Templatic features for modeling phoneme acquisition
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Abstract

We describe a model for the coding of speech sounds into a
high dimensional space. This code is obtained by computing
the similarity between speech sounds and stored syllable-
sized templates. We show that this code yields a better linear
separation of phonemes than the standard MFCC code.
Additional experiments show that the code is tuned to a
particular language, and is able to use temporal cues for the
purpose of phoneme recognition. Optimal templates seem to
correspond to chunks of speech of around 120ms containing
transitions between phonemes or syllables.
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Introduction

Infants spontaneously learn their ambient language at an
amazing speed. During their first year of life, they construct
abstract perceptual categories corresponding to the
phonemes of their language. They lose the ability to
distinguish fine phonetic variants that belong to the same
phoneme category, and enhance their ability to distinguish
between category contrasts (see a review in Kuhl, 2000).
This is done without any supervision from the parents,
before a substantial recognition lexicon has been built (12-
month-olds are believed to recognize about 100 words), and
before they can articulate correctly the phoneme categories
they recognize. How do infants achieve this? One possibility
is that they perform some kind of unsupervised statistical
clustering of the ambient speech signals. Maye, Werker and
Gerken (2002) showed that 6-month-old infants perform
such computations, using artificial languages with either a
monomodal statistical distribution or a bimodal distribution
of phonetic cues.

Only a limited number of studies have addressed the
computational mechanisms that could underlie such
acquisitions. Guenther & Gjaja (1996) showed that Self-
Organizing Maps have the potential to construct phoneme
categories in an unsupervised fashion (see also Valhabba et
al., 2007; Gauthier, Shi & Xu, 2007). Valhabba et al (2007)
implemented an incremental version of Expectation
Maximization on a Gaussian Mixture model, and showed
that both the number of vowels and their statistical
distributions can be inferred from the signal in an
unsupervised fashion.
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These studies, however, did not use raw speech signals,
but rather a small number of parameters extracted by hand:
e.g., the frequency of the first and second formants, vowel
duration, etc. (Valhabba et al 2007). This presupposes that
infants are equipped with fairly speech-specific perceptual
abilities and, crucially, that they know how to segment the
continuous stream into discrete segments like consonants, or
vowels. This latter assumption is problematic given that
such segmentation is not universal, but depends on the
phonology of the language (Dupoux et al, 1999).

Varadarajan et al. (2008) is one of the few published
paper that attempted to learn phonemes from raw speech.
Using an optimized version of Successive State Splitting
(SSS, Takami & Sagayama, 1992), they grew in an
unsupervised fashion a large network of Hidden Markov
Model (HMM) states. These states were shown to encode
speech sounds with no loss of information compared to
supervized HMMs, but there were two problems. First, the
states of the HMM network did not correspond to
phonemes, but rather to subphonemic units of the size of
acoustic events (e.g. burst, closure, transition, etc). This is
the oversegmentation problem. Second, even combining
states into sequences did not yield phonemes, but rather,
context dependant variants (contextual allophones). This is
the contextual variability problem. Here, we address the
first problem, the second problem being address in other
work (Peperkamp et al, 2006; Martin et al. submitted,
Boruta et al. 2011).

The oversegmentation problem of SSS, although
disappointing, is not entirely surprising. State-of-the art
supervised HMMs have the same problem: segments are
typically modeled using three states, not a single state. The
reason is that HMMs represent speech as local spectral
feature vectors (e.g. Mel-Frequency Cepstral Coeficients —
MFCC, computed over a 15-20ms window), whereas
phonemes are realized as a complex articulatory trajectory
spanning between 50 and 150ms, sometimes involving a
sequence of events (constriction, release, changes in the
source, etc.). Since HMMs are modeling speech sounds
through Gaussians distributions (which are local), the only
way to model phonemes accurately is to segment them into
subparts. This problem is not limited to MFCC features, but
would also apply to any local feature, like for instance
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Figure 1. Outline of the High Dimensional Template Matching model. It is composed of an instance-based bank of reference
templates, and has two processing modes: during early language experience (dotted lines), the templates are segmented out of
the speech stream, during subsequent development and in adults, the signal is matched to the bank of templates (solid lines).

wavelet type functions (Smith & Lewicki, 2006), or features
derived from auditory models (Chi et al, 2005).

To solve the oversegmentation problem, we propose to
explore the feasibility of replacing low dimensional, low-
level features with high dimensional, holistic or coarse
grained features. We review some existing proposals.

Holistic/templatic features

Research into the human visual system has revealed that the
brain analyzes shapes and objects in a series of hierarchical
stages in which stimulus features of increasing complexity
and size are extracted. Ullman et al. (2002) argued that the
maximally informative features for the purpose of object
classification are not local features, but rather features of
intermediate complexity, that correspond to fragments of
images or objects. The brain would store such fragments
which form a high dimensional code adapted to a particular
domain of object perception. Along a similar line, Edelman
(1996) proposed that the brain represents a shape through its
similarity to a number of reference shapes, that are stored as
patterns of elementary features. Familiar and novel objects
are then represented as points in a shape space computed
from similarities to a set of reference objects.

Such proposals are only starting to be applied to speech.
Liquid State Machines (Maas et al, 2002), or Echo State
Systems (Jaeger, 2002) use recurrent networks or dynamic
systems to recode a time-varying low dimensional signal
into a high dimensional one which incorporates information
spanning the recent past of the system. Such codes are more
robust to noise than low-level featural approaches
(Skowronski & Harris, 2007), however it is unclear how to
optimize such representations. Coath & Denham (2005),
proposed a model storing templates consisting of 100ms-
200ms speech sounds, which are used as convolution filters.
They argue that the high dimensional code obtained is more
robust to variation due to time compression and speaker
variation than classical features. Dupoux (2004) has
proposed a similar approach based on the psycholinguistics
of human infants, whereby processing is based on the

220

segmenting and storing of syllable-sized templates, which
are the basis for discovering the smaller and more abstract
phonemes, which can in turn be used to recover the even
more abstract linguistic features. In this paper, we explore a
quantitative assessment of this last approach.

The algorithm

The idea of using examples from the problem set as the
basis for representing further examples is at the core of
Support Vector Machine models (Cortes & Vapnik, 1995).
The present proposal is inspired by the idea that large units
like syllables are natural perceptual units for infants and
adults. For instance, Bertoncini & Mehler (1981) showed
that neonates can count the number of syllables in a speech
stream, before they have learned the phonemes of their
language. The proposal is that, during their first year of life,
infants build a large base of syllable-like templates, and at a
later stage, compute the similarity between the incoming
signal and the stored templates. The High Dimensional
Template Matching model (HD-TMatch) presented in
Figure 1 assumes that all sounds (templates and signal) are
first coded in terms of low level features (Step 0). During
the early acquisition phase, (Step 1), the model segments out
chunk of speech of a given size and stores them as templates
in an instance-based memory system. After the templates
become fixed, speech sounds are matched to the templates
(Step 2), and a similarity between each template and the
signal is computed (Step 3). This model translates a time
varying trajectory in acoustic space into a point in similarity
space. As such, it has the potential to solve part of the
oversegmentation problem since it matches whole
trajectories instead of just a slice of time. It also has the
potential to address convergence towards the native sounds
since the stored templates belong to the native language.
Note that the model is not committed to templates being
exactly aligned to linguistically defined syllables; they could
as well correspond to diphones, triphones, or acoustic
chunks of syllable size.



- Step 0: Coding. The input was coded in terms of a frame
every 5 ms consisting of 13 MFCC coefficients (Mermel-
stein, 1976) computed on overlapping 15 ms windows.

- Step 1. Templates Segmentation. The template base can
vary according to three independent parameters: (a) number
of templates. To be effective, templates have to be numerous
enough to cover the range of possible sound combinations
in the language. However, too many templates may hamper
learning. (b) template duration: a template has to be long
enough to contain significant dynamic properties, but not
too long, otherwise the number of templates required for
total language coverage explodes. (c) template boundaries:
Templates can either be temporally aligned to structural
properties of speech (syllable boundaries, peak of vowel
nucleus, etc), or randomly segmented. Even though these 3
variables may interact, in the present study, we manipulate
one while keeping the other two constant in artificial
languages.

- Step 2. Template Matching. In the model, each template is
matched to the signal in a parallel and independent way, as
if each template were as an autonomous recognizer, looping
through the signal in the attempt to recognizing itself. We
use Dynamic Time Warping (DTW) (Myers and Rabiner,
1981) to find the optimal alignment of the template and the
signal, hence obtaining a warping function for each
template. Multiple passes through the templates are allowed
if the signal is long enough.

- Step 3. Similarity. The warping function is used to extract
two different types of signal: spectral similarity, and
temporal distortion. Spectral similarity is based on the
readout of the Euclidian distance between the MFCC
coefficients of the signal and the aligned template for each
frame (see Appendix). Temporal distortion is based on the
local slope of the warping function: any deviation from a
slope of 1 in the warping function is giving a cost in the
temporal distortion between the template and signal. The
output representation for a bank of N templates is hence a
set of 2N time series, sampled every 5 ms.

Methodology

The aim of this paper is to compare the efficiency of
templatic features compared to low-level ones for the
purpose of phoneme classification. We assessed this using a
linear separation test: a perceptron was trained on a set of
labeled examples using the RPROP algorithm (Riedmiller,
and Braun, 1993), and the performance of the classification
was measured both on the training set and on a novel
generalization set. Training and recognition of the phonetic
categories was computed frame by frame using human
labels, and the error rate was the percentage of misclassified
frames over the training or generalization sets. This
performance was compared to the results obtained with two
baseline low-level featural codes. One is the raw MFCC (13
dimensions) used as input to the model. The second baseline
is MFCC + Delta2 code, which corresponds to MFCC
coefficients plus their first and second order derivatives (39
dimensions). This is a useful comparison since time
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derivatives of the MFCC coefficients are a standard way to
improve on local featural codes to capture some of the
dynamic properties of speech.

The algorithms were tested on two pseudo-languages,
which we constructed with carefully balanced phoneme and
syllable sets. Utterances of each pseudo-language were
recorded by a male talker in a quiet and non reverberating
environment, digitized, and converted into MFCC coef-
ficients. All stimuli were hand labeled for the purpose of
performing the linear separation test. The stimuli were then
distributed into three sets. The first set was used to generate
the templates, the second one for training the perceptron and
a third one for generalization. Each test was performed 10
times, with a different random assignment of sets, in order
to derive standard deviations for the error rates.

The Monosyllabic language contained 6 vowels /aeiu o
y / and 6 consonants /R m s p t k/. These phonemes were
combined to create 36 Consonant-Vowels (CV) syllables.
The syllables were pronounced in isolation (as if they were
monosyllabic words). Each syllable was recorded 54 times.
The template set contained between 4 and 12 exemplars of
each syllables, the training set contained 34 exemplars and
the generalization set contained 8 exemplars.

The Polysyllabic language contained trisyllabic CVCV-
CV words, composed of 8 phonemes /R [d m e aiu/. These
phonemes are arranged following the same CV structure
than in the previous sets. The set was built in such a way
that all the phonemes consonants or vowels were produced
the same number of times, in every position. The template
set contained 12 exemplars of each syllables (192
templates), the training set contained 34 exemplars and the
generalization set contained 8 exemplars.

Results

Assessing the templatic code

We used the monosyllabic language for these experiments.
The linear classification performance of MFCC and
MFCC+Delta2 are used as baseline (Figure 2a). As seen in
Figure 2b, template features using whole syllables as
templates  yields  systematically = better = phoneme
classification performance than the baselines. This shows
that templatic features are both more informative than the
MFCCs on which it is based, and outperform the MFCC
time derivatives. Increasing the number of templates from 4
per syllable types to 12 per syllable types improves slightly
the performance, but as the overall dimensionality grows
from 144 to 432 dimensions, one can start to see evidence of
over-fitting (i.e. a growing gap between training and
generalization). Adding time distortion coding increases
more the performance than adding more templates,
suggesting that the temporal distortion adds a new and
useful type of information. This is interesting, because
temporal alignment parameters are typically thrown away in
classical speech recognition systems (more on this below).
In Figure 2¢, we show that the gain in performance obtained
by template coding is not due to high dimensionality alone.
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Figure 2. Percent error in a phoneme classification test using linear separation, for the training and the generalization sets, as
a function of type of input code, using the Monosyllabic Language. Bars show one standard deviation over and above the
mean. a. Baseline scores for the MFCC (12 dimensions) and MFCC+Delta2 (39 dimensions) codes. b. Scores for templatic
codes. We used as templates 4 exemplars of each of the 36 syllable types (left) or 12 exemplars (right). The ‘-time’ bars show
the scores with spectral similarity only and the “+time’ shows the score where time distortion has been added. c. Scores for
compressed templatic codes. We projected a code using 8*36 templates (spectral+temporal) onto the first 39 principal
components (left). We quantizated the spectral similarity of a code with 12*36 templates onto a binary code (0 or 1) (right).

Indeed, projecting the code obtained with 8 templates per
syllable type (plus time distortion) onto the first 39 PCA
dimensions  still  yields better performance than
MFCC+Delta 2 despite the fact that the number of
dimensions is the same. Finally, we quantized each
dimension onto a binary code by using a threshold set at one
standard deviation above the mean (the means and standard
deviations are computed across the dimensions, for each
time frame separately). This was done for a code using 12
templates per syllable, and the result was undistinguishable
from that obtained using non quantized version, suggesting
that the high dimension templatic code is intrinsically a
(sparse) binary code.

Language specificity

How well does the template code capture language-
specific properties? If this code was only increasing
performance because of its high dimensionality, the
particular set of templates used should be irrelevant. Here,
we split the monosyllabic language into two disjoint
sublanguages. The “easy” sublanguage used the maximally
distinct consonants /R m s/ and vowels /a e i/. The “hard”

sublanguage used the minimally distinct consonants /p t k/
and vowels /o u y/. Each sublanguage had only 9 syllable
types. We used as a template set the syllables from one
sublanguage, and tested either on new exemplars of the
same language (appropriate templates) or exemplars from
the other language (inappropriate templates). As shown in
Table 1, using the inappropriate language for the template
set yields a large drop in performance, and this both for the
easy and hard sublanguage. An ANOVA ran across 10
simulations on the log probability of error for the
generalization set showed a significant effect of
sublanguage (F(1,36)=537, p<.0001), and appropriateness
(F(1,36)=410, p<.0001), but no interaction between these
two factors (p>.05). Appropriate templates were better than
the MFCC+delta2 baseline (F(1,36)=266; p<.001), and
inappropriate templates were worse score than baseline
(F(1,36)=41, p<.0001). In brief, template features are
optimally tuned to the language from which they are
extracted; they are very good for the segments that belong to
that language, and poor for ‘foreign’ segments. This
mimicks the tuning process to native sounds which take
place during early language acquisition (Kuhl, 2000).

Table 1. Percent error in phoneme classification (and standard error across simulations) in two sublanguages, easy and hard,
as a function of the code used to represent the signals: the language-independent MFCC+Delta 2 code, and the templatic

codes based on the appropriate or inappropriate sublanguage.

Code Easy Language Hard Language
Baseline Training General. Training General.
MFCC + Delta 2 8.1% (0.3) 8.9% (0.7) 11.8% (0.3) 12.9% (0.7)
Appropriate Templates 4.8% (0.2) 5.2% (0.5) 8.2% (0.5) 10.2% (0.7)
Inappropriate Templates 8.0% (0.2) 9.4% (1.0) 14.0% (0.7) 16.6% (1.0)




25

O Training
@ Generalization

5 20 1
E

)

s 151
®

L

Y= n
=10
7]

8

o 5 |

O T f], T T T T T T
2 >
N4 @ & 2 Q ) Q Q N o Q ) Q N
& RO S L A A I S A S A
& Q &
“ _ ~— R
~" —

structural templates

Fixed size templates (ms)

Figure 4. Effect of the size of the template on phoneme classification using a linear separation test. The
language used was the Polysyllabic Language. The number of templates is fixed in all simulations.

Temporal cues and vowel duration

We found above that temporal distortion was useful even
in an artificial language in which duration cues a priori
carries little linguistic information. The usefulness of
temporal distortion should be even more apparent in a
language where such cues are used, like in Japanese, where
vowel length is contrastive. We introduced a contrast in
vowel duration in the “easy” sublanguage. It had 6 vowels
/a e ia: e: ii/, the latter three being obtained by doubling the
duration of the vowels in the original recording using pitch
synchronous resynthesis. The results are shown in Table 2;
evidently, template codes, especially with time distortion
fare better than the MFCC controls.

Table 2. Percent error in phoneme classification (and
standard error across simulations) in a language using
contrastive vowel duration. The score is given for the
training and generalization sets, and for a specific short
versus long vowel contrast (generalization only).

Code Training Gener.

MFCC 32.3% (0.3) 32.5% (0.9)
MFCC + Delta 2 26.0% (0.4) 26.1% (0.8)
8*36 — time 20.3% (0.3) 23.9% (0.8)
8*36 + time 11.9% (0.2) 15.1% (0.7)

Size and nature of the templates

What is the optimal size of the templates? We used the
polysyllabic language and tested structurally defined tem-
plates, syllables, phonemes and antiphonemes, segmented
using human labels. Antiphonemes were defined as the final
50% part of one phoneme followed by the initial 50% part
of the next. As shown in figure 4, syllabic templates yielded
the best performance, but somewhat counter-intuitively,
antiphonemes were better than phonemes. Second, we tested
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randomly segmented templates of a fixed duration. We
found that randomly segmented templates can do almost as
well as syllables, as long as they have a duration of around
120ms. This duration corresponds to a unit whose size is
intermediate between syllables and phonemes. These two
findings are compatible with the hypothesis that templates
are optimal when they capture the transition parts between
phonemes. The 120ms is also compatible with the optimal
unit found by Coath and Denham (2005).

Conclusion

We have found that coding the speech signal in a high
dimensional space of template similarity yields a significant
improvement over standard MFCC features, even when
temporal derivatives are used. In addition, time distortion
derived from the DWT alignment process adds useful
information over and above spectral similarity. This is
especially true when the language makes use of contrastive
durational cues. We found that the improvement of the
templatic code is limited to the particular language used to
make up the template sets. Templates of one language are ill
suited to classify phonemes belonging to a different
language. Finally, optimal templates seem to correspond to
units around 100-200ms, containing at least the transitions
between two adjacent phonemes.

Of course, all of these conclusions are limited by the
experimental approach we used, which is to test our system
on miniature languages, with restricted phoneme and
syllable inventories. It remains to be shown whether such
coding and conclusions scale up to real-sized languages,
more coarticulated inputs such as spontaneous speech, and
psychologically realistic learning procedures, such as
incremental unsupervised clustering. Another point worth
mentioning is that, because of the multiple DTWs, the
complexity of the algorithm is in o(n.1?), where n is the



number of templates, and 1 is the utterance length. More
work remains to be done to optimize this algorithm.
Moreover, the usability of the code is limited by tractability
issues regarding clustering algorithms in high dimensions.
Potentially useful is the fact that templatic features can be
reduced to binary vectors at little or no cost.

Overall, this supports the interest of coarse graine features
for modeling speech perception (Coath & Denham, 2005;
Skowronski & Harris, 2007), but more research is needed to
add biological constraints to such models and derive new
predictions for early language acquisition.

Acknowledgments

We thank Sharon Peperkamp, Peter Dayan and Paul
Smolensky for very useful discussion and comments.

Appendix

A given stimulus S is aligned to a template T using DTW,
and the two time axes are related through the warping
function warp(t). We can read out DS,T(t), the Euclidian
distance between the signal and warped template:

Dy ()= (s, (1) =t,(warps ;(1)))?

where s;(t)and t;(t) are the MFCC coefficients of S and T at
time t, respectively. We then define Sim(t), a time-
dependant measure of template similarity:
: 1
Slmsvr(f)_o‘JFDS,r(’)
where a is a constant used to avoid infinite values for a
distance of zero (o =107.). Finally, we define a time-
dependant measure of temporal distortion:
DiSt'tempS.T(t):“Og (warp ,S,T(t))|
where warp’(t) is the smoothed slope of the warping
function at time t, computed with a regression on 5 adjacent
frames, and truncated to fit the interval [107, 10™].
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