005), involves supervised learning using the Widrow-
Hoff Delta learning rule after all activations in the network
reach stable states. In our model we used weight values
from our own reproduction of the experiments described in
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Figure 3: Simulation of the size and distance effects in the
number comparison task. On all RT charts error bars show
±2SEM.

the cited paper.

Simulation Results
In order to demonstrate the validity of our model we tested it
by simulating three selected tasks which have been used pre-
viously to evaluate models by other authors (Chen & Verguts,
2010). In this section we present a brief summary of the
results. All of the tasks involved measuring response times
(RT) of the model. These were obtained by assuming that a
response is given when activity in one of the two response
nodes exceeded an assumed response threshold (0.5 for ex-
periments 1 and 2 and 0.8 for experiment 3). We report RTs
aggregated over 10 independent instantiations of the model1.

Experiment 1: Size and Distance Effects

Size and distance effects are two of the most common find-
ings from experimental mathematical cognition studies. They
are present in many tasks, but in the context of number com-
parison they mean that it is more difficult to compare larger
numbers (size effect) and numbers which are closer to each
other (distance effect). This should be evident in RTs growing
with number magnitude and with decreased distance between
numbers being compared. RTs obtained from simulating the
experiment in our model are reported in figure 3. Response
times were measured for all pairs of numbers from 1 to 7. We
report results for the right hand response only (results for the
left hand were similar). Clearly both size and distance effects
are present in the model. Sources of the size and distance ef-
fects in our model are the same as in the model by Chen and
Verguts (2010), namely monotonic and compressive patterns
of weights between ID and DEC layers.

1In contrast to cited authors we had no access to numerical data
from relevant psychological experiments, thus we were unable to
perform linear regression over these data. This does not invali-
date any of our results (only additional linear scaling of RTs is per-
formed), but must be kept in mind when comparing charts from the
respective papers.
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Figure 4: Simulation of the SNARC effect in parity judgment
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Experiment 2: SNARC effect

SNARC effect is more directly related to interactions between
number and space than size and distance effects. Using a
similar procedure as in (Chen & Verguts, 2010), we report
RTs obtained by our model in parity judgment and number
comparison tasks. Here, the difference between right hand
and left hand RTs for the same number in both congruent and
incongruent condition is reported. The SNARC effect should
manifest itself in a negative slope on such a chart. Results
of our simulations are presented in figure 4. Presence of the
SNARC effect is evident in both tasks. The source of this
effect in our model requires further explanation.

Quoting relevant neuroscientific research, Chen and
Verguts (2010) explain sources of the SNARC effect as the
result of ”an initial dip toward the wrong response hand in
SNARC-incongruent conditions evident in recordings of the
lateralized readiness potentials in the motor cortex”. Accord-
ingly, in our model the presentation of a number word leads
to an automatic activation of the relevant parts of the visual
space representation, due to links established during model
development (more precisely, during learning to count) – left
part for small numbers, and right part for large ones. Visual
space representations in turn are linked to both motor maps,
although not symmetrically. As outlined above in the descrip-
tion of the model development, some parts of the visual space
that can be reached by the right arm cannot be reached by the
left arm, and vice versa. As a consequence, when transfor-
mation from the visual space map to arm maps occurs, both
arm-related representations will be activated to a similar de-
gree only for the areas in the center of the visual map. For the
areas placed to the sides of the visual space, the map asso-
ciated with one arm will be activated more strongly than the
other, as it over-represents that side of space (this is a natu-
ral consequence of the robot morphology). Because there is
a significant overlap between represented areas, the effect is
not sudden, but connections between visual and motor maps
form a gradient from left to right – links to the left arm map
become weaker, while those to the right become stronger.
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Figure 5: Simulation of the Posner-SNARC effect.

Thus, for instance when a small number is presented, internal
connections lead to stronger automatic activation of the rep-
resentations linked with the left arm than those of the right
arm, which causes the SNARC effect. In contrast to (Chen
& Verguts, 2010), in our model this particular pattern of con-
nections is not hand-wired, but emerges as a consequence of
the robot morphology during the development process. We
hypothesize that the presence of such neuronal gradients in
the human brain referred to by (Chen & Verguts, 2010) may
be ascribed to similar factors.

Experiment 3: Posner-SNARC effect
The Posner-SNARC effect is another manifestation of the
connection between numbers and space, placed within the
attention cuing paradigm (Fischer, Castel, Dodd, & Pratt,
2003). A small or large number presented at the fixation point
acts as a cue and directs attention of the participant toward the
left or right side of space, affecting the time needed to detect
an object appearing in the visual field after a certain delay.
The effect results in faster detection of the target on the left
when a small number is presented as a cue, and on the right
for large numbers, even though throughout the experiment
numbers are not predictive of target locations. Simulated re-
sponse times obtained from model are shown in figure 5. The
effect is visible on the charts in shorter RTs for the target pre-
sented on the left for a small number as a cue, and on the right
for a large number as a cue.

Discussion
In the paper we have presented an embodied developmen-
tal robotic model of interactions between numbers and space.
We have described the model architecture as well as the as-
sociated developmental process. By simulating three well-
known experiments we have demonstrated the validity of our
approach, showing that after development is completed, our
model exhibits the most important properties of the human
mathematical cognition system. In this final section of the
article we discuss the differences between our approach and
those of authors of earlier works, thus highlighting the ben-
efits which embodied robot simulations bring to cognitive
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modeling in general.
As described above, the crucial difference between our

modeling approach and previous literature models is the as-
pect of embodiment. The robot we use in our experiments
has one head and two arms, thus three separate spatial maps
for each of these body parts are developed in our cognitive
model. The robot proprioceptively perceives its gaze direc-
tion and arm positions using specific degrees of freedom, and
as a consequence the maps in our model have to be imple-
mented to span this specific number of dimensions. Finally,
these maps are real spatial maps, in which activations corre-
spond to specific positions of a material limb and vice versa.
Thus such an embodied approach may greatly help to reduce
arbitrariness of the model. Taking as an example the sys-
tem described by Chen and Verguts (2010), “space represen-
tation” has been implemented there as an arbitrary network
of connections, hand-wired in such a way so that it exhibits
properties suggested by neuroscientific data. Although this
allowed for a successful reproduction of a good number of
experiments, the traditional connectionist approach remained
inconclusive regarding how to answer the questions of why
such a pattern of connections is present and how it comes
into being. Supplementing the previous modeling achieve-
ments with the embodied approach and replacing previously
arbitrary parts of the model with elements which have direct
material interpretation allowed us to formulate hypotheses to
answer these questions.

The importance of the embodied approach to cognitive
modeling increases together with the level of complexity of
the processes being modeled, and with the degree to which
motor representations and actions are involved. In the con-
text of mathematical cognition one may recall experiments
such as physical line bisection (where the participant is asked
to point at the middle of a line presented on board in front
of him) or investigation of the role of finger counting habits
(Fischer, 2008) or that of gesture in learning to count (Andres,
Seron, & Olivier, 2007) to name just a few. While some re-
searchers already attempted to model the former task with a
purely connectionist model (Chen & Verguts, 2010), the em-
bodied robotic approach is more suited to tackle such prob-
lems from the developmental perspective.

Results presented in this paper are part of work in progress.
After connecting the model with the real iCub robot instead
of its virtual equivalent, we plan to employ it to tackle issues
in mathematical cognition directly involving motor represen-
tations and actions, with a special focus on the relations be-
tween gesturing and learning to count.
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